Orthogonal Defect Classification for Projects

Robyn Lutz and Carmen Mikulski
robyn.lutz@jpl.nasa.gov carmen.mikulski@jpl.nasa.gov

QMSW contact: Burt Sigal
Jet Propulsion Laboratory
Quality Mission Software Workshop
May 13-15, 2003

The research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. It was funded by NASA's Office of Safety and Mission Assurance, Center Initiative UPN 323-08. The first author's research is supported in part by National Science Foundation Grants CCR-0204139 and CCR-0205588.

http://qmsworkshop5.gsfc.nasa.gov/
Orthogonal Defect Classification (ODC) for Projects

- What are the objectives of defect measurement?
 - Reduce post-launch critical software anomalies
 - Provide quantitative foundation for process improvement

- Results on projects
 - Provide defect patterns that can be used as leading indicators of software problems
 - Provide process improvement recommendations based on typical patterns that should be avoided

- What do we do in the short run?
 - ODC has been piloted on 9 spacecraft projects, can be expanded to include more projects
 - The existing institutional defect database is used

- What should we do in the long run?
 - Partial automation and tool development
Current Status

- **ODC** is an Industry standard; mature technique; developed at IBM
 - ODC gives signature of defects
 - ODC gives high-level patterns of defects
 - Adapted ODC to spacecraft domain

- **Applications at JPL**:
 - 7 launched spacecraft: (critical post-launch incident/surprise/anomaly reports
 - MER: testing problem/failure reports
 - Deep Impact: software change request reports

- **Attributes characterize each defect**:
 - Activity: when defect surfaced, e.g., integration test
 - Trigger: situation that allowed defect to appear; e.g., testing a single command
 - Target: what got fixed; e.g., flight software
 - Type: nature of the fix, e.g., assignment-initialization

- **Analysis of patterns**
 - Are results confirmatory or unexpected? OK or not?
 - Defect models are typical patterns – so far, ODC has patterns from 9 spacecraft
 - For unexpected patterns causal analysis is done on that specific subset
 - Resulting recommendations extracted by analyst from ODC results, iterated with project

http://qmsworkshop5.gsfc.nasa.gov/
Focus on problem reports that involve requirements

Where are the spikes?

Phase-by-phase deltas?

Activity/Trigger/Target/ Activity/Trigger/Target/ Target/ Activity/Trigger/Target/ Target/

Type look nominal?

Type look nominal?

Type look nominal?

Type look nominal?

Where are the spikes?

Phase-by-phase deltas?

Activity/Trigger/Target/ Activity/Trigger/Target/ Target/ Activity/Trigger/Target/ Target/

Type look nominal?

Type look nominal?

Type look nominal?

Type look nominal?

Focus on problem reports that involve requirements

Improvement release-by-release uneven: why?

Many closed with no fix: why?

Recommendations for MER and future projects:

Earlier assignment of criticality ratings

If software’s behavior confused testers, enhance documentation

Earlier testing of fault-protection

*ODC = Orthogonal Defect Classification technique [IBM]

MER use: Implement/defer recommendations

MER use: Improved understanding of data, underlying causes, defect mechanisms

MER use: Identify patterns of concern for more investigation

MER use: Browse pivot chart (Excel) for overview/closer look at testing

Problem Report file for MER

Testing Problem Reports

Requirements Classification
What can be done in the short run?

- ODC has been piloted on 9 projects and can be expanded to include more projects
- The existing defect database can be used
- Current estimated effort
 - ODC ~ 4 minutes/defect vs. Root cause ~ 19 (Leszak & Perry 2003)
 - ODC requires little/no additional project time (uses existing fields)
 - Data manipulation and analysis ~ 4 days/month
 - Reduces effort on causal analysis to just unexpected patterns of interest
- Benefits
 - Visualization & browsing options (Excel pivot tables and charts)
 - Gives immediate results to projects
 - Provides guidance to future projects
- Analysis of patterns
 - Incorporates project results into multi-project baseline patterns
 - Can answer project's questions regarding defects
 - Feeds forward into process recommendations
What should we do in long run?

- Partial automation of classification is possible:
 - Customize pull-down menus (Pick-Lists) of the problem reporting system
 - Train users on ODC:
 - When the problem is found (originators)
 - When the problem is analyzed and fixed (S/W engineers)
 - Improve fidelity of raw data
 - Automation supports timely feedback to projects
- Procedures/Tools to generate patterns from PFR database
ODC Classification Sample

Activities
- **System Test**
 - Software Configuration
 - Hardware Configuration
 - Start/Restart, Shutdown
 - Command Sequence Test
 - Inspection/Review
- **Flight Operations**
 - Recovery
 - Normal Activity
 - Data Access/Delivery
 - Special Procedure
 - Hardware Failure
- **Unknown**
 - Unknown

Triggers
- System Test
- Flight Operations
- Unknown

Targets
- **Ground Software**
 - Function/Algorithm
 - Interfaces
 - Assignment/Initialization
 - Timing
- **Flight Software**
 - Function/Algorithm
 - Interfaces
 - Assignment/Initialization
 - Timing
 - Flight Rule
- **Build/Package**
 - Install Dependency
 - Packaging Scripts
- **Ground Resources**
 - Resource Conflict
- **Info. Development**
 - Documentation
 - Procedures
- **Hardware**
 - Hardware
- **None/Unknown**
 - Nothing Fixed
 - Unknown

http://qmsworkshop5.gsfc.nasa.gov/
Sample Pattern from ODC

- New-S/W fix
- New-Procedure
- Confusion-Doc
- Confusion-None

Number

Total
Testing
Operations

http://qmsworkshop5.gsfc.nasa.gov/
Process Recommendations Sample

<table>
<thead>
<tr>
<th>Examples of Unexpected ISA patterns:</th>
<th>Process Recommendation:</th>
<th>Example (from spacecraft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>22% of critical ISAs had ground software as Target (fix)</td>
<td>Software QA for ground software</td>
<td>Unable to process multiple submissions. Fixed code.</td>
</tr>
<tr>
<td>23% of critical ISAs had procedures as Type</td>
<td>Assemble checklist of needed procedures for future projects</td>
<td>Not in inertial mode during star calibration. Additions made to checklist to prevent in future.</td>
</tr>
<tr>
<td>Of these, 41% had Data access / delivery as Trigger</td>
<td>Better communication of changes and updates to operations</td>
<td>Multiple queries for spacecraft engineering and monitor data failed. Streamlined notification to operators of problems.</td>
</tr>
<tr>
<td>34% of critical ISAs involving system test had software configuration as Trigger (cause); 24% had hardware configuration as Trigger</td>
<td>Additional end-to-end configuration testing</td>
<td>OPS personnel did not have a green command system for the uplink of two trajectory-correction command files. Problems resulted from a firewall configuration change.</td>
</tr>
</tbody>
</table>

http://qmsworkshop5.gsfc.nasa.gov/
Sample Lessons Learned from ODC

- Testing reports give "crystal ball" into operations
 - False-positive testing problem reports (where software behavior is correct but unexpected) provide insights into requirements confusions on the part of users
 - If software behavior surprised testers, it may surprise operators
- Closing problem reports with "No-Fix-Needed" decision can waste opportunity to document /train/ change procedure
 - Avoid potentially hazardous recurrence
 - Important in long-lived systems with turnover, loss of knowledge
- Need traceability from testing into operations
 - Some testing PRs resolved by changes to operational procedures
 - Capture rationale for change to use in ops & maintenance
For More Information