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Abstract 

We illustrate the performance of low-complexity serially concatenated codes designed for the deep space optical chan- 
nel. The codes are an iteratively decoded, serial concatenation of a convolutional code with coded M-ary pulse-position- 
modulation (PPM) through a bit interleaver. For M = 256 with a 4096-bit interleaver, we illustrate performance 1.2dB 
from capacity and gains of 2.8dB relative to a baseline (255,127) Reed-Solomon code concatenated with PPM. Storing 
channel likelihoods may be prohibitively expensive for iterative decoding of high PPM orders. We show that the receiver 
may compute and store a small subset of the channel likelihoods and suffer negligible performance degradation. The com- 
plexity of the soft decision decoding is also reduced. For M = 256 we show negligible performance degradation when 
only 8 of each 256 likelihoods are stored. In this case, the number of operations for the forward-backward algorithm on the 
inner code, which comprises the bulk of operations, may be reduced by 32%. 

1 Introduction 

NASA is developing optical links to support deep space communication at data rates on the order of 100 Mbithecond. 
These optical links operate efficiently at high peak to average power ratios which may be achieved by modulating the data 
using M-ary pulse-position-modulation (PPM). For certain lasers and detectors, the optimal PPM order is high-M 2 256. 
High PPM orders and data rates require short pulse widths. In fact the optical pulse widths may outstrip the speed of the 
digital hardware required for implementing many candidate encoders and decoders. Hence, it is important that the encoder 
and decoder are low-complexity. We present a low-complexity iteratively decoded convolutionally coded modulation that 
significantly outperforms baseline Reed-Solomon (RS) coded PPM. 

High PPM orders also imply low code rates. Storing the channel likelihoods, which are required for iterative decoding, 
can be prohibitively expensive for large interleavers and PPM orders. We show that the storage requirements can be reduced 
by storing a subset of the likelihoods while suffering no loss in performance. The complexity of implementing the forward- 
backward algorithm is also reduced when partial likelihoods are retained. 

2 Serially concatenated coding 

Our discrete-time coded binary communications channel model is illustrated in Fig. 1. User data is encoded by the serial 
concatenation of (outer code) C, and (inner code) Ci through a bit interleaver n. Each transmitted codeword, a binary 
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Figure 1 : Constrained storage channel model 

M-vector c ,  has noise n added such that the receiver observes the noisy version y = c + n. We add the constraint that only 
P of each M observations, as well as their indices Z, are made available to the receiver. The mapping q5 denotes the rule for 
choosing the P samples, $J : y + ( y ~ ,  Z), 2 C { 1, . . . , M } ,  1x1 = P ,  and yz is the vector of retained samples yi, i E 2. 

A set of indices used as a subscript to a vector denotes the vector formed from the indexed components. 
Ci to denote the non-iteratively decoded serial concatenation of outer code C, and inner code 

Ci and C, +) Ci to denote iterative decoding. We address PPM order M = 256 and make comparisons with a (255,127) 
Reed-Solomon code. Prior work investigated the system PCCC +PPM [ 1, 21 for the optical channel, where PCCC is an 
iteratively decoded parallel concatenated convolutional code. Peleg and Shamai [3] investigated the system PCCC HPPM 
on a discrete-time Rayleigh-fading model, illustrating performance 1-2 dB from capacity. The architecture we consider is 
simpler then that in [ 1, 2, 31. 

We use the notation C, 

We consider a number of systematic, rate 1/2 convolutional codes for C,. The following table lists the numerators and 
denominators in octal notation of the codes considered. 

cc3 7 4 
cc4 74 64 6 

Table 1: Outer convolutional codes 

We use an AWGN model, which is a reasonable model for an avalanche photo-diode (APD) detector when the number 
of incident signal photons is large. In AWGN, n is a vector of independent, identically distributed zero-mean Gaussian 
random variables with variance ~2 = &/2. The PPM mapping is preceded by a binary accumulator, cc2 in Table 1, 
making the inner code recursive. We refer to the inner code that is formed by the concatenation of a binary accumulator and 
PPM mapping as accumulate-PPM (APPM). 

Figure 2 illustrates the performance for C, HAPPM with P = M (no storage constraint) as a function of the bit-SNR, 
Eb/No. The composite code rate is R = log, M / 2 M  = 1/64. Performance is compared to the capacity for rate R 
constrained to use a M-PPM alphabet and a (255,127) RS code. All cases use a 4096-bit spread interleaver. A stopping 
rule that terminates when the inner code produces a codeword of the outer code is used for all but the ccl code, whose low 
distance renders this stopping rule useless. A maximum of 64 iterations are allowed, and fewer than 7 iterations are typical 
at bit error rates below lop5. At a bit error rate of the best serially concatenated code is 1.2dB from capacity and 
gains 2.8dB over the Reed Solomon baseline. Additional gains of .2-.5 dB are achievable by increasing the interleaver size 
to 65536 bits. 
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3 Partial Statistics 

To realize the gains of the iterative decoding algorithms requires likelihoods to be computed and stored for each codeword 
of the inner code. For an inner code that maps to M-ary PPM symbols, the storage required at the decoder for one frame 
of channel likelihoods is fMlIIl/log,(M) bits, where f is the number of bits used to represent fixed or floating-point 
values. High data rates, large values of M and large interleavers can make likelihood computation and storage prohibitively 
expensive. To reduce the complexity of iterative decoding, we take P < M and compute and store only a subset of the 
channel likelihoods. 

