" Loz - 050 Fr

/’—”—‘H

| Common Component Architecture (CCA)
Experlences and I\/leasurements

R

Daniel S. Katz, E. Robert
Tisdale, Charles D. Norton,
Craig Miller

Jet Propulsion Laboratory
; California Institute of Technology

Daniel.S.Katz@)jpl.nasa.gov

Parallel Applications Technologies Group

http://pat.jpl.nasa.gov/ JL

http://nasa.gov
http://pat
http://nasa.gov

JPL

sammmy

- ESTOCT

. CCA Demonstration Task
(Completed Sept. 2002)

. Current CCA-Climate Work

NASA Earth Science Technology Office (ESTO)
Computational Technologies (CT) Project

—SPL

~ Jim Fischer/G t Manager
Robert Ferraro/JPL, Associate Project Manager

CT History:

In a previous life, CT was known as the Earth and Space Science (ESS)
Project within the High Performance Computing and Communication
(HPCC) Program (from 1992-2000)

HPCC was a multi-agency federal program
Within NASA, ESS was funded by Codes S and Y, but run by code R

Eight Round 1 Science Teams (Grand Challenge Applications)
demonstrated that NASA/university Earth and space science codes could
work on parallel computers

Nine Round 2 Science Teams demonstrated that NASA/university Earth
and space science codes could achieve good parallel performance on
high-end parallel computers (up to 630 GFlops)

JPL

NASA Earth Science Technology Office (ESTO)
Computational Technologies (CT) Project

~ Jim Fischer/GSFC, Project Manager
Robert Ferraro/JPL, Associate Project Manager

CT Today:

Eleven Round 3 Science Teams developing community frameworks to
enable more realistic simulations of natural phenomena and interpretation
of vast quantities of observational data on high-end computers.

In-house scientists to support the Science Teams
CT is funded and administered by Code Y

CT Project Goal:

Demonstrate the power of high-end and scalable cost-effective computing
environments to further our understanding and ability to predict the
dynamic interaction of physical, chemical, and biological processes
affecting the Earth, the solar-terrestrial environment, and the universe.

CT Round-3 Awardees

Managed via 144 negotiated milestones

for the Earth System
Modeling Framework

$9.8M over 3 years

T. Killeen/NCAR
Part |: Core Earth
System Modeling
Framework
Development

J. Marshall/MIT

- Part ll: Modeling

Applications for the
Earth System

Modeling Framework

~ A. da Silva/lGSFC
Part lll: Data
Assimilation |
Applications for the
Earth System

Modeling Framework

in Earth Science
$6M over 3 years

A. Donnellan/JPL
Numerical Simulations
for Active Tectonic
Processes

P. Houser/GSFC
Land Information
Systems

C.R. Mechoso/UCLA
Atmosphere-Ocean
Dynamics and Tracer
Transport

J. Schnase/GSFC
Biotic Prediction: HPCC
Infrastructure for Public
Health and
Environmental
Forecasting

“Increasing Interoperability and Performance of
Grand Challenge Applications in the Earth,
Space, Llfe and Mlcrograwty Sciences”

ETRRsew T : ; e

JPL

CAN-00-OES-01

in Space Science
$7M over 3 years

T. Gombosi/U.Mich
A High-Performance Adaptive
Simulation Framework for Space-
Weather Modeling (SWMF)

P. Saylor/U.lllinois
Development of an Interoperability
Based Evironment for Adaptive
Meshes (IBEAM) with Applications
to Radiation-Hydrodynamic Models
of Gamma-Ray Bursts

T. Prince/Caltech
High-Performance Cornerstone
Technologies for the National
Virtual Observatory

P. Colella/DoE/LLNL
A C++ Framework for Block-
Structured Adaptive Mesh
Refinement Methods

® Principal Investigator

° Co-Investigator
Dots represent institutions -
multiple teams are at many institutions.

