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Motivation

TA(NIST) time scale based on Kalman filter (Jones & Tryon, 1983-).

Follows best long-term clock, regardless of short-term noise (Weiss &
Weissert, 1989, 1991).

Goals of simulation study
Reproduce behavior of this time scale.
Understand it.
Improve it.
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What is a Time Scale?

“It’s 7 o’clock” “It’s 8 o’clock”
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Time scale algorithm: Sequentially determines ensemble time h, (t)

relative to {A, ( )}, given the measurements x; (¢)=h; (1)-h, (1)
at a sequence of dates 7.

Phase (time) residual: x, (1) =1 -4, (1) (to be modeled).
Measurements: x; (1) =x, (1)-x (7).
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Allan deviation

Results for simulated 4-clock ensemble
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Stage 1: Raw Kalman Scale (TA(NIST))

System state for r clocks: X =[x, ¥y,e, X, ¥, ]
x; = phase of clock i WHFM + RWFM
= frequency state of clock i RWFM only

Noiseless measurements at a sequence of dates #:
x; () =% (£)=x, (¢)
At measurement date ¢, Kalman filter produceS'

Estimated stateX [xl , o n( ) yn( )]

Error covariance matrix P (t) = COV (X (1)- X (1 ))
A

Use phase estimates X, (7): % (1) i— % (1) _ 1

t h (1) hegt) hy (1)

Corrected clocks (Brown, 1991) coincide.

Raw Kalman scale = corrected clocks from unmodified Kalman filter.
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Stage 2: Kalman Plus Weights

The Kalman filter gives good frequency state estimates (t — Z').

Neglect Kalman phase estimates, use frequency state estimates in
a conventional Basic Time Scale Equation:

A X, (t)z Z/Ii (z‘)[ATxl. (t)—rf)l. (t - T):l
i=1
X, (t): Weighted-average time scale based on Kalman frequency estimates.

Determine the weights 4, (¢) (£4, =1).
J;(t—7) is a good lowpass-filtered estimate of A, x; (¢)/z.

Thus, each term in the BTSE has good long-term stability.
Choose weights to optimize short-term stability:

A (1) : :
WHFM variance;

(approximately).
The resulting time scale is called the KPW scale.
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Covariance X-Reduction
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Kalman frequency state error variances empirically well-behaved;
phase error variances diverge fast.

Theorem 1. Covariance x-reduction leaves future frequency
estimates unchanged.

When forming KPW scale, we may use x-reduction to keep P(7)
from running away.
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Stage 3: Reduced Kalman Scale

X-reduction does change future phase estimates. Try it: Surprise!
The corrected clocks become at least as stable as the KPW scale.

Reduced Kalman Scale

Run the Kalman filter on the ensemble model and measurements.
X-reduce the covariance matrix after each measurement.
Use the phase estimates to produce the corrected clocks.

Why does this work well?

Theorem 2 (Weiss, Allan & Peppler, 1989). The corrected clocks constitute
a weighted-average scale based on Kalman frequency estimates, with
implicit weights that depend only on the Kalman gain matrix.

Weights at end of simulation: A j“Hg
Raw 0 0.50

KPW  0.45 0.05

Reduced 0.40 0.10
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Optimality of the Reduced Kalman Scale

Theorem 3. Of all weighted-average scales based on Kalman
frequency estimates, the reduced Kalman scale has the implicit
weights that minimize the variance of the time scale increment

Ax, (1)= zlz O ()25, (t-7)]

You don’t have to solve for the weights; they are automatically
implied by the x-reduced Kalman algorithm.
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Final Remarks
The unmodified Kalman filter is an accuracy algorithm
(Weiss & Weissert); it tends to use the clocks that provide
the smallest long-term time deviations.
X-reduction turns the Kalman filter into a stability algorithm.
White PM and measurement noise are not included.
This study was in a simulation playpen; a practical time scale has

to handle outliers, jumps, changes in the ensemble, etc., and
provide for estimation of the noise variance coefficients.
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