
Estimation of Software Size and Effort Distributions
Using Paired Ratio Comparison Matrices

Karen Lum
Jairus Hihn, Ph.d.

California Institute of Technology/Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91 109

m / ~ 301-180

Abstract

Recently the Software Quality Improvement (SQI) Project has been formed at NASA’s Jet
Propulsion Laboratory (JPL). SQI will enable and promote software best practices, and leverage
JPL experience in software engineering in support of major software projects, throughout the
entire software life-cycle. The goal of the SQI Project is to establish an operational software
improvement program that results in the continuous measurable improvement at JPL. Its
objectives include improving cost and schedule predictability, improving the quality of mission-
critical software, reducing software defect rates during testing and operations, increasing
software development productivity, promoting software reuse, and reducing project start-up
time. In this paper we will document one of several approaches being introduced at JPL to
improve its ability to improve cost estimation accuracy early in the project life-cycle.

We were recently confronted with a problem where a cost estimate was required for a piece of
mission critical software. The technical staff did not trust cost models, and they had numerous
sources of potential risk and uncertainty associated with the next build. The task wanted to
estimate the costs of its next delivery based on the cost of its current delivery. However, the task
had virtually no retrievable historical data fiom their previous builds, for either effort or software
size. To help them formalize their expert judgment-based estimates, we considered using
Galorath Corporation’s SEER-SSM, which is an adaptation of the paired ratio comparison
matrixes described in Saaty’s Analytical Hierarchy Process. While this approach is very
attractive, a number of problems arose in that we had multiple reference projects, the technical
staff wanted to provide ranges for the ratio comparisons, and we wanted a distribution for the
size andor effort estimates rather than a point value. We also had to use the method to help us
reconstruct the actuals as well as estimate the next build.

In this paper we describe how the pairwise comparison technique is a general purpose estimation
approach for capturing expert judgment and can be relatively easily implemented using
Microsoft ExcelO, if the geometric mean method is used to derive the ratio vector. We
document how this approach can be further generalized to a probabilistic version using Monte
Carlo methods to produce estimates of size and effort distributions. The probabilistic pairwise
comparison technique enables the estimator to systematically incorporate both estimation
uncertainty as well as any uncertainty that arises from using multiple historical analogies as
reference modules. In addition to describing the methodology, we will also describe the results of
the case study.

1

Estimation of Software Size and Effort Distributions
Using Paired Ratio Comparison Matrices'

Karen Lum
Jairus Hihn, Ph.d.

California Institute of Technology/Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 9 1 109

Introduction

All too frequently, a software cost estimate is required in the early stages of the life-cycle when
requirements and design specifications are immature. To produce a cost estimate under these
conditions requires extensive use of expert judgment and addressing significant estimation
uncertainty. Research has shown that expert judgment under the right conditions can yield
relatively accurate^' estimates [Hihn & Habib-agahi, 19901. Unfortunately, most expert
judgment-based estimates do not meet these conditions and frequently degenerate into outright
guessing. Especially, when the estimate is made without the assistance of a cost estimation
professional. At its best, expert judgment is a disciplined combination of a best guess combined
with historical analogies. Using the method of paired-ratio comparison matrices provides a
formal systematic way to extract, combine, and capture expert judgments and how they relate to
analogous reference data [Saaty, 19801. A version of which is supported by the SEER-SSM
(Software Sizing Model) tool, which is primarily advertised as a tool for estimating software size
but can be used to estimate virtually anything requiring expert judgment [Bozoki, 19931.

We were recently confronted with such a problem when a cost estimate was required for a piece
of mission critical ground software. In this case, we were not providing an independent estimate
but assisting the software team to generate its own estimates. The software team members
wanted to be more rigorous in how they approached the estimating task but they also imposed a
number of constraints. The team wanted to estimate the costs of its next software development
task based on the cost of a recently completed development activity. However, the task had
virtually no retrievable historical data from its previous deliveries, for either effort or software
size. Because of this we also had to use the method to help us reconstruct the actuals as well as
estimate the cost of the next delivery. While it was possible to obtain code counts on completed
code, there was little record of inheritance and furthermore the technical staff did not trust
costing by software size or using cost models. To make matters more complicated they had
numerous sources of potential risk and uncertainty associated with the next delivery.