=

JPL

Center-based Direct Support for Round-3 Teams
Provided by Goddard and JPL

iRy s

Software engineering guidance

ESMF risk assessment and mitigation

Unique software product co-development

Performance optimization

High performance computing system access and data storage
PC cluster access

PC cluster pathfinding

High end networking assistance

Visualization services

Summer school in high performance computational sciences
Information officer

APL

Report Card on CT Round-3 Investigator Milestones

$22.8M over 3 years

“ESMF Data Assiniiat “Simi mat ramework for Space-~ National Virtual
Applications Tectonic Processes Systems Weather Modeling Observatory Technology

Collaborations to (AdaSilva/GSFC) (A.Donnellan/JPL) (P.Houser/GSFC) (T.Gombosi/U.Michigan) (T.Prince/Caltech)
develop software Core ESMF : , e ‘

« &t

Framework

frameworks that ., 0/0pment E (5. _ X :
enable more (T Killeen/NCAR) \K\ o
realistic - A y 3

simulations

of natural
phenomena and
interpretation of
vast quantities ESMF [odeling Atmosphire-Oceanll Biotic Pridiction RadiatiofgHydro

of observational Applicafjons Dynamick and (J.Schngke/GSFC)| Models f Gamma-

data on high-end (J.Margpall/MI Tracer Tiansport Ray Burdis
(R.Mechgso/UCLA) (P.SaylogU.lllinois

i e

C++ Frdmework for
Block-Sructured
Adaptivg Mesh
Refinergent Methods

computers. Urbana-@hampaign] (P.Colef§la/LBNL)
Signed Agreement l |
A -Software Engineering Plan
E -Code baseline submitted
F -1st Code Improvement submitted

G -2nd Code Improvement

H -Community agreement on
Interoperability design policy

| -Interoperability Prototype
Tested

J -Full Interoperability
implemented

K -Customer Delivery

B -1st Annual Report

C -2nd Annual Report

D -Final Report
£ 8

(as of 11 April 2003)

JPL

Earth System Modeling
Framework Develop

Description s S SR g SEaa

* Design and implement a software framework to
allow climate model components from different
researchers to interoperate on parallel computers

Pls

* Tim Killeen / NCAR

» John Marshall / MIT

» Arlindo da Silva / GSFC

BEDOHAL LABDHARIDAY

Approach ANL
» Gather and analyze requirements for model The ESMF Will Assist the U.S. Climate

lnteroperablllty frqm the U.S. climate and wee'ath.er. Research Community to Advance by:
modeling communities, as well as for data assimilation

systems used with major weather and climate models * Reducing redundant effort by scientists and
software developers

« Strengthening communication and
collaboration among diverse groups

« Strengthening the links between weather
forecasting and climate modeling
- _ * Increasing the portability and scalability of
* Test scalability and overhead of the resulting climate models
system using real modeling applications

* Design the required software framework and toolkit

 Engineer, test and validate the framework against
the requirements

 Convert existing model and data assimilation
components to comply with and use the framework

« Simplifying the construction of climate models
Management and the exchange and incorporation of new

> 11 shared milestones valued at $9.8M over 3 years submodels 9

http://www.esmf.ucar.edu/

http://httD://www.esmf.ucar.edu

Earth System Modeling JPL
Framework Rollou '

19 major Earth @ DAO YCAM LANL POP ocean
system modeling DAO analysis ’ LANL CICE
components NSIPP atmosphere \ . *LANL HYPOP
All compliant by) : - N .
April 04 o Y //— GFDL FMS B-grid [&%,
NSIPP analysis atmosphere : @ 5
30 ESMF . »
applications GSFC Global LIS 5, GFDL FMS (LIS
15 research and WIT spectral atmosphere
cm ocean
operational MIT i 5 GFDL FMS HIM ocean
8 entirely new gem atmosphers GFDL MOM4 ocean
7 synthetic samples *UCLA AGCM 7764 NCAR CAM
* Early E;?i’(;aczigian state CLM land
adopters of S e e
the ESMF * One of: GISS, COLA, IR|, N
‘LI/P/?/ LL-NLé C_o/oraclfjo Af_tate{, - Broad use NCEP atmosphere
_Hinois, Scripps, U.Miami, -Enh t .
NOAA FSL, Florida State, rhancemen NCEP analysis
Rutgers, ORNL, Air Force Counti B
Weather Agency, oupling never .
U.Washington before achieved Ue’Z; ’::f;’::;e;:%f;gg;?ss'z:;?’?
Existing coupling
migrated to ESMF Earth system models

http://www.esmf.ucar.edu/

10

http://www.esmf.ucar.edu

Future Requirements

SR

-

Report from the
Earth Science Enterprise
Computational Technology Requirements Workshop

