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ABSTRACT 

Binocular, correlation based stereo has been a key component in many efforts at autonomous vehicle navigation. 
However, estimation of ground truth range data, especially in field conditions, remains a challenge. We present a 5 
camera, multibaseline stereo system and demonstrate its use as a passive ground truthing mechanism for binocular 
stereo. In this paper, we provide both a system description and a detailed overview of a novel depth-based multibaseline 
stereo algorithm. Our new algorithm avoids the need for pairwise camera rectification. We conclude with several 
simulations and real world experiments to verify our results. 
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1. INTRODUCTION 

Binocular stereoscopic vision has been an important component in autonomous navigation. We list only a few of 
countless references on the subject.’2223s4 Stereo provides a real-time, low cost method to infer 3D structure for use in 

dlll)ft-.. ,.,, ,hc:l, , ,hazard avoidance, path planning and other decision-making processes. Where such factors are a consideration, it is also 
~,jc-,,,qs,n-: - a low visibility passive sensor. Key to the real-time aspect of stereo is the use of algorithms based on sum of absolute 

difference (SAD) correlation or basic variants. An overview and extensive bibliographies can be found in many 
places?’6 Such algorithms are amenable to substantial optimization on existing h a r d ~ a r e . ~  In low to mid complexity 
environments, stereo by SAD correlation has proven itself a robust and reliable tool. However, as more demanding tasks 
are required of autonomous systems, the need to operate in more complex environments increases. While more exotic 
approaches’, which often produce better results, have recently been proposed in the literature, they are not yet at a stage 
to be used in real-time systems. Thus, any improvements to existing stereo algorithms for use in navigation are likely to 
be based on correlation approaches. In order to evaluate any such improvement, we need a mechanism to establish 
ground truth. One possibility is to use active sensors such as ladar to establish a highly accurate 3D model of a scene. 
Even ignoring issues of quality and accuracy of 3D data, there are a number of complications involved in such an 
approach. Primary among them are spatial and temporal registration of the stereo data with the active sensor data. 
Spatial registration involves a potentially complex calibration that must be repeated whenever the active and passive 
systems are used together. It amounts to registering 3D point clouds9 acquired by different sensors with different 
resolutions and geometries. By temporal registration, we refer not to a simple timestamp between datasets, but the 
actual mode of acquisition. A stereo pair is effectively an instantaneous snapshot of the screen. Ladar, on the other hand, 
is typically a single axis device which produces a raster scan of the scene, usually with a limited vertical field of view. It 
becomes necessary to compensate for both scene and vehicle motion in the later case, but not in the former. In complex 
terrain, particularly in the presence of foliage which can move in a breeze, misregistration is a possibility even if spatial 
calibration is perfect. Another factor is cost. CCD cameras are relatively cheap and easily obtained, whereas more 
specialized equipment may not be. 

An alternative approach is to accept as “ground truth” the best possible result one can expect from correlation based 
stereo. We describe in this paper one attempt at achieving this best possible result. Note that real-time performance is 
not an issue for this algorithm, since it is intended primarily for offline evaluation of reaktime algorithms. Our approach 
involves the use of multiple cameras involving multiple stereo baselines to estimate 3D structure. Since any subset of 
two cameras from our collection can be considered a binocular stereo pair, the end result is a direct comparison 
mechanism between ground truth and standard stereo, and since identical sensors and data are used for our comparison, 
the registration issues are simply non-existent. Before describing in detail our multibaseline evaluation algorithm, we 
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1.1 Outline of binocular stereo 
Starting with a pair of images acquired by a binocular stereo system, processing proceeds as follows. (1) Non-linear 
distortion is removed and the images are rectified to a plane containing the two optical centers so that image scanlines 
correspond to epipolar lines. This reduces the correlation problem from a 2D search to a 1D search. (2) The images are 
pre-processed in several ways. These include Gaussian smoothing, reduction (if desired), and bandpass filtering to 
accommodate differences in photometric properties between the cameras. (3) For each pixel p in the left rectified image 
at coordinates (x,y), we take a candidate horizontal disparity value for the corresponding pixel in the right image, now 
assumed to be at (x+d,y). (4) We take the sum of absolute differences of a rectangular region centered at (x,y) in the left 

q i g e  and (x+d,y) in the right image. This value is considered the correlation score for pixel p at disparity d. ( 5 )  We 
minimize the correlation score for each pixel p as a function of d, resulting in a disparity map co-registered with the left 
image. (6) We perform several heuristic algorithms including left-right line of sight check and blob coloringhiltering on 
the disparity image. (7) We perform subpixel refinement using the disparity values and correlation scores of the filtered 
disp the intrinsic geometry of the camera, we translat ttD a range for each pixel. 4 - 1 > i  