To help them formalize their expert judgment-based estimates, we considered using Galorath
Corporation's SEER-SSM. While this approach is very attractive, a number of problems arose.
The interface required that they provide too many inputs. The technical staff also wanted to see
the entire judgment matrix, to make direct multiplicative comparisons, to provide ranges for the
ratio comparisons, and we wanted the actual probability distribution for the size and/or effort
estimates. This paper describes the approach and algorithms used to generalize the paired ratio

' The research described in this abstract was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

1

comparison matrix technique to use information inherent in multiple estimates, multiple
reference projects, and estimator range information to generate estimated effort and size
distributions. In addition to describing the methodology, we will also describe the results of the
case study.

Pairwise Comparison Technique

The use of matrices of paired-ratio comparisons as an approach for deriving a cardinal ranking
vector from subjective paired comparisons was first introduced by Saaty in 1977 as part of the
Analytical Hierarchy Process (AHP) [Saaty, 19771. AHP, as originally proposed, is a decision-
making or prioritization technique. The power of this technique for prediction and specifically
software size estimation was recognized in the mid-eighties [Bozoki, 1986; Lambert, 19861.
Using a paired-ratio comparison matrix to estimate software size or effort requires an expert’s
judgment as to each module’s relative bigness compared to one another. The effectiveness of
this approach is supported by experiments that indicate that the human mind is better at
identifjhg relative differences than at estimating absolute values [Shepperd, 200 1 , Miranda,
19991. In this paper, for ease of exposition, paired-ratio comparison matrices will be called
judgment matrices following [Crawford, 19871.

Creating a judgment matrix involves creating an n x n matrix (Aflm=[ag]), where n is the number
of entities (for software, this could be modules, use cases, requirements, etc.), being compared.
Each element, ag, in the matrix is an estimate of the relative size of entity i with respect to entity

j , that is-. The properties of a judgment matrix require that elements be:
Size.

Size

(1) reciprocal, aq= l/aji, which means that entity i is a g times bigger than entityj, then entityj

(2) the same size as itself, which means that all diagonal elements aii= 1.
is l/ag times smaller than entity i;

The implication of these properties is that only the upper or lower triangle of the judgment
matrix must be filled in. For example, see Table 1 , which we will assume is judgment matrix
with estimates of the relative software size of four modules. The values in Table 1 indicate that
Module 1 is two times as big as Module 2, four times bigger then Module 3, and three times
bigger then Module 4, and so forth. Note that there is no a-priori reason that all the values in the
upper triangle are greater then 1.

Table 1. Example Judgment Matrix

Based on Conditions 1 and 2 above, the matrix can be completed as follows:

2

Table 2. Example Completed Judgment Matrix

One way to interpret the judgment matrix is that each column yields a different ranking vector
for determining the relative size of the four entities. Each vector is normalized such that the
module that corresponds to itself (the diagonal elements) is always 1 , and it is the reference
module against which all comparisons in the same column are made. Hence, column 1 indicates
that module 2 is half as big as module 1 , module 3 is 25% of the size of module 1 , and module 4
is 33% of module 4. Each column can be interpreted in this manner. In Table 2, we have
generated four different rankings (an n x n matrix yields n independent ranking vectors).

A special case exists when a judgment matrix is perfectly consistent. This occurs when
uii x ujk = uik for all i, j , k. If a judgment matrix is consistent, then each vector is equivalent to
all the others, or each vector can be transformed into the other via a linear transformation. This
means that there is really one vector of unique information and that we wasted OUT time making
all of these pairwise comparisons, as we could have just guessed four numbers and not six.
Fortunately, it turns out that judgments are rarely consistent, unless the estimator is cheating.

More frequently, inconsistent matrixes will result, such as in Table 2, which gives us four
different rankings each yielding a slightly different set of estimates for the modules.
The good news is that we have lots of information from which we can generate our final
estimate, and the bad news is that we do not want n vectors, we want one vector.

There have been a number of mathematical procedures proposed for deriving a single ranking
vector from an inconsistent judgment matrix. What these produce are numbers that meet the
conditions of a ratio scale. This means we have defined the slope of a line but we do not know
the intercept or origin of the scale. Hence we do not know the actual sizes of the modules only
their relative sizes. However, as long as at least one of the modules used to derive judgment
matrix is an historical analogy, that module can be used to determine the intercept or origin
allowing us to determine the estimated sizes for each module.

