1400 – 1900 GHz Local Oscillators for the Herschel Space Observatory

John Ward, Frank Maiwald, Alain Maestrini, Goutam Chattopadhyay, Erich Schlecht, John Gill, and Imran Mehdi

Jet Propulsion Laboratory, Pasadena, CA
Herschel Space Observatory
- 3.5 meter passively cooled telescope
- Covers 60 – 670 mm (450 GHz – 5 THz)
- Launch in 2007
- Three science instruments: PACS, SPIRE, and HIFI

Band 6 of the Heterodyne Instrument for the Far-Infrared (HIFI)
- Solid-state local oscillators will pump hot electron bolometer (HEB) mixers
- Covers 1408 – 1908 GHz to observe spectra in the interstellar medium
 - N+ at 1461 GHz
 - H$_2$O at 1661, 1670, and 1717 GHz
 - OH lines from 1834.7 to 1837.8 GHz
 - C+ at 1900.5 GHz
- Broken up into 4 sub-bands

The purpose of these oscillators is to pump HEB mixers from 1.4 to 1.9 THz
1.4 – 1.7 THz Configurations

88-97 GHz
x3

WR-10
215 mW

WR-10
170 mW

176-194 GHz
50 mW

352-388 GHz
10 mW

704-776 GHz
800 mW

1408-1552 GHz
2.1 mW

PA

x2

x2

x2

x2
1.7 – 1.9 THz Configurations

- 98-106 GHz
 - WR-10: 260 mW
 - WR-10: 210 mW, 60 mW
 - 196-211 GHz
 - 588-636 GHz
 - 1764-1908 GHz
 - x3
 - PA
 - x2
 - x3

- 71-79.5 GHz
 - WR-10: 250 mW
 - WR-10: 200 mW
 - 142-159 GHz
 - 284-318 GHz
 - 852-954 GHz
 - 1704-1908 GHz
 - x3
 - PA
 - x2
 - x2
 - x3
 - x2

- 71-79.5 GHz
 - WR-10: 250 mW
 - WR-10: 200 mW
 - 142-159 GHz
 - 284-318 GHz
 - 568-636 GHz
 - 1704-1908 GHz
 - x3
 - PA
 - x2
 - x2
 - x2
 - x3

1400 – 1900 GHz Local Oscillators for the Herschel Space Observatory
Schottky Devices for Band 6

- Based on planar GaAs Schottky diodes
- Multi-diode balanced configurations
- Mostly doublers, plus a few triplers
- Low frequency multipliers (< 1 THz) on “substrateless” process
- High frequency multipliers on membrane process
- See previous publications for more info

- Substrateless devices already fabricated
 - 190 GHz doubler
 - 375 GHz doubler
 - 750 GHz doubler
 - 200 GHz doubler
 - 400 GHz doubler
 - 800 GHz doubler

- New substrateless devices in process
 - 150 GHz doubler
 - 300 GHz doubler
 - 600 GHz doubler
 - 600 GHz tripler

- Membrane devices being tested for Band 6
 - 1.5 THz doubler
 - 1.6 THz doubler
 - 1.8 THz doubler
 - 1.8 THz tripler

- Other devices fabricated
 - 1.46 THz tripler
 - 1.6 THz tripler
 - 900 GHz tripler (UMass)
Device Status

- High frequency devices (above 1 THz)
 - Primary wafer completed, some anodes not optimal
 - Backup wafer completed, but the yield for 1800 triplers is close to zero
- New low-frequency wafer due this summer
 - New 150/300/600 GHz doublers, 600 GHz triplers
 - Low dopings (1·10^{17} \text{ cm}^{-3}) for higher-power driver stages
- May run a new high frequency mask this fall
Several power meter technologies available
- Golay cell
- Keating meter
- Erickson calorimeter
- Bolometer

Each meter brings specific calibration challenges
- Impedance mismatch / standing waves
- Waveguide losses
- Optical losses / coupling
- Atmospheric absorption
- Drift
- Linearity

Factor of 2 discrepancies are common
Agreement to 30% possible with care

The ultimate figure of merit is to pump a mixer
See Tong et al. MTT-S International Microwave Symposium 2003
JPL 1500 GHz Doubler
1500 GHz Results

T = 295 K, Power measured with Erickson Calorimeter

Output Frequency (GHz)

