
CLARAty: An Architecture for Reusable Robotic Software
Issa A.D. Nesnas*, Anne Wright**, Max Bajracharya*, Reid Simmons***, Tara Estlin*,

Won So0 Kim*
*Email: firstname.lastname@pl.nasa.gov

* Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91 109
** NASA Ames Research Center, Moffett Field, Sunnyvale, CA 95134

* * * Camegie Mellon University, Pittsburg, PA 152 14

ABSTRACT
In this article, we will present an overview of the Coupled Layered Architecture for Robotic Autonomy. CLARAty
develops a framework for generic and reusable robotic components that can be adapted to a number of heterogeneous
robot platforms. It also provides a hmework that will simplify the integration of new technologies and enable the
comparison of various elements. CLARAty consists of two distinct layers: a FUIIC~~OM~ Layer and a Decision Layer. The
Functional Layer defines the various abstractions of the system and adapts the abstract components to real or simulated
devices. It provides a -work and the algorithms for low- and mid-level autonomy. The Decision Layer provides the
system’s high-level autonomy, which reasons about global resources and mission constraints. The Decision Layer
accesses information from the Functional Layer at multiple levels of granularity. In this article, we will also present
some of the challenges in developing interoperable software for various rover platforms. Examples will include
challenges from the locomotion and manipulation domains
Keywords: robotic architecture, reusable robotic software, interoperable robotic software, standardized robotic
interfaces

1. INTRODUCTION
Developing intelligent capabilities for robotic systems requires the integration of various technologies from different
disciplines. It also requires the interaction of various software components within a real-time system, and the
management of uncertainties resulting from the interaction of the robot with its environment. The uncertainties from the
environment, the complexities of softwarehardware interactions, and the variability of the robotic hardware make the
task of developing robotic software complex, hard, and costly. Hence, it has become increasingly important to leverage
robotic developments across projects and platforms. Because a number of the algorithms developed for robotic systems
can be generalized, it is possible to use these algorithms on various platforms irrespective of the details of their
implementations. It is such algorithms that the Coupled Layered Architecture for Robotic Autonomy (CLARafy) [22] is
trying to provide a framework for, while maintaining the ability to easily integrate platform-specific algorithms.

CLARA& is a domain-specific robotic architecture designed with four main objectives: (i) to reduce the need to develop
custom robotic infrastructure for every research effort, (ii) to simplify the integration of new technologies onto existing
systems, (iii) to tightly couple declarative and procedural-based algorithms, and (iv) to operate a number of heterogeneous
rovers with different physical capabilities and hardware architectures. CLARA& is a collaborative effort among several
institutions: California Institute of Technology’s Jet Propulsion Laboratory, Ames Research Center, Carnegie Mellon
University, and a number of other universities and members from the robotics community.

2. BACKGROUND
With the increased interest in developing rovers for future Mars exploration missions, a significant number of rover
platforms have been designed and built over the past decade [18][22]. Several NASA centers and university partners use
these platforms to test their newly developed technologies in order to improve the autonomous robot capabilities.
Because of isolated software development efforts, exacerbated by differences in the mechanical and electrical designs of
these vehicles, they have historically shared little in terms of software infmtructure. As a result, transfening capabilities
from one rover to another has been a major and costly endeavor. Furthermore, because robotics systems cover several
domain areas, researchers of a single domain also needed to integrate their newly developed technology into the complex
robotic environment. Proper integration requires an in-depth understanding and characterization of the behavior of
various components of the system, which may vary from one platform to another.

mailto:firstname.lastname@pl.nasa.gov

One of our goals is to provide a design that allows
researchers to use various components spanning domains outside their immediate expertise, but have these Decision Layer
components flexible and e&miiile to support various
applications. To do so, we need to capture well-understood
and welldeveloped knowledge h m the various domains
mto g e r h “ d ’ and reusable components. Just like an
operating system provides a level of abstraction b m the
computational hardware, our goal is to provide a level of
absbction h m the robotic hardware implementation that
will allow developers to “integrate once and run
anywhere.” Of course, there are physical limitations to this
goal that result ftom the large variability in rover
capabilities.
The development of robotics and autonomy architectures
dates back several decades. We will not attempt to
provide a comprehensive review of the body of work
upon which this effort builds. Typical robot and

F

, f l

I I**

/--- autonomy architectures are comprised of three levels - iC_.___~ -
Functional, Executive, and Planuing levels [1][1 1][191.
Some architectures emphasized one area over the others
and thus became more dominant in that domain. For
example, some architectures emphasized the planning
aspects of the system [7][8], others emphasized the
executive [4][19], while others emphasized the functional aspects of the system [20][16]. There have also been efforts
that aimed at blurring the distinction between the planning and executive layers [9]. Other architectures did not explicitly
follow this typical breakdown. Some focused on particular paradigms such as fuzzy-logic based implementations [121 or
behavior-based implementations [2][5]. There has also been considerable effort put in architectures that addressed
multiple and cooperating robots [15][23].

