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ABSTRACT 

Future quantum information processing devices will require the use of exotic quantum states, such as specially crafted 
entangled states, to achieve certain desired computations on demand. Thus far, synthesis schemes for such states have 
been devised on a case-by-case basis using ad hoc techniques. In this paper we present a systematic method for finding a 
quantum circuit that can synthesize any pure or mixed n-qubit state. We then give examples of the use of our algorithm 
for finding synthesis pathways for especially exotic quantum states such as maximal mixed states. It is not known how to 
prepare general instances of such states by other means. Thus our quantum state synthesis algorithm should be of use not 
only in quantum information processing, but also in experimental quantum physics. 
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1. INTRODUCTION 
Future quantum information processing devices will require the use of exotic quantum states, such as specially crafted 
entangled states, to achieve certain desired computations on demand. For example, linear opticdprojective measurement 
quantum computing requires certain entangled states to be prepared offline in order to achieve a CNOT gate on demand’. 
Even if these entangled states can only be generated inefficiently then, provided a quantum memory register is available, 
they can be created offline, stored, and then brought (or teleported) into the computational stream as needed to obtain 
deterministic quantum logic operations on demand’. Moreover, the ability to synthesize arbitrary pure states provides a 
direct method of creating a source of true randomness with any desired bias built in. Such states, in conjunction with 
quantum measurements, would overcome the negative effects of hidden correlations that can bedevil high-dimensional 
Monte-Carlo integration on a classical computer using a pseudo-random source3. It is therefore a question of general 
interest to quantum computing as to how arbitrary n-qubit pure states, including exotic entangled states, might be pre- 
pared. 

Besides pure state preparation, in recent years physicists have developing more general techniques for synthe- 
sizing various types of mixed states. So far, mixed states have found fewer applications in quantum information process- 
ing than pure states4. In part this is because far less is known about the properties of mixed states than pure states. What 
is known has come from detailed studies of few-qubit systems. For example, for 2-qubit mixed states, the “tangle” and 
“linear entropy” were introduced to quantify their simultaneous degrees of entanglement and mixedness respectively. 
Numerical studies have revealed that there is a sharp boundary in the “tangle”/”linear entropy” plane dividing a region of 
physically-possible mixed states from a region of physically impossible mixed states’. With this new understanding, it 
was recognized that no-one had ever synthesized a certain type of “maximal” mixed state which lies in the region of the 
tanglellinear entropy plane between the Werner states and this boundary. Only recently was a particular maximal state 
synthesized optically by Kwiat. White et a1.6. However, the question of how to synthesize an arbitrary mixed state re- 
mains open. 

In this paper we provide a solution to the problem of synthesizing an arbitrary pure or mixed state defined on n- 
qubits. Our approach treats state-preparation as a quantum computational problem, by first computing a unitary operator, 
U, capable of deterministically synthesizing the desired pure or mixed state starting from the state 100 ... 0) , and then 
decomposing U into an equivalent quantum circuit comprising only 1-qubit and 2-qubit quantum logic gates. Unlike 
previous synthesis schemes which were all non-deterministic’, case-specific8 and hardware dependent’, our approach is 
deterministic, general, and not tied to any particular physical hardware scheme. The quantum circuit abstraction provides 
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a unified description language for a synthesis pathway that can be specialized to one of several quantum hardware con- 
texts by, for example, adjusting the choice of 2-qubit gate to best fit the desired hardware scheme”. 

The paper is organized as follows: in Sections 2 and 3 we describe our scheme for synthesizing an arbitrary 
pure state defined on n-qubits, and give an example of its use for synthesizing a particular 2-qubit pure state. Section 4 
uses this pure-state synthesis technique as a sub-routine in our more general mixed state synthesis procedure. In Section 
5 we demonstrate use of this technique to make a particular “maximal” mixed state. Such states are highly non-classical 
and lie at the boundary of the possiblehmpossible regions of the tangleflinear entropy plane. The synthesis algorithms 
developed in Sections 2 .and 4 both exploit a scheme for decomposing an arbitrary unitary operator into an equivalent 
quantum circuit”. We describe the details of this decomposition scheme in Section 6. Finally, in Section 7, we conclude 
with a discussion of a possible application of arbitrary pure state synthesis to as a means of entering date into a quantum 
computer in order to perform quantum signal, quantum data, and quantum image processing tasks. 