The conditional likelihoods 

are a sufficient statistic for the maximum-a-posteriori estimation of u given $(y), and serve as input likelihoods for iterative 
decoding. The term p(yz lc )  is the likelihood that would result if the input were mapped to a P dimensional constellation 
and the term p(Zlc, y ~ )  is an adjustment to reflect the outcome of the decision. 

For moderate M ,  PPM is a sparse on-off-keying, hence a reasonable choice is to let q5 choose the P largest elements of 
y.  Then 

where the maximum of a vector is the largest element of the vector, z = { 1, . . . , M } / Z ,  $ = min yz, K is a constant and 

where F, is the cumulative density function of a noise sample. Computing likelihoods via (2) requires a table lookup or 
computation in order to determine g($).  This can be eliminated by replacing g($)  with an estimate independent of $. We 
have observed negligible degradation when g($)  is replaced with its mean. Substitutingp(yz1c) for the AWGN channel we 
have 

where j is the element of Z such that cj = 1. Figure 3 illustrates performance with P E { 1,2,4,8,  M }  for CC~HAPPM. 
All cases use 8 iterations and a 4096-bit spread interleaver. We see 0.1 dB degradation when 1/64 of the likelihoods are 
kept, and negligible degradation when 1/32 are kept. 

3.1 Complexity, channel likelihoods 

On observation of y k ,  the P largest elements of y k  are determined, their corresponding likelihoods are computed and stored. 
Table 2 lists the number of operations and storage required to complete this operation with full and partial statistics. To 
assess sorting cost, we assume the first P observations are sorted by insertion and the following M - P  by a heapsort [4, 
pp.3441. In addition to storing the floating point values, we must save the addresses of the P largest values, which we assess 
a cost of P log P bits. 
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Figure 3: Performance with partial statistics, M = 256, P E {1,2,4, S}, cc3eAPPM with IIIl = 4096,8 iterations 
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full 
partial 

For our case of interest, the code is AF'PM, such that IVI = 2 and l&l = 2M.  With M = 256, P = 8 and f = 4, partial 
statistics require M 1/18 times the storage as full. The computational complexity depends on the platform, since we are 
trading off comparisons (additions) for multiplications and exponentiations. 

Operations Storage(bits) 
mult. exp. comparisons in sort addresses likelihoods 

Mf 
P P ( P - 1 ) 2 + ( M - P ) l o g P  PIogP P f  
M M - - 

4 Complexity, forward-backward algorithm 

The inner code maps a block of information symbols u = (u1, . . . , U N )  to codeword c = ( c 1 ,  . . . , CN),  where u k ,  c k  are 
binary vectors with ith component u k , i ,  C k , i .  The code is described by a time-invariant graph (straight,forwardmodifications 
would treat time-varying graphs) consisting of a set of states V ,  and a set of directed, labeled edges E .  Each edge e E E has 
an initial state i ( e ) ,  a terminal state t ( e ) ,  an input label u(e) and output label c(e).  We assume that encoding proceeds by 
following a path through the graph and reading off the output edge labels as follows. Let s k - 1  be the state at time IC - 1, 

and e k  the edge with i(ek) = s k - 1  and u k  = u(ek). Then ck = c (ek )  and sk = t ( e k ) .  Throughout we use shorthand 
p ( u k )  = p ( u k  = u )  when the realization is clear from context. 

Each iteration, the forward-backward algorithm [5] begins by computing 

for each edge in the trellis, which changes each iteration as p ( u k )  is updated by the outer code. However, with partial 
statistics, there are only P + 1 distinct values of p ( d ( y ) l c k ) .  One can take advantage of this and use a reduced complexity 
time-varying trellis with [VI states and at most IVl(P + /VI) edges, reducing the computational complexity in our cases of 
interest. 

Let Jk ( T ,  s, 5) be the collection of parallel edges in the IC-th trellis stage with channel likelihood e, 

Form apartial trellis by replacing the edges in Jk ( T ,  s, E )  with a single edge e(r,  s ,  [) with initial state T and terminal state 
s. Let EL be the collection of modified edges. The partial trellis will have [EL I 5 IVl(P + /VI). For e E &L we put 

We proceed to compute Xk ( e )  = p(ek  = e ,  y) for each edge in the partial trellis using the forward-backward algorithm. 
Note that for e E J ~ ( T ,  s, 5) C E ,  
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Hence, after computing the A’s on the partial trellis we may compute the bit likelihoods p ( u k , i l y )  as 

For the inner code APPM with M = 256, P = 8 we require 32% fewer operations on the partial trellis relative to the 
full trellis. Storage requirements per trellis stage are also reduced, but we presume the algorithm is implemented with a 
sliding-window such that the storage costs are dominated by the channel likelihoods. 

5 Conclusions 

We have illustrated performance within 1.5dB of capacity is achievable via iterative decoding of a simple serial concate- 
nation of a convolutional code with accumulate-PPM through a relatively short bit interleaver. For channels that modulate 
to a high PPM order, the storage required for the channel likelihoods may be a bottleneck in implementing iterative de- 
coding. We have shown that a small subset of the channel likelihoods may be used with negligible degradation, by setting 
the remainder of the likelihoods to an appropriate constant. In addition, a reduced complexity trellis may be used for the 
forward-backward algorithm, reducing the number of operations required. 
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