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There are currently seventy-seven recognized and thirty-eight provisional natural satellites in the 
Solar System. hIAS&?Jet Propulsion Laboratory (JPL) maintains ephemerides for all and makes 
these ephemerides available electronically through JPL’s On-Line Solar System Data Service known 
as Horizons (Giorgini et al. [1996]). Because of the intimate connection between the orbits of the 
Earth and Moon, the ephemeris of the latter is determined as part of the development of JPL’s 
planetary ephemerides. 

We use numerically integrated orbits as the basis for the ephemerides of most of the satellites. 
The exceptions are the Martian satellites, the five major Uranian satellites, Pluto’s satellite, and 
majority of the minor inner satellites. 

The orbits for the Martian satellites, Phobos and Deimos, are represented by the theory of Sinclair 
(1972,1989) as extended by Morley (1990) and Jacobson (1996a). Orbits from the ESAPHO and 
ESADE theories developed by Chapornt-Touz6 (l988,1990a,1990b) are also available. 

The orbits for the five major Uranian satellites are from the theory of Laskar (1986) which was fit 
to observations by Laskar and Jacobson (1987). The numerically integrated ephemerides used in 
Voyager operations (Jacobson et al. [1986]) are also available. 

The orbit of Pluto’s satellite, Charon, is modeled as a two body conic orbit with elements from 
Tholen(1990) and the revised semi-major axis of Null et al. (1993). 

Precessing ellipses represent the minor satellites’ orbits. The sources of the ellipse elements are: 
the four inner Jovian satellites (Jacobson [2001a]). 
four of the minor satellites of Saturn, Prometheus, Pandora, Atlas, and Pan (Jacobson 

the ten minor Uranian satellites (Jacobson [1998b]) 
the six minor Neptunian satellites (Owen et al. [1991]). 

[1995,1996b]) 

To support the Galileo mission we developed numerically integrated orbits for the Galilean satellites 
(Jacobson [2001a,2002]). These orbits are still being refined using data acquired by the Galileo 
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spacecraft. We have also extended the integration to include the inner satellites Amalthea and 
Thebe in order to process the Galileo data from the close flyby of Amalthea. 

The Cassini mission is relying on integrated ephemerides for the eight major Saturnian satellites, 
Phoebe, the inner satellites Janus and Epimetheus, and the Lagrangian satellites Helene, Telesto, 
and Calypso. The initial integrations were described in (Jacobson [1996b,1998a]). The final pre- 
encounter ephemeris development is under way; Jacobson (2003) contains a preliminary report on 
the work. 
The ephemerides for Triton and Nereid are from the numerical integration by Jacobson et al. (1991). 
These were used for the Voyager mission to Neptune. 

The orbits of the irregular satellites of Jupiter, Saturn, and Uranus are all numerically integrated. 
Discussions of some of the orbits may be found in Jacobson (1999,2000,2001b). All are being 
continually updated as additional observations become available. 

We also provide, via our website ”http:/ssd.jpl.nasa.gov” (Chamberlin et al. [1997]), tables of satel- 
lite orbital elements. For all of the satellites with integrated orbits the elements represent a precess- 
ing ellipse fit to an extended integration. The elements are mean in the sense that they represent 
an orbit differing from the integrated orbit by only periodic effects over the fit interval. 
This research was carried out @the Jet Propulsion Laboratory, California Institute of Technology, 
under contract with the National Aeronautics and Space Administration. 
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