The original approach proposed by [Saaty, 19771 was to use the Perron-Frobenius right
eigenvector. Research has shown, however, that this is one of the worst techniques to use [Hihn
& Johnson, 19881. There are many potential solutions to this problem. The Geometric Mean
method, which is very easy to calculate, has been advocated by many authors for various
reasons. [Hihn & Johnson, 1988; Crawford and Williams, 19851. Miranda chooses to use the
geometric mean procedure because of its simplicity and the results achieved in experiments he
ran with thirty participants [Miranda, 20011. Therefore, we used and recommend the use of the
geometric mean.

3

n

The Geometric Mean is calculated as vi = n a,; , which yields a vector
j = l

that meets the requirements of a ratio scale. The example in Table 2 would yield the vector [;;I-
As an example, the 2.21 is derived from (1 x 2 x 4 x 3)1'4 .

Once the ratio scale vector is calculated, the size or effort of each known entity can be calculated
using at least one known historical analogy to normalize the vector, and in essence define the
origin for the ratio scale, which allows us to convert the vector to cardinal numbers yielding
absolute values of the size or effort estimates. The size or effort of at least one of the elements in
the ratio scale is needed as a reference to derive a multiplier m

Size,
m=- , refis one of the modules i through n

"ref

which is used to calculate the size or effort of the other elements. The formula is as follows:

S =

Size,
Size,

Size ...
Size,

= m x V = I mxv,

Using the example in Table 2 and assuming the reference module is v3 at 2000 lines of code, this
step would result in the following:

m = 2000/0.76 = 2632
Size1 = 2632 x 2.21 = 5816
S izer=2632~ 1 . 1 1 ~ 2 9 2 2
Size 3 = 2632 x 0.76 = 2000
Sized = 2632 x 0.54 = 1421

4

In summary an estimate of size or effort using painvise comparison matrices can be generated
using four steps:

1) Estimate the relative size of all modules
2) Derive the judgment matrix
3) Compute the geometric mean across each row in the matrix
4) Derive size/effort estimate by normalizing values to the reference module

Probabilistic Pairwise Comparison Technique

Two major adaptations to the basic painvise comparison technique described above were made:
(1) the incorporation of distributions for painvise judgments and (2) the use of multiple reference
modules. There are many distributions that could be used. A log normal distribution would
make it possible to derive a closed form solution. However, we have found that it is difficult for
engineers to estimate the mean and variance of a log normal distribution. It is much easier for
them to estimate ranges or a low, mode, and high. Since we are working closely with a software
manager and engineers when using this method they need to have a clear understanding of how
their inputs/estimates are used. Therefore, the simplest distribution cognitively is the triangular
distribution. That is,

a,, - TriPDF(min, mode, max)

where the element aij is a triangular distribution TriPDF with a minimum variate (min), a peak
variate (mode), and a maximum variate (max). This requires the use of a Monte Carlo technique
to combine the different distributions, but with modern computers and software that is not a
significant drawback.

To illustrate the technique we will use the example from the previous section. The first step is
that the subjective judgments in Table 1 can be entered as distributions as shown in Table 3.
Here we show four elements as distributions and two remain as point values.

Table 3. aqas Distributions

In Table 3, element a12 and element a14 are entered as distributions with a,2 - TriPDF(1,2,3)
and q4 - TriPDF(1,3,4) , respectively. The element a,2 would be interpreted as Module 1 is
most likely 2 times bigger than Module 2, but could be as much as 3 times bigger, or at a
minimum, it could be the same size. The element a,4 would be interpreted as Module 1 is most
likely 3 times bigger than Module 4 , but could be as much as 4 times bigger, or at a minimum, it
could be the same size. Random draws are made from these distributions to determine the
geometric mean vector, which becomes:

'I'D, - - [' P D F ; = fi ah!n], where aV - TriPDF(min, mode, max) .
j= l

The result is that each element in the geometric mean vector is now a distribution

5

Another major adjustment to the basic painvise technique is the manner by which we incorporate
the use of multiple reference software modules. The basic method described above works well
for the case where there is a single reference analogy. However, having multiple reference
analogies with the typical case of an inconsistent judgment matrix creates the dilemma that a
different total size estimate is generated depending upon which reference module is used. The
solution proposed here is to incorporate the multiple references by capturing the different
possible reference values as a distribution. This way the basic Monte Carlo structure that has
been set up can be used as a general purpose approach.