With the exception of implementation details and optimizations6 the above outline or some basic permutations of it 
applies to any real-time correlation based stereo algorithm. Before proceeding to our evaluation algorithm, we show in 
Figure 1 some stereo results on three scenes of increasing complexity. Data was acquired using 1024 x 768 Dragonfly 
firewire board cameras with 60" field of view and with a stereo baseline of 10 cm. In the examples below, and in all 
examples to follow, we use 11 pixel x 11 pixel correlation windows on 5 12 x 384 images (reduced by a factor of 2 from 

complexity scene, the results are more difficult to judge. 
the original 1024x768 images). Observe that in the low and mid complmityscenes, stereo does quite well. in-the high 1 I:? 

2. MULTIBASELINE SYSTEM #!3iblN)t?ts! 

2 . 1  System description 

for easy mobility. The center-left pair of cameras has a 16 cm baseline, the center-right a 10 cm baseline, the center-top 

- - ".?kfG*G , ; ( y ~ + , f r ,  

Our multibaseline camera system consists of 5 Dragonfly firewire cameras from Point Grey Research. The cameras are 
mounted on a rigid metallic support in a cross configuration. The support is mounted on a pan-tilt unit attached to a cart 

a 10 cm baseline and the center-bottom a 16 cm baseline. Our intuition in developing this configuration was to have 
stereo pairs oriented in the two principle directions with several (3 each) useable baselines. In addition to the ground 
truthing mechanism to be described, this allows us great flexibility data collection of binocular pairs. The system is 
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pictured in Figure 2. 
2.2 Algorithm Introduction 
We now describe in detail our multibaseline stereo algorithm. While the 
algorithm was produced primarily for use with the 5 camera rig pictured in 
Figure 2, it should be noted that it will accommodate any number of cameras 
in any configuration. The primary difference between mr approach and 
many other trinocular and multibaseline approaches is that we iterate directly 
over depth rather than over disparity. Simlar depth based approaches have 
been proposed ", but our implementation is simpler and makes no 
assumption about piecewise planarity of the scene. Indeed, for the types of 
scenes in which we are interested, this is far from the case. It is known 'I that 
minimization over inverse depth with three or more cameras is inherently 
less ambiguous than minimization over disparity in a comparable setup. 
While this is beneficial, our motivation in using a depth-based search is 
different. We see two primary benefits. First, it avoids the need to rectify 
individual stereo pairs, since there is no consistent epipolar geometry across 
multiple cameras. If individual stereo pairs are rectified, there is either an 
issue of using a pre-selected stereo pair and referencing all other cameras to 
it or of solving a non-trivial accounting problem in relating relevant pixels in 
any rectified pair with those in any other pair.I2 A second important benefit 

system 

to our method is that it allows depth samplings to be chosen so that a 3D region of interest can be explored in greater 
detail. This is not dependent on the inverse integer disparity values of any camera pair. In other words, we can explore a 



sparse depth sampling in some region of space and a denser sampling in another, where objects of interest lie. This is 
not necessarily a benefit when operating a stereo system in an unknown environment, but will be useful in evaluation, 
when the environment and important depth regions are well known. While not directly relevant to our experimental 
setup, our algorithm will also accommodate as a natural side effect the perspective warping associated with cameras 
with non-parallel optical axes. Note that while the rectification problem is no longer relevant if we relax standard stereo 
algorithms to search over a 2D disparity space, the warping problem remains. 

I 

Figure 3: Schematic of depth based stereo system for multiple cameras. A point po in the reference camera is projected 1 

2.3 Algorithm Overview 
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In Figure 3, we present a simple overview of the algorithm using 3 cameras viewed from overhead. First a reference 
camera is chosen. Call it Co. For each pixel po in CO, we imagine that it originated from some 3D point Pi at depth d,. 
We then project a correlation window wo of chosen size and centered at pixel po to a window W, at depth d, in space. 
This window is then reprojected to windows wl and w2 in the remaining cameras, CI and Cz respectively. We can now 
compute correlation scores for pixel po and depth d, by combining the sum of absolute differences of windows over 
pairs ofWriitMs. 

The most straightforward approach is to take either the product or sum of correlation scores over pairs. 