2. PURE STATE SYNTHESIS 
Suppose we wish to synthesize the state lu / )  =s; : i l c ; ( i )  withs!lcl(cil = I .  Without loss Rf generalitl$_we may as- 
sume that co # 0 .  Otherwise, if co = O  we simply change to a basis {Ii’)} such that ~ f = ~ ’ c i 1 i )  = ~ i ~ , ~ c ~ ( i ’ )  with 
ch f 0 .  One can think of the state Iv / )  as being equivalent to a column vector of complex amplitudes. Our algorithm for 
synthesizing lu / )  starts with this column vector of amplitudes, embeds it as the leftmost column of a larger matrix hav- 
ing linearly independent columns, and applies the Gram-Schmidt procedure to construct a set of columns orthonormal to 
the column vector representation of Iu / )  . Specifically, our SynthesizePureState algorithm works as follows: 

Algorithm: Synthes i zePureSt at e 
Step 1: Map the state to be synthesized into a basis such that co z 0 in this basis. 
Step 2: Construct the padded matrix M defined as: 
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Step 3: Compute the matrix U, obtained by applying the Gram-Schmidt orthogonalization procedure M. 
Step 4: As the first column of M is properly normalized, and (since co # 0 ) the columns of M are guaranteed to be line- 
arly independent, and the matrix U will always be unitary. Devising a quantum circuit for U will provide a constructive 
method for synthesizing the state Iw) starting from the state 100 ... 0), i.e., U .loo... 0) =Ify). 

The mapping between a unitary matrix and an equivalent quantum circuit is explained in Section 6 and elsewhere”. 

3. EXAMPLE: SYNTHESIS OF A PURE STATE 
Suppose we wish to synthesize the pure state Iw) =+100) -i*lll). We can use SynthesizePureState to com- 
pute a synthesis pathway for this state. The column vector of amplitudes for Iw)  is embedded as the leftmost column of 
a matrix, and our goal is to find an orthornormal set of column vectors sufficient to make this matrix unitary. The matrix 
is padded down the diagonal with Is, and the Gram-Schmidt procedure applied. This yields the matrix U, shown below: 

Devising a quantum circuit t t implements U is then guaranteed to provide a constructive, deterministic, method for 

structed unitary matnx into an equivalent quantum circuit, is implemented in a Mathematica program called “QCD’ (for 
synthesizing I v / )  =:loo) - i+ll P I) starting from the state 100) . The entire procedure, including mapping the con- 
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4. MIXED STATE SYNTHESIS 
The foregoing discussion assumed we wished to synthesize an arbitrary pure state on n-qubits. But what if, instead, we 
wished to synthesize and arbitrary mixed state, p , on n-qubits? We proceed as follows: 

Algorithm: Synthes i z m i x e d s t a t  e 
Step 1: Compute the spectral decomposition of p as p = xi pili)(il 

Step 2: Compute a family of unitary operators, (Ui} such that UilO) = li} 
Step 3: Devise a quantum circuit for performing the direct sum of these operators, i.e., U,  0 U ,  0.. . 
Step 4: Compute a synthesis pathway for the “loaded dice” state I@)c = x,fili) 

Step 5: Synthesize the input (pure) state Iw) = I @)c C3 (00.. .O) 

Step 6: Push this state through U and trace over the control qubits (“C”), Le., compute Trc(U)y)(WIUt) = p . The result 
will be the desired mixed state, p . 