We use a triangular distribution to capture the differences between the multiple reference-derived
multipliers mpDFre, through mpDFrefx

- size,
mPDFrefr --

PDF re,

If the matrix were consistent, having multiple references should theoretically result in the same
multiplier value

* - -
mPDF - mPDFi - mPDFn .

A triangular distribution is merely a simple method of capturing the multiple references.
Therefore, we solve for a single distribution of the multipliers miDF

where
m;DF - TriPDF(minMultiplier, GMmultiplier, muxMultiplier)

X

minMultipIier = min mPDF reL

i=l

I I X

GMmultipIier = fi (mpDF ref,)
i=l

X

maxMuItiplier = max mPDF re,

i=l

for i through x number of references.

For example, the first four columns in Table 4 are the completed judgment matrix shown in
Table 3 based on czg - TriPDF(min, mode, m a) . The gray shaded cells of the matrix are
completed using the properties of a judgment matrix. Therefore, elements all and a22 are the
same size as itself, 1 . Element a21 is the reciprocal of element alz, which is

1
TriPDF(1,2,3) .

The remainder of the judgment matrix was completed in a similar manner.

6

Table 4. Completed Matrix and Multipliers based on Distributional Inputs*

Using the algorithm described above yields the geometric mean distribution function, whose
mean values are shown in the Geometric Mean PDF column of Table 4,

If we have multiple references and an inconsistent judgment matrix, we would get many
multipliers of different values. For example, given that the actual sizes of Modules 1,2, and 3
are 6000,3000, and 2000 lines of code respectively, and using the average values shown in
Table 4, the expected multipliers would be

Ex~ected(mpDF refi 1 = Sizerefi + vpDF reh =6000+2.15=2791.8,

Expected(m PDF refi) 'PDF ref2 = 3000 + 1.16 = 2578.2, and

Expected(mpDF ref3 1 = Sizere, + vPDF ref3 = 2000 + 0.72 = 2767.6.
If we use the multiplier derived from Module 2, the expected size of Module 4 would be

Expected(Size,) = 2578.2~0.55 = 1418,
while if we use the multiplier derived from Module 3, the expected size of Module 4 would be

Expected(Size,) = 2767.6~0.55 = 1522.2.
In this example, having multiple references causes us to get three different size estimates. Which
multiplier do we use to estimate the remaining unknown modules?

To derive the size estimate of Module 4, we use the triangular distribution of the minimum
multiplier, geometric mean of the multipliers as a mode, and maximum multiplier. This
produces a distribution for miDF as shown in Figure 1.

The means of the distributions are shown in the cells. 2

7

m *mF Cumulative Distribution Function

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
2500 2600 2700 2800 2900 3M

Multlpliir Value

Figure 1. Cumulative Distribution Function of miDF

Therefore, the size of Module 4 is

which is a distribution that can be shown as a cumulative probability curve (Figure 2).

I

SizePDF 4 = mPDF 'PDF 4 9

Module 4 Size Cumulative Distibution
Function

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
0 500 1000 1500 2000

Size (SLOC)

Figure 2. Module 4 Size Cumulative Distribution Function Based on Table 3 Inputs

8

Application

The techniques described above were applied to the estimation of a mission critical ground
software delivery at JPL. The project wished to estimate the costs of its next delivery (delivery
2) based on the cost of its current delivery (delivery 1). However, many actuals were not
recorded during the current delivery and had to be reconstructed. Lines of code data were not
available on the delivery 1. However, it was much easier to reconstruct the amount of effort
expended. The effort data of delivery 1 was reconstructed through dialogue with the project
team members. Therefore, we used the pairwise comparison technique to estimate direct effort
for delivery 2.

The first delivery consisted of one major software function (Function A) that could be further
subdivided into five modules. The second delivery - the delivery for which a cost estimate was
needed - consisted of two major software functions (Functions B and C) that each had five
modules. The five modules for each second delivery software function were compared with the
five modules of the first delivery software function based on their relative bigness of effort. The
software modules of the second delivery were not compared with each other because the two
software functions would be developed by different people who found it difficult to compare
functions that had not been developed yet. Therefore, we have two 10 x 10 matrices (Figure 3
and Figure 4). This gives 100 possible comparisons per matrix.