It is easy to show that the product or sum of this collection of functions at their (nearly) joint minima has higher 
curvature and is thus better defined than any of the component functions. Observe that the correlation windows need no 
longer be rectangular. We describe in the next subsection, how this is handled in practice. If Si is the correlation score as 
computed above for di, we find the index i which minimizes Si. Then the depth D@o) of pixelpo in camera Co 

D(p , )  = arg min Si 
i 



Where Si is computed as in Equation (1). For further refinement, we perform the functional equivalent of subpixel 
interpolation by fitting to a quadratic the sets {&, 4, 4 + ~ )  and {&I, 4 ,  4+ , ) .  D@a) is then set equal to depth value 
which minimizes the resulting parabola. The above description and schematic convey the idea behind our algorithm, but 
the implementation differs in several ways. We now describe this in greater detail. 

2.4 Algorithm implementation 
First, some preprocessing steps are performed on individual images. All images are assumed to result from perspective 
projection. Thus, we begin as with most stereo implementations by removing any nonlinear distortions using camera 
models obtained by careful prior calibration. Images and associated camera models are then scaled if desired and a 
difference of Gaussian or Laplacian of Gaussian filter is applied both to smooth noise and to eliminate variations due to 
photometric differences between the cameras. 

We choose a reference camera C g  as described above. In our 5 camera evaluation rig, this is normally the center camera. 
We segment the 3D space into planes parallel to the image plane of CO. The placement of these planes is arbitrary and 
depends on the sene  involved. If maximum and minimum relevant range values are known, the planes can be 
distributed more densely within this region. If a one-one map between plane depths and the various integer disparities 
arising from camera pairs within the system is desired, for example to compare to other algorithms in a meaningful way 
in disparity space rather than range space, the appropriate planes can be chosen easily. 

Normally, the next step in most stereo algorithms is rectification. We show now how we avoid rectification without the 
need to introduce a 2D search over all images. Let I be an integer indexing of the planes and J be an indexing of the 
cameras. Then for each i E I, we project all pixels in camera Co to the plane Pi. Let zj be the plane homography from Pi 
to the image plane of camera C' Let 

= TL1Tk, i E I ;  k,l  E J .  

Equation 2 then provides a homography between camera planes which respects any chosen depth plane. Thus for any 
region of image Co which has a uniform depth approximated by plane PI ,  the transformation described byTl,kI is in fact a 
homography for that region. It is essential to note that we perform linear or cubic interpolation to warp the pixilated 
image data. If this is not done (i.e. if nearest neighbor approximations are used) there is no benefit to choosing trial 
depths other than those which correspond to fixed pixel disparities among the various cameras. For each camera C, with 
j#O,  Let 

- -'";+ d*< 

Ei, j = Ti, jocj . (3) 

It follows that EIJ and Cg match over any pixels arising from objects on depth plane P I ,  or more realistically, that they 
match closely for objects at approximately the depth of P I .  Thus, for each depth plane, we compute matrices MZJ and S,, 

M .  . = I i7 j  -Col, Si = Q K * M . .  1 . J  ' 

j t > J  (4) 

where in Equation 4, 8 represents either product or sum as in Equation 1, the * operator is convolution, and K is an 
averaging filter of size equal to the desired correlation window. For each pixel p at coordinates (m,n) in CO, we find the 
depth D ofp as 

D(p)  = argmin Si (m, n)  , 
6 

( 5 )  



Following this, we perform quadratic interpolation at each pixel as described in Section 2.3 to refine our results. The 
final step of the algorithm is a filtering procedure which eliminates any spurious, isolated patches of range. 

In addition to the missing rectification step, observe that there is no left-right line of sight check. This is generally 
unnecessary for any multibaseline system since the ambiguous correlations matches are automatically reduced because 
of the additional cameras. Furthermore, in our algorithm, 3D points are being unambiguously projected into image 
planes, minimizing the problem to an even greater extent. 

2.5 A simple variation 
As a result of the way our algorithm is structured, there is one variation in addition to using the product or sum to 
compute a joint correlation score as described above. Instead of a joint score, we have the flexibility to compute a 
binocular stereo range using different stereo pair on a pixel by pixelbasis. This is accomplished by replacing Equation 5 
with 

D ( p )  = argminMi,i(m,n) 

In other words, at each pixel we take the minimum correlation score arising from any of the individual binocular pairs. 
Note that in this case, we get range data wherever any two cameras have overlap. In the combined approach, we require 
a point to be visible in all cameras. In addition to greater visibility, we expect this approach to produce results better 
than binocular stereo. The neighborhood of any 3D point will have an optimal pairwise match, depending on baseline 
and visibility. We simply allow this pair to be self-selected for each pixel. 