- 
n 

~~~ 

The scheme works by using the spectral decomposition of the desired mixed state to identify a set of unitary matrices 
sufficient to synthesize the necessary eigenvectors found in the spectral decomposition. Then, these unitary matrices are 
combined, via their direct sum, into a conditional quantum logic circuit. Finally, a loaded-dice pure state is synthesized 
weighted in proportion to the representation of each eigenvector in the mixed state. Our mixed state synthesis scheme 
exploits the correspondence between a unitary matrix built from the direct sum of smaller unitary matrices, and an 
equivalent conditional quantum logic circuit. For example, the unitary matrix shown in Fig. 1 is equivalent to the condi- 
tional quantum logic circuit shown in Fig. 2. 



Fig. 1 Unitary matrix built from the direct sum of smaller unitary matrices. 
This matrix is equivalent to the conditional quantum logic circuit shown in Fig. 2. Here a white (black) circle means that 
the associated gate acts if and only if the control qubit is 10) (I 1) ). 
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Fig. 2 Conditional quantum circuit for generating the matrix shown in Fig. 1. 

5. EXAMPLE: SYNTHESIS OF A MAXIMAL STATE 
As we mentioned in the introduction, Kwiat et al. have recently performed a valuable numerical study of the possible 
types of 2-qubit mixed states’, especially with respect to their allowed joint values of entanglement and mixedness 
(measured by their tangle and linear entropy respectively). The resulting diagram is repeated in Fig. 3 to aid comprehen- 
sion: 
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A quantum circuit for this matrix yields a deterministic synthesis pathway for the desired maximal mixed state. 

6. DECOMPOSING A UNITARY OPERATOR INTO AN EQUIVALENT QUANTUM CIRCUIT 
A core component of the Synthesizepurestate and SynthesizeMixedState algorithms is the ability to map 
an arbitrary unitary matrix into an equivalent quantum circuit. Previous approaches to decomposing arbitrary unitary 
operators have fallen into one of four categories. The majority of researchers use no formal scheme but instead rely upon 
trial and error, and human ingenuity, to arrive at a decomposition by hand. This approach is feasible for specially struc- 
tured unitary matrices such as the Quantum Fourier Transform”, and the quantum wavelet tran~form’~, because the spe- 
cial structure of the unitary operator reflects a regular structure in the equivalent quantum circuit. 

A second approach is to exhaustively enumerate the space of possible circuit designs of increasing complexity 
starting from the empty c i r~ui t ’~*’~ .  For each topologically distinct circuit, a computer finds optimal values for the pa- 
rameters of all parameterized-gates in the circuit. In principle, this method is guaranteed to find the smallest circuit suffi- 
cient to implement the desired unitary operator. However, exhaustive search composed with numerical optimization is 
computationally expensive because the number of possible quantum circuit topologies grows exponentially with increas- 
ing numbers of gates in the circuit. Hence the method is only feasible for unitary operators that in fact have compact 
circuit descriptions. 

A third approach uses genetic algorithms16. A random population of circuits is created, and each is assigned a 
“fitness” value that is a measure of how closely it comes to achieving the desired unitary operator. Pairs of circuits are 
selected for breeding in proportion to their fitness and then mutation and crossover operations are applied to make a new 
generation of circuits. By iterating this process one converges on a population of circuits that tend towards implementing 
the desired unitary operator. For genetic algorithms to work well, one needs a degree of decomposability in the problem, 
Le., that part of the solution is basically correct while ignoring the rest. Because of the way the direct product of matrices 
tends to spread elements throughout the resulting matrix, it can be hard for a genetic algorithm to find satisfactory cir- 
cuits for highly entangling unitary operators. 

The fourth and most systematic approach is to apply a recursive algebraic decomposition procedure such as the 
progressive matrix diagonalization of Reck”, the “quantum Givens” operations of Cybenko”, or the hierarchical CS 



decomposition of Tucci''. Algebraic factorization is guaranteed to work, but is likely to result in quantum circuits that 
are exponentially large unless one embeds circuit compactification rules within the decomposition procedure. 

Our approach uses a recursive algebraic scheme for constructing a quantum circuit decomposition of an arbi- 
trary unitary operator, interleaved with circuit compactification rules that reduce the complexity of the final quantum 
circuit". Our scheme starts with a similar decomposition to Tucci, but uses different techniques for mapping the matrix 
factors into equivalent circuit fragments. The procedure works as follows: first we decompose the 2" x2" dimensional 
unitary operator into a product of 2" X2" dimensional block-diagonal matrices, and direct sums of bit-reversal matrices 
(which need never be implemented explicitly). Next we map these block-diagonal matrices into corresponding quantum 
circuit fragments, each involving only I-qubit rotations about the y- and z-axes, 1-qubit phase shifts, and a standard two- 
qubit gate, such as CNOT, JSWAP , or iSWAP. One can pick whichever primitive 2-qubit gate one wants and obtain 
different quantum circuits accordingly. The last step is to join these quantum circuit fragments together, while again ap- 