Output Power (mW)
1.9 THz Tripler
1900 Tripler Frequency Sweep

Pin ≈ 3 mW from BWO, T = 295 K

- SN1 (0.4 x 0.4)
- SN4 (0.6 x 0.4)
- SN5 (0.8 x 0.4)

Output Frequency (GHz)

Power (nW)
1.9 THz Tripler Power Sweeps

1810 GHz Power Sweeps (295 K)

- SN1 (0.4 x 0.4)
- SN4 (0.6 x 0.4)
- SN5 (0.8 x 0.4)

Output Power (mW)

603.3 GHz Input Power from BWO (mW)
x3x3 Chain Simulations

Band 6 High x3x3 Chain Simulation at 295 K
Includes interaction between 600 and 1800 GHz triplers with 5 mm of waveguide
70 mW input power at 200 GHz, 7.0 fF anodes on 600 tripler and 0.8 fF anodes on 1800 tripler
Erickson / JPL 1900 Doubler

Photo from Neal Erickson
State-of-the-Art at 295 K

Power (mW)

Freq (GHz)

- $X2$
- $x2 \times x2$
- $x2 \times x2 \times x2$
- $x2 \times x2 \times 3$
- $x2 \times x2 \times x2 \times x2$
- $x2 \times x2 \times 3$
- $x2$
- $1/f^2$

1400 – 1900 GHz Local Oscillators for the Herschel Space Observatory
State-of-the-Art at 120 K

Power (mW)

Freq (GHz)

10000
1000
100

0.001
0.01
0.1
1
10
100

- X2
- x2x2
- x2x2x2
- x2x2x3
- x2x2x2
- x2
- x2x3
Summary

- Greater than 10 mW at 1.5 THz demonstrated at 295 K
- Greater than 1 mW demonstrated at points in 1.7 – 1.9 THz range with both a planar tripler and a planar doubler
Ed Tong and Jon Kawamura successfully pumped a Harvard HEB with a JPL / Neal Erickson 1.5 THz solid-state local oscillator chain

- Required LO power (not including optics losses) was about 1 mW
- For HIFI, 27% coupling efficiency and 84% beam efficiency of the horn imply that about 3 mW will be required from the flight LO chain if the flight mixer has similar pump requirements as the Harvard mixer

- HEB was a waveguide mixer, very different from the flight mixer
- Actual required power for the flight band 7 mixers will depend strongly on design decisions made by the mixer development team

References: Tong et al. MTT-S International Microwave Symposium 2003
Pumped HEB Results (2)

References: Tong et al. MTT-S International Microwave Symposium 2003
Pumped HEB Results (3)

References: Tong et al. MTT-S International Microwave Symposium 2003
Band 6 high results

1820 GHz Power Sweeps (137 K)
JPL PN 10216340 SN5 Driven by RPG tripler D2T-B
(Optical coupling not optimized, & bolometer not calibrated)

- 1820 GHz Power (through wire grid) + 6dB
- 1820 GHz Power (no grid)

1820 GHz Power (mW)

101.1 GHz Power (mW)
Simulated 1.9 THz Tripler Power Sweeps

F = 1900 GHz, T = 295 K

1900 GHz Output Power (µW)

633 GHz Input Power (mW)

- 0.6 fF
- 0.8 fF
- 1.0 fF
Band 6 Low Multiplier Test Status

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Test Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A.1 – 176-194 GHz doubler</td>
<td>Well tested</td>
</tr>
<tr>
<td>6A.2 – 352-388 GHz doubler</td>
<td>Tested</td>
</tr>
<tr>
<td>6A.3 – 704-776 GHz doubler</td>
<td>No test data, but have a tested backup</td>
</tr>
<tr>
<td>6A.4 – 1408-1552 GHz doubler</td>
<td>Tested</td>
</tr>
<tr>
<td>6B.1 – 194-212 GHz doubler</td>
<td>Well tested</td>
</tr>
<tr>
<td>6B.2 – 388-424 GHz doubler</td>
<td>New design, but have tested backup</td>
</tr>
<tr>
<td>6B.3 – 776-848 GHz doubler</td>
<td>Well tested</td>
</tr>
<tr>
<td>6B.4 – 1552-1696 GHz doubler</td>
<td>No test data, but have a tested backup</td>
</tr>
</tbody>
</table>
1.4 – 1.7 THz Configurations

- Chain 6A: 1408-1552 GHz out

- Chain 6B: 1552-1696 GHz out