3. RESULTS 

Below we present results from simulated data as well as from the mid and high complexity scenes discussed previously. 
We show that our multibaseline algorithm can produce more accurate range results over a greater dynamic range than 
binocular stereo. While this involves a much more exhaustive search of the 3D space than the comparable disparity 
search for binocular stereo, we feel that the increased computational complexity is not a factor for an evaluation tool. As 
mentioned previously, the work presented in this paper is intended for offline evaluation of real-time algorithms. In the 
following the algorithms described in Section 2.4 are referred to as "combined" since they use the product or sum of 
multiple correlation scores. The variant described in Section 2.5 is referred to as "minimum pair", since the best 
correlation score from each stereo pair is chosen at each pixel. 

3.1 Simulation 
We wish to validate two points in this section. First, we show that the joint correlation 
function described above produces better results than correlation from a single stereo pair. 
This is well known for trinocular stereo for example, but we demonstrate it in the context 
of our depth based search algorithms. Secondly, we show that depth based search can yield 
more accurate range estimates than disparity based stereo, since there is no a priori 
coupling between the choice of depth planes and integer disparity values of any stereo 
pair. For binocular stereo, depth estimates are typically biased towards integer disparity 
even after subpixel interpolation. 

Our simulation setup consists of a virtual 5 camera rig with identical geometry to the one 
described above. The only difference is that our virtual cameras are 300 x 300 resolution 
for convenience of processing. We place 3 textured planes in space at uniform depths of 4, 8 and 16 meters from our 
camera rig. Image formation consists of projecting the texture into each camera according to predefined camera models. 
Note that we are careful to accommodate mixed pixel effects. The intensity registered at any pixel is the average 
intensity over all 3D points which project to that pixel. Figure 4 is an image taken by the central camera of the virtual 



plane at 8 meters. Note that we do not add signal noise, since our goal in this exercise is not to evaluate the robustness 
of the correlation scheme. 

In Figure 5 we show the correlation scores at the central pixel of the center camera for depths ranging from 5.5 to 10 
meters. Shown are the scores for the individual binocular pairs (center-left, center-right, center-top, center-bottom) as 
well as the combined scores using both the product and sum approaches described in Section 2. Observe that the 
minima for both the product and sum are much sharper than that of any individual camera pair. It follows from the high 
curvature at the minima that subsequent quadratic interpolation produces better results than in the case of a single 
camera pair. 

Figure 5 :  Correlation scores at single pixel for ranges near the minimum. Combined 
curves have much sharper minima than the binocular scores. 

We computed depth maps using our binocular stereo algorithm with the 3 available lateral baselines of 10, 16 and 26 cm 
for each of the 3 textured planes mentioned above. For the multibaseline algorithm, we space the depth search planes at 
intervals of 10 cm. To prevent bias in the estimates, we arrange these planes so that they were not coincident with any 
of the 3D textured planes being recovered. In Figure 6 are tabulated the mean and standard deviation for recovered 
depths for each of the planes. Observe that the results for binocular stereo are highly variable. This is an artifact of good 
depth recovery at inverse integer disparity values. For our multibaseline algorithms, the results are consistently good 
and consistently better than for binocular stereo. While further evaluation with more sophisticated models is warranted, 
we feel this first step has been successful in validating our approach as an adequate ground truth mechanism. 



3.2 Results with real imagery 
We show the result of applying our multibaseline algorithms to the mid and high complexity scenes pictured in Figure 
1. In Figures 7 and 8, we present the combined and minimum pair versions of our algorithm along with the original 
binocular depth maps. As with the binocular results described in Section 1, we used 1 1  pixel x 11 pixel correlation 
windows on 512 x 384 images. 

The results of the two combined approaches (product and sum) are indistinguishable to the naked eye, so we only show 
the sum result. Note that despite the dense range maps for this variant, the sides of the image are truncated. As 
mentioned earlier, this is a consequence of requiring all 5 images to contain each point. In subsequent implementations, 
we plan to relax this constraint and use only the available data where all images fail to overlap. 

: 7: Result of binocular stereo with 10 cm. baseline and mull iseline algorithms on scene of mid complexity 
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In the mid complexity scene pictured in Figure 7, both multibaseline variants appear to produce not only denser but 
sharper results than the binocular algorithm. In the case of the combined approach, the sharpness results from the 
increased sharpness of correlation peaks. In the case of the minimum pair approach, there is a larger set of candidates 
for baseline (on a per pixel basis). Hence, more range values will have meaningful inverse disparity correspondents. 

The high complexity scene is more difficult to interpret. The overhanging foliage makes the range map appear 
segmented. However, we have shown with 3D reconstruction of this data that the segmented components do, in fact, 
correspond to branches and overhanging leaves. This is in agreement with the recollection of those present during the 
data collection and can be seen more clearly when multiple frames are processed. In Figure 8, we present the high 
complexity scene in the same manner as in Figure 7. Notice that the combined result is much more uniform than either 
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