plying circuit compactification rules to minimize the size of the resulting circuit. The net result is a quantum circuit ca- 
pable of implementing any (real or complex) unitary matrix, specialized to use one of several types of 2-qubit gates, ap- 
propriate for different physical implementations of quantum computing hardware. 

Here is a simple example for a random real 4 x 4 unitary matrix to illustrate the procedure: 

m =  Randcm~salUnitary[l] 

! 0.342812 -0.890319 -0.2879 -0.0832238 
-0.516979 0.0078719 -0.425175 -0.742898 
-0.488762 -0.423697 0.756394 -0.0972615 I 0.613453 0.166588 0.405225 -0.657051 

Lid, a, -0 = DGUB~OQSVD[~]; 
ap[mtrixForm, U r d ,  m ~ ,  -01 

-0.201884 0 0.474051 -0.880498 0 0 
-0.880498 -0.474051 0 0 

0.884153 0 0.548476 0.836166 

0 

0.713912 -0.700235 

c irc  = WtrixToQuantumCircuit [n] ; 
QuantumCircuitTooiagr.m[cirC] 

- Grapbifs - 

7. TOWARDS SIGNAL, DATA AND IMAGE PROCESSING ON A QUANTUM COMPUTER 
Arguably, one of the greatest problems the field of quantum computing faces today is the relative scarcity of quantum 
algorithms to tackle computational problems of practical significance. To some extent this is because current quantum 
algorithms do not interface easily with the real world. That is, the known quantum algorithms tend to solve mathemati- 
cally contrived problems rather than process real data, signals, and images. The latter requirements dominate the com- 



puter-intensive applications in the real world. However, the SynthesizePureState algorithm can be exploited to 
move quantum computing in the direction of solving more practical, data-driven, computational problems, as we now 
explain. 

There are three key steps to using quantum computers to process signals, data, and images. First, the classical 
data must be encoded in some quantum state in a format suitable for subsequent quantum processing. Second the compu- 
tational operations must be performed on that data to prepare some quantum state containing information of interest. 
Finally this quantum state must be observed to extract a property of interest. The SynthesizePureState algorithm 
is immediately useful for 

0 0.2 0.4 0.6 0.8 1 
t 

Fig. 4 An arbitrary signal of N data points can be encoded in a pure state of O(log2N) qubits. 

All that is required is that we renormalize the data-values to ensure that the sum of their square moduli is unity. Having 
done so, we then simply interpret the sequence of data values as the sequence of amplitudes in the column vector repre- 
sentation of a pure state. It is then clear that the SynthesizePureState algorithm can immediately be used to syn- 
thesize a pure state encoding these (re-normalized) data values. 

Currently, for N data values, the complexity of this encoding operation appears to be O ( N 2 ) ,  but it is possible 
that there might be a more efficient scheme that is no worse than linear in the size of the data, i.e., O ( N ) .  The better 
news is that the typical unitary transformations which arise in signal, image and data processing, e.g., the Fourier, Wave- 
let, Discrete Cosine, and Fractional Fourier transforms, are all exponentially more efficient on a quantum computer than 
a classical computer. So the additional computational cost expended in encoding a data set in a quantum state might be 
(depending on the application) offset by the remarkable gains in more efficient quantum processing. The deciding factor 
will be whether the kind of information sought from the data is accessible via sampling or quantum parallelism. This is 
because, although the data-encoding step is no worse than polynomial in the cardinality of the data set, and the process- 
ing step is (typically) logarithmic in the size of the data set, one is not able to “see” the compete result of the computa- 
tion as one can classically. Nevertheless, one can sample from the final state (as in Shor’s algorithm2? or one can obtain 
some collective property of the final state (as in the Deutsch-Jozsa algorithm*’). At this time it is an open question 
whether there are any signal, data or image processing tasks for which such sampling or collective property extraction is 
sufficient to resolve a question of interest about the data. 

A good candidate would be a task, such as deciding the presence or absence of a pattem within a data set, signal 
or image. As the information sought is a decision about the processed image, rather than the processed image per se, it is 
conceivable that there might be some quantum advantage, even taking account of the overhead incurred in converting 
the image into a quantum state prior to quantum processing. The key observation is that the quantum world strongly dis- 
tinguishes “truth” from “proof’. In other words, by using a quantum computer, one might be able to obtain the “truth” 
about the presence or absence of a pattern within an image, but be unable to “prove” how you arrived at this conclusion. 

8. CONCLUSIONS 
In this paper we have introduced a general method for synthesizing any pure or mixed state defined on n-qubits. Our 
method is constructive, deterministic, and systematic, and can be specialized to work in one of several different hard- 
ware contexts. The method is inspired by treating state synthesis as a computational problem, first by finding a desired 



unitary matrix capable of creating the desired state, and then reducing this unitary matrix to an equivalent quantum cir- 
cuit. The details of our technique for mapping an arbitrary unitary matrix into an equivalent quantum circuit are de- 
scribed in reference l l. 
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