April 30 - Muy 1, 2002

Y LI L
Y7 Systen Mansgement

Full report and presentation slides at:
http.//esto.nasa.qov/programs/ct/ese-ct-results.html

JPL

- Weather, Climate, and Solid Earth
panels defined capabilities needed to

achieve NASA prediction goals in
2010

- These capabilities were analyzed for
stressing technology requirements

- Technology Cross-Cut of Gaps
|dentified

- Computing Platforms

Data Management

Programming Environment and Tools
Distributed Computing

Other Requirements

11

http://esto

JPL

- ESTOCT

. CCA Demonstration Task
(Completed Sept. 2002)

- Current CCA-Climate Work

12

JPL

Motlvatlon for JPL S CCA Task

ESTO-CTis a Jomt JPL-Goddard Space Fllght Center (GSFC) Project

Project includes in-house scientists at JPL and GSFC who:
Help the teams meet their milestones
» Advice/Consulting/Code Optimization
Support the project and the teams by developing tools and libraries
Some of the Round 3 science teams had mentioned CCA in their
proposals as a mechanism useful for developing their applications by:

Enabling small groups to write parts of a larger application without
understanding the full application’s code

Allowing the scientists to concentrate on science while still working
towards modern, reusable applications

Taking advantage of previously developed code
- Supporting language interoperability
This led the project to start a task to investigate the CCA
The investigation task recommended a demonstration task

13

JPL
What is a component architecture (CA)?

i i o

« A set of standards that allows:
+ Multiple groups to write units of software (components)

+ The groups to be sure that their components will work
with other components written in the same architecture

+ A framework that holds and runs the components

+ And provides services to the components to allow them
to know about and interact with other components

14

L

. CCA IS S|m|Iar to CORBA/COM/DCOM because it
IS a CA

- All use an interface definition language (IDL)

. CCA is different from CORBA/COM/DCOM

because it is written specifically for high-
performance computing

- The IDL (SIDL) includes array types
« [tis much faster than other CAs

15

JL
Common Component Archltecture (CCA)

.

- A component modeI specmcally designed for hlgh performance computmg
- Supports both parallel and distributed applications

Designed to be implementable without sacrificing performance

Minimalist approach makes it easier to componentize existing software

Components are peers
- No component assumes it is “in charge” of the others PhysacsComponent ;
- Allows the application developer to decide what is important

Components interact through well-defined interfaces, or ports usessdver ‘ ,v

- In OO languages, a port is a class
- In Fortran, a port is a bunch of subroutines ‘
- A given component may provide a port — implement the - =
class or subroutines SolverCOmponent = '

» The Go port is a special provides port - used to start the app’s first component
- Another component may use that port — call methods or subroutines in the port
- Links denote a caller/callee relationship, not dataflow!

- e.g., linSolve port might contain: solve(in A, out x, in b)

Credit: Jim Kohl and the rest of the CCA Forum 16

The framework prowdes the 'means to “hol‘d”&co\mponents and
compose them into applications

- The framework is the application’s “main” or “program”

Frameworks allow exchange of ports among components without
exposing implementation details

Frameworks may support sequential, distributed, or parallel execution
models, or any combination they choose

Frameworks provide a small set of standard services to components
Steps to run an application:
- Launch framework (use a GUI or a script)
Instantiate components required for app.

Connect appropriate provided and used ports
Start first component
* l.e, click Go port in the GUI or call the Go port in a script

CCA Forum is an open community working developing the CCA
Currently, mostly DOE and academic
Credit: Jim Kohl and the rest of the CCA Forum 17

JPL

JPL S CCA Task

=

. The demonstration task ran from Feb to Sept 2002

« The task tried to answer two questions:

How usable is the CCA software? What work is involved for a
scientist to take previously written software and turn it into
components?

Once the components exist and are linked together, how does
performance of the componentized version of the application
compare with that of the original application?

« The task had two deliverables:

Report on completed sequential component demonstration of
Pyramid AMR library and one application - 5/2002

Report on completed parallel component demonstration of
Pyramid AMR library and one application - 9/2002

18

PYRAMID: o IPL

Parallel Unstructured Adaptive Mesh Refinement

Modern... Simple... Efficient... Scalable...