A significant adaptation to the paired comparisons method described by others is that we allowed
the estimators to give ranges for

Size,

rl Sizej
a, . =- , where aV - TriPDF(min, mode, mar).

These ranges were easily captured and a Monte Carlo distribution of the ratio scales was easily
implemented in Microsoft ExcelO.

Figure 3. Original Comparison Inputs for Function B vs. Function A modules

IUser intetface I I I I I I I I 1 I
Figure 4. Original Comparison lnputs for Function C vs. Function A modules

9

Quadrants I1 and I11 (Figure 5) of the matrices were easily completed utilizing the judgment
matrix properties: a ~ = l / a , ~ and aij = 1. Since Delivery 1 was completed and all the actuals were
known, Quadrant IV was derived with the actuals3 as reference points. For example, we know
from actuals (Table 5) , that the development effort of force models was 9 times more than event
based integration effort and 2.25 times more than the partial derivatives effort, etc. As quadrant
IV is based on actuals, it is the only consistent quadrant, satisfying the property ag x a$ = Ujk.

Since the other three quadrants are based upon subjective judgments, they are unlikely to be
consistent.

Core Integration
User Interface

The matrix was completed such that a triangular random variable draw formula was entered in
the cells for which ranges were given (Figure 5) .

4
4

JfBe ~ p t w M pnnvt IOB pll. YWW t(4

Figure 5. Random Variable Formulas Are Entered in Cells for Elements with Range Comparisons

Table 5. Actual Effort of Reference Modules

Actual Effort 1 gr I F - M o n t h ~) ~ 1
Force Models
Event Based Inte ation
Partial Derivatives

The geometric mean of the rows for the matrix was then computed to arrive at the ratio scale
vector (labeled Geometric Mean PDF in Figure 6) .

These “actuals” were not originally documented and were reconstructed after discussion with the project team
members.
In addition to the development effort for each module, there was some management and 5 WM of testing for

delivery 1 effort. Testing effort for Delivery 2 was treated as a fixed percentage of development effort and added on
after the pairwise comparisons for development effort was computed, based on the Delivery 1 actuals. Management
for delivery 2 was also treated as a fixed cost, and estimated at 9.6 WM by the project team. The 9.6 WM of
management was added on after the pairwise comparisons for development effort was computed.

4

10

P18 -r I: =M1BN-msiarpdf
1 As I_ 8 C I D ! E 1 F 1 G ' H / I i J : K l L M N 0 P

16 1 Funciion B (Delhmy 2) Fundion A (Deliwry 1) Mukiplier
Geometnc PDFs to get Estimate

1 7 UI Core Mapping Stochastlcs Smoother F M EBI PD CI UI MeanPDF References Aauals PDF

As there were multiple references (five modules from delivery I), computing the reference
multiplier required some extra steps. Since the subjective pairwise judgments were inconsistent
in this application, having five reference modules produced five different multipliers that would
each produce significantly different effort estimates. A Monte Carlo run on the triangular
random draw of the five multipliers using the lowest value multiplier as a minimum, the
geometric mean of the five multipliers as the mode, and the highest value multiplier as a
maximum was performed

An estimate of each Delivery 2 module was then calculated using the new randomly drawn
multiplier miDF.

miDF - TriPDF(minMultiplier, GMmultiplier, maxMultiplier) .

L1l User Interface
1.3 c Core

2l, 5 Stochasiics
0; Mapping

Allowing ranges in the pairwise judgments and drawing from the five possible multipliers
captures the uncertainty in the estimate and averages out estimation errors. Utilizing a Monte
Carlo technique produces cumulative distribution functions for each module of the delivery 2
functions, each delivery 2 function, and the total delivery 2 effort.