Technoloqgy Description

An advanced software library supporting parallel
adaptive mesh refinement in large-scale, adaptive
scientific & engineering simulations.

State-of-the-Art Design!

+ Efficient object-oriented design in Fortran 90 and MPI
+ Automatic mesh quality control & dynamic load balancing
+ Scalable to hundreds of processors & millions of elements

Application Arena

« Computer Modeling & Simulation Applications with
complex geometry

» Electromagnetic and semiconductor device modeling
 Structural/Mechanical/Fluid dynamics applications

John Z. Lou, Charles D. Norton, & Thomas A. Cwik
High Performance Computing Systems and Applications Group

http://hpc.jpl.nasa.gov/APPS/AMR

http://h

@ Sample Application: JPL
Device Modellng

MICROWAVE ACTIVE DEVICES

- Active devices have very
thin layers with extended
regions

- Charge resides in thin
layers, but is driven by EM
fields extending into bulk
regions

. This is a multi-scale problem

- This problem was examined using Pyramid
in: T. Cwik, et. al, “Multi-Scale Meshes for
Finite Element and Finite Volume Methods:

Device Modeling,” AP2000 Millennium MESFET Model (not to scale)
Conference on Antennas & Propagation)
Lin and Lu, IEEE Elec. Let. Sept 1996 20

JPL

- Initial mesh, derlved from a
commercial mesh generator,
contains large elements that
just preserve the thin-layered
geometry

- Pyramid library performs
adaptive refinement of
initial mesh in stages

- Problem solved using coupled S
Hydrodynamic/ Maxwell
equations:

- Irregular FDTD for EM updates _ s

- Box method for transport 0 2
updates

ars
| 1]] 1 I I I | 1

- Our sample application is only concerned with building the mesh

Credit: Tom Cwik 21

Credit: Tom Cwik

Geometry

Multi-Scale Mesh: JPL
Driven - Level 2

= GEER

6F -
- 0 N Z
5
4 -
3 -
2 =
1 -
.
0 = ATATATAYAYA >
AE i
-2 L7 T4 |—
-3 N‘{I\I\N\N\/\, B
_4 l
-5 2
-6
|
0 2 4 6 8 15 > oo L
X X

22

Multi-Scale Mesh: JPL
Geometry Driven - Level 3

s

AN VNN N N

05

-aB

-0s

L
aa 34 26 28

Credit: Tom Cwik 23

Basic Component Examples: SJPL
Hello World!

- e

- Initially, we wrote 2 example applications

- A single component Hello World! application

 The hello component has only a Go port
* The action of the Go port is to print “Hello World!” to standard out,
then to exit

- A two component Hello World! application

* The hello component has a Go port, and a Uses port

« The Uses port says that hello component will use a helloServer
component

« The action of the Go port is to instantiate a helloServer
component, to call its returnString method, to print the returned
string to standard out, then to exit

« The helloServer component has a Provides port

« This port provides a returnString method, which returns the string
“Hello World!”

24

JPL

Lessons from Basm Examples

. Learnlng the CCA software then writing and
running these examples took about 3 months of
part-time effort for two people

» Most of this effort was learning:
 What are components?
« \What demonstration code is available?
« How do we build and run the demos?
 How do we extract the basics from the complex demos?

. Very little work in actual writing
« Create, build, and run our basic examples in C++

25

JPL

Falrly short effort
- About 3 weeks of part-time effort for two people

+ We basically took what we learned from the simple
examples (written in C++) and applied it to Pyramid

+ However, Pyramid driver and library are Fortran 90

- Understanding how to build components out of Fortran
90 code was our biggest challenge

- Fortran 90 integration issues took a couple of weeks to
work out

- First step: examine interface between potential
components...

26

AP0

A Sample Pyramid Program

A sample Pyramid program is Fortran90, and

looks object-oriented

1. Instantiate a mesh object

2. Work with the mesh object, by calling method
functions

Calls to Pyramid are made with a first argument

that is the mesh object to be worked on

call PAMR_METHOD (input_mesh, ...)
In an object-oriented programming langauge,
these calls would look like
. input_mesh.method (...)

27

@’ JPL

Fortran 90 Components?