1 0 0 4 5 0 4 5 0 250 350 1 2 0 7 5 0 4 0 0 300 600 3 2 1 I 1204
022 i m 100 075 0 7 5 020 2m 1 C l l 150 175 0.62 3 07
0.22 1.m i m 038 075 020 l m l a 3 075 OM 0.B 220
040 133 2 6 7 100 1 5 0 063 2M 1X 3M 2m 1.35 5 07

The original pairwise judgments and the reference judgments did not include effort for testing or
management, which the project team considered to be a fixed cost of development. The direct
effort cumulative distribution function was adjusted (shifted) to include a fixed percentage of
management and testing. After this adjustment, the effort was still lower than the development
team had expected. After discussion with the team, we felt that various differences in
characteristics between the two deliveries were not captured in the original pairwise judgments,
mainly the product complexity. In addition, the development team felt that they were more
experienced in the delivery 1 application than the delivery 2 application, which was fairly new to
them. An adjustment factor, based on COCOMO 11's effort multipliers, was applied:

11

= 1.36, EAFDelivery.2 - 0.57
EAFDeliveryl 0*42

Adjustment Factor = --

where EAF is the product of the COCOMO I1 effort multipliers. See [Boehm, 20001 for details.
This shifted the estimated cumulative distribution function to a range that was closer to what the
project team had expected (Figure 7). However, this direct effort estimate was still lower than
the actual budgeted effort.