R R - e SRR

- We observed that the main items passed across
the interface are Fortran 90 pointers

. We chose to use the CCAFEINE framework,
which required code to be written in C++

. CCAFEINE now allows components that use BABEL,

and thus permits code in C, C++, Fortran 77, Java, and
Python

« Other CCA frameworks exist, such as DCAFE

. We decided to write a C++ version of the driver
code that could pass Fortran 90 pointers

28

Details of Componentizing the JPL
Sequentlal Software

Rt

First, we wrote a test program that used a Fortran 90 pointer

We compiled this into object code, to understand the routine names that
the compiler was generating, so that these routines could later be called
from C

Additionally, we compiled the code into assembler, which we studied to
understand how a Fortran 90 pointer was stored and passed

Once these two issues were clear, it was a simple matter to write a C
main program, and to wrap the Pyramid library with a C wrapper
Neither of the main nor the wrapper are portable to other machines, OSes,

or compilers, but the non-portable code is limited to two specific files, and
can be rewritten for other environments

Next, we wrote a C++ main program, and a C++ wrapper for the
C-wrapped Fortran 90 library

Once this was working, it was a simple matter to use the knowledge
gained in the two-component Hello World example to turn the main

and the wrapped library into components, and run them in the
CCAFEINE framework 29

JPL

Sequential Timing Results

R

+ Overall result - the overhead of componentization is negligible

Original F90 application Com_por.\entlzed
application

User tlrne., as returned by 1951 s 19.49 s
the Unix time call

_ 20.37 s 2043 s
Wall clock time, as
measu_red from the first - 0.87 s system time - 0.91 s system time
Pyramid call to
the last Pyramid call — 1950 s ~ 1952 s
One call to Pyramid 98.83 s 102.24 s
made one million times

30

@ JPL

Parallelizing the Componentized Programs

« Parallelizing the componentized program was trivial
. One copy of the framework runs on each parallel processor

« Each process of each parallel component communicates with
the equivalent process of the other other component through
the equivalent process of the framework

« The processes in a parallel component communicate with
each other through MPI

PO P1 P2 P3
@@ @

. RN Roi

Components: Blue, Red

Framework: Gray

31

JPL

. Overall results

« The overhead of componentization is negligible
» Componentization doesn’t hurt scalability

10000
1000
s 100
R
&

1

2 4 8 16 32

Number of Processors

32

Lessons Learned (as of Sept. 2002)

There was a fair amount of learning associated with use of the CCA
Forum'’s technology, including the CCAFEINE framework

It may take 1-3 months for a computational scientist to be able to
componentize an initial application

A second should be able to be componentized fairly quickly
The lack of a means to write Fortran 90 components is a serious
shortcoming for many science applications

It is possible to get around this shortcoming

This introduces additional work for the componentizer

This adds the chance for additional errors to come into the application
Once an application is componentized, if the amount of work done in
each component call is large when compared with the time needed to

make a function call, it is likely that the componentized version of the
application will perform well

33

@ JPL

ESTOCT

CCA Demonstration Task
(Completed Sept. 2002)

Current CCA-Climate Work

34

JPL

Current Work

Aimed at mfusmg CCA into CT
Examine if CCA is useful for ESMF

Working with the CCA Forum on Fortran 90 issues

We are now working with a coupled climate simulation
from UCLA...

35

JPL

Development of an Earth System Model (ESM):

Atmosphere-Ocean Dynamics and Tracers Chemistry
Pl: Carlos R. Mechoso, UCLA hitp://www.atmos.ucla.edu/esm

R

Goal: Develop and apply to problems of climate change a model that describes
the coupled global atmosphere - global ocean system, including chemical

tracers.
Ultimate goal: Have an ESM capable of performing ensembles of century-long simulations.