Direct Efbrt Estimate: Delivery 2 Elfort CDF I
100%

9U%

70%

60% .- E

3 50% n e n

-

40%

30%

203b

10%

0%

~~~~~~~~~ 

Figure 7. Delivery 2 Direct Effort Cumulative Distribution Function 

After seeing the resulting effort cumulative distribution function, we were able to convince the 
project team to attempt an estimate based on a cost model. The delivery 1 source code was run 
through a code counter, and the pairwise technique was then repeated for estimating the size of 
delivery 2 using the modules of delivery 1 as reference points. Code counts for the user interface 
of each h c t i o n  were not available as they were in a language for which a code counter was not 
available. Therefore the pairwise judgment matrix of this exercise produced two 8 x 8 matrices. 
The effort for the user interfaces of functions B and C (based on the effort derived for the user 
interfaces in the previous direct effort estimate) were added back after a model-based estimate 
was run. 

The project team members said that the original pairwise judgments inputs from Figure 3 and 
Figure 4 could be used as the comparisons for this second size-based estimate. This gives reason 
to question the correctness of the direct effort estimate. 

Quadrants I1 and I11 of the judgment matrices were completed using the properties described in 
the previous estimate. Table 6 shows the actual code counts of the delivery 1 functions that were 
used to derive Quadrant IV of the judgment matrices. The geometric mean vector, multipliers, 

12 



and size cumulative size distributions were calculated in a similar manner as described in the 
direct effort estimate. 

Force Models 
Event Based Intemation 

Table 6. Actual Size of Reference Modules5 

Actual Size (KSLOC) 
6.5 
4.4 

Partial Derivatives 

User Interface 
Core Integration 

4.5 
10 

Code count not available 

A “Minimum,” “Mode,” and “Maximum” size estimate was then entered into an Excel-based 
COCOMO I1 tool that accepts ranges. The 5‘h percentile and 95th percentile size estimates for the 
delivery 2 functions (Functions B and C) were extracted from the size cumulative distribution 
functions as the “minimum” and “maximum” estimate, respectively (Table 7 and Table 8). The 
mode size estimates were calculated from the Monte Carlo draw results and used as the “mode” 
estimate. In addition, there will be inheritance with little to no modification of a subroutine 
library that would probably be about 5% of the size of the delivery 2 functions. Once the size 
inputs and COCOMO I1 cost driver ratings from interviews with the software team members 
were obtained, an effort cumulative distribution function was output. The cumulative 
distribution functions were shifted to include the user interfaces. 

5th Percentile 
Mode 

95th percentile 

Table 7. Function B Size Estimates 

Function 6 
Core Mapping Smoother Stochastics Total SLOC 

362 1 2800 3316 5880 15898 
5740 383 1 4985 10374 22155 
6796 5230 6444 11878 29950 

5th Percentile 
Mode 

95th percentile 

Table 8. Function C Size Estimates 

Measurement Delay File Function C 
Models Models Formats Stations Total SLOC 

8209 31 OC 4525 3976 19866 
10737 3789 5971 4833 24968 
12837 4897 7053 6241 30899 

Code Counts derived using Galorath’s Count95 tool. 

13 



Model4ased Estimate: Delivery 2 Effort CDF 

100% - 

80% .. 

70% f 

70 80 90 1M 110 im 124 140 150 160 170 

-(work-) 
~~ ~ ~ ~ ~ 

Figure 8. Delivery 2 Model-based Effort Cumulative Distribution Function 

The resulting effort cumulative distribution function was higher than the estimate produced by 
the first pairwise exercise and much closer to what the developers had expected (Figure 8), 
within the range of their actual budgeted effort. 

Conclusion 

The pairwise comparison technique is a general purpose estimation approach for capturing expert 
judgment and can be relatively easily implemented using Microsoft ExcelO, if the geometric 
mean method is used to derive the ratio vector, V. We have documented and demonstrated how 
this approach can be further generalized to a probabilistic version using Monte Carlo methods to 
produce estimates of size and effort distributions. The probabilistic pairwise comparison 
technique enables the estimator to systematically incorporate both estimation uncertainty as well 
as any uncertainty that arises from using multiple historical analogies as reference modules. 

In the actual application of this technique, we found that even though the software engineers felt 
very uncomfortable estimating size and preferred to estimate effort directly, a size based 
COCOMO estimate provided a more realistic estimate based on the current budget and historical 
experience. This was surprising as an earlier study found that JPL software engineers were much 
better at estimating effort then size [Hihn and Habib-agahi, 19911. We suspect that what 
occurred was that the delivery 1 functionality was typical of software the team had developed 
over the last few years, was highly modular and relatively low complexity, and was a less formal 
delivery than for the planned delivery 2 functionality. This meant that for a direct effort 
estimate, their “minds” were not calibrated correctly, while using a size-based estimate with size 
actuals from functions they had just completed gave a more accurate size estimate and the cost 
model properly reflected all the supporting activities and effort multiplier impacts. 

14 



References 

[ 11 Boehm, B., et al., Software Cost Estimation with COCOMO ZI, Upper Saddle River, New 
Jersey, Prentice Hall PTR: 2000. 

[2] Bozoki, G. “Software Size Estimator (SSE),” Centre National &Etudes Spatiales (CNES), 
Toulouse, France, June 1986. 

[3] Bozoki, G. “An Expert Judgment-Based Software Sizing Model,” Journal of 
Parametrics, Volume XIII, Number 1, May 1993. 

[4] Crawford, G. “The Geometric Mean Procedure for Estimating the Scale of a Judgment 
Matrix,” Mathematical Modelling 9/3-5,327-334.ing 9/3-5,327-334. 

[5] Crawford, G. and Williams, C “The Analysis of Subjective Judgment Matrices,” Rand 
Corporation, R-2572-l-AF, May 1985. A Project AIR FORCE report prepared for the 
USAF. 

[6] Hihn, J.M. and Habih-agahi, H. “Cost Estimation of Software Intensive Projects: A Survey of 
Current Practices,’’ Proceedings of the Thirteenth IEEE International Conference on 
Software Engineering, May 13-1 6, 199 1. (also SSORCE/EEA Report No. 2. August 1990) 

[7] Hihn, J.M. and Johnson, C. “Evaluation Techniques for Paired Ratio Comparison Matrices in 
a Hierarchical Decision Model,” Measurement in Economics, Physical-Verlag Heidelberg, 
1988. 

[8] Lambert, J. “A Software Sizing Model,” Journal of Parametrics, Vol. Vi, 1986, pp75-87. 

[9] Miranda, E.: “Establishing Software Size Using the Paired Comparisons Method.” Proc. of 
the IWSM’99, Lac Superieur, Quebec, Canada, September 1999, pp. 132-142 

[ 101 Miranda, E. “Improving Subjective Estimates Using Paired Comparisons,” ZEEE Software 
J m e b  2001. 

[ 1 11 Saaty, T. “A Scaling method for Priorities in a Hierarchical Structure”. J. Math. Psychology 
Vol. 15 1977, p 234-281. 

[12] Saaty, T. The Analytic Hierarchy Process, McGraw-Hill, New York, NY: 1980. 

[ 131 Shepperd, M. and Cartwright M. “Predicting with Sparse Data,” IEEE Transactions on 
Software Engineering, Nov. 2001, Vol. 27, No. 1 1. 

15 