'ATmospheric Genera Atmospheric
Circulation Model Chemical Tracer
(AGCM) Data Model (ACTM)
B
Oceanic roker Oceanic
General Circulation Chemical Tracer
Model (OGCM) Model (OCTM)
UCLA Earth System Model
Four model elements:

« UCLA AGCM

» JPL version of LANL Parallel Ocean Program (POP)
* UCLA ACTM (which can include up to 64 species)

» JPL Ocean Chemical Transport Model

Distributed Data Broker developed to couple all models
Each model designed for high performance parallel internal execution
Earth System Model designed for concurrent execution of models 36

of ESM components

AGCM-OGCM Coupling

timastiap

-1 0 1 2
AGCM JAGCM AGCMJAGCM
Phys § Dyn Phys § Dyn
Surface Surface
Fluxes Fluxes

Yo
Initial OGCMBOGCM
SST Beinic § Btropc

Atmospheric surface fluxes that drive the ocean are produced by the model component
known as AGCM/Physics; sea surface temperatures (SSTs) that drive the atmosphere
are produced by the ocean model component known as OGCM/Baroclinic.

37

AGCM and OGCM
Coupled Performance

Ll Pl LN =ha
b mrtiar ol TREF wstm= cbace_aim 4n s hd

L. i 1 i
Pt Vi Sz £ N R o
Fherdaar od TR FE acoriers Hladdvadae 2o U050 R

JPL

\\\\\\\\\\\\\\

+ Data transfersbetwen ESM compjnentson d‘ifferent
processors (example: SSTs from OGCM to AGCM)
are handled by Data Brokers

« Other data transfers handled internally

+ For example, atmospheric circulation and chemistry are tightly
coupled on the same processors

« UCLA code uses a Distributed Data Broker (DDB) to
avoid performance bottlenecks and memory limitations
that can occur with a Centralized Data Broker (CDB)
which assembles the entire data field from a producer
on a single processor before sending it to consumers

39

JPL

e R

Function
7 Software tool to handle
. | 7l distributed data exchanges
DlsglbUted i between the ESM components
Br;ﬁr = Major Tasks

- Gather information from each
model component (may have
been decomposed into many
subdomains running on different
processors)

- Convert data resolutions, units...,
] etc. and redistribute them to the
needed model components

- Keep track of coupling sequence,
such as how often AGCM needs
sea surface temperature and
which processors have that
information 40

JPL

Distributed Data Broker (DDB)
___Component

s

R R

- Model Communications Library

Callable routines for registering and exchanging
information between model components.

. Communications Library

General communication routines to manage the data
exchanges based on standard communication
toolkits

PVM (current), MPI (through a PVM wrapper coming soon)

. Data Translation Library
Routines for data regridding.

41

JPL

MCL Registration

Model A

MCLMetaReglster MCLRegisterProduce

Modoel ctrl process Ctrl process registers
registers subdoamin ata production and
information onsumption

N\ MCLRegisterConsume

AN ’
\ 7
/7
N z

m RB records data

from subdomalins
m RBrecords ld’s of

registering processes

Distributed

= RB maps regional
Data subdomains from one
B RB ostablishes the model Into the other
communication links

between processes

” ~
'
e

MCLRegisterConsume

Model ctrl process
registers subdoamin

Information
Ctrl process reglsters
ata production and MCLMetaRegister
ansumption
MCLRegisterProduce

42

SRP0L
MCL Send and

Receive Data

s

MCLGetData Model A |

Process P40

regquests data
for Its
subdomain

Distributed L
E}ata Transform data A
recelved for PR0

Broker

b Gather data for Pa0

MCLSendData

43

JPL

Status

S P R R

- We intent to turn the UCLA coupled climate code into a
CCA componentized application during the current fiscal
year (Sept. 2003)

The code will become three CCA components: an atmosphere
model, an ocean model, and a distributed data broker

Now modernizing the UCLA code
« Changing the DDB from PVM to MPI

« Using Fortran90 dynamic memory in place of Cray/Sun/SGI
extensions in AGCM

Componentizing will start in a month or so

44

ey

Conclusions

A

Knowledge of ongoing work within the CCA Forum
(including our own) leads us to believe that the problems
with learning the CCA methodology have been solved

Most of the issues with using Fortran 90 have been
resolved since Sept. 2002

The rest will be resolved, most likely in the next 3-6
months

Once this is done, the CCA model will be a promising
method for building large parallel applications

An example CCA climate application will be a powerful
motivator for others in climate to investigate CCA

A CCA DDB component may be very useful in non-climate

applications .

JPL

Thank You for Your Attention

o

Any Questions?

Either now
or later via email:

Daniel.S.Katz@jpl.nasa.gov
http://pat.jpl.nasa.gov/public/dsk/

46