Figure 1: The Decision Layer interacting with the Functional
Layer at various levels of granularity

One difference between the CLARaty architecture and the conventional three-level architectures is the explicit
distinction between levels of granularity and levels of intelligence. In conventional architectures both granularity and
intelligence were aligned along one axis. As you move to higher abstractions of the system, intelligence increases. This
is not true for CLARA@, where intelligence and granularity are on two different axes. In other words, the system
decomposition allows for intelligent behavior at very low levels while still maintaining the structure of the different
abstraction levels. This is similar in concept to some hybrid reactive and deliberative systems.

3. AN OVERVIEW OF THE CLARATY ARCHITECTURE
The CLAMty architecture has two distinct layers: the Functional Layer and the Decision Layer. The Functional Layer
uses an object-oriented system decomposition and employs a number of known design patterns [lo] to achieve reusable
and extendible components. These components define an interface and provide basic system functionality that can be
adapted to a variety of real or simulated robots. It provides both low- and mid-level autonomy capabilities. The Decision
Layer couples the planning and execution system. It globally reasons about the intended goals, system resources, and
state of the system and its environment. The Decision Layer uses a declarative-based model while the Functional Layer
uses a procedural-based model. Because the Functional Layer provides an adaptation to a physical or simulated system,
all specific model information is collocated in the system adaptations. The Decision layer receives this information by
querying the F u n ~ t i 0 ~ 1 Layer for predicted resource usage, state updates, and model information. However, additional
adaptation specific heuristics are often used with current planners to assist in plan generation. These adaptation specific
heuristics, which are only used by the Decision Layer, can be accessed directly and not via the FUIIC~~OM~ Layer.

The Decision Layer accesses the Functional Layer at various levels of granularity (Figure 1). The architecture allows for
overlap in the functionality of both layers. This intentional overlap allows users to elaborate the declarative model to

lower levels of granularity. But is also allows the Functional Layer to build higher level abstractions (e.g. navigator) that
provide mid-level autonomy capabilities. In the latter case, the Decision Layer serves as a monitor to the execution of the
Functional Layer behavior, which can be interrupted and preempted depending on mission priorities and constraints.

3.1. The Functional Layer
The Functional Layer includes a number of generic frameworks centered on various robotic-related disciplines. Packages
included in the Functional Layer are: digital and analog VO, motion control and coordination, locomotion, manipulation,
vision, navigation, mapping, terrain evaluation, path planning, science analysis, estimation, simulation, and system
behavior. The F ~ ~ t i o n a l Layer provides the system's low- and mid-level autonomy capabilities. Control algorithms
such as vision-based navigation, sensor-based manipulation, and visual target tracking that use a predefined sequence of
operations are often implemented in the Functional Layer. In some cases though, it is possible to generate such sequence
of operations by modeling them as activities and having the Decision Layer schedule instantiations of these activities
based on appropriate mission goals and constraints.

The Functional Layer has four main features. First, it provides a system level decomposition with various levels of
abstractions. For example, a general locomotor provides an interface to any type of mobility platform whether it is a
wheeled vehicle, a legged mechanism, or a hybrid of the two. A functional specialization of the locomotor is the wheeled
locomotor. This specialization introduces the concept of wheeled mobility and wheel configuration. This functional
specialization extends the locomotion interface to include additional capabilities. Further extensions of the wheeled
locomotor include special types of wheel locomotors with known locomotion models.

Second, the Functional Layer separates algorithmic capabilities from system capabilities. It is important to decouple
system limitations from the algorithmic limitations in order to avoid propagation of assumptions that are unique to a
particular platform, Algorithms are expressed in their most general terms without compromising understandability and
efficiency. Where efficiency requirements are not met, specializations are provided to overwrite the general solution. An
example of this can be found in the manipulation domain. General inverse 'kinematics algorithms provide a generic
solution for all serial manipulators but are often not efficient. As a result, they are overwritten with specialized, more
efficient versions. The general versions however, are useful in instances where the specialized solutions have not been
derived yet or for validating the specialized implementation.

Third, the Functional Layer separates the behavioral definitions and interactions of the system from the implementation.
This separation not only allows the dynamic binding of adaptations at runtime, but it also makes both the functional and
implementation trees extensible. For example, a wheeled locomotor separates considerations related to the behavioral and
~ U . I E ~ ~ O M ~ models fiom considerations related to the hardware interhe. Another example is the controlled motor, which
separates the specialization to a particular hardware controller fkom the func t i0~1 specialization of a controlled motor to a
joint (which extends the motor funct i~~l i ty by imposing checking of joint limits on all the move c o d) . This pattern
is used in various parts of the architecture and is known as the bridge pattem [lo].

Fourth, the Functio~l Layer provides flexible runtime models. The runtime model is part of the abstraction model, of
which, one part is associated with the generic functionality and the other with the adaptation. The runtime model
associated with the adaptation is dependent on particular capabilities of the underlying hardware and can change from
one system to another. For example, a system with a distributed motion control architecture does not need to run the
servo control and trajectory generation threads on the main processor. This capability can be implemented in firmware
on distributed processors.

3.2. The Decision Layer
The Decision Layer is a global engine that reasons about system resources and mission constraints. It includes general
planners, executives, schedulers, activity databases, and rover and planner specific heuristics.

The Decision Layer plans, schedules, and executes activity plans. It also monitors the execution modifying the sequence
of activities dynamically when necessary. The goal of a generic Decision Layer is to have a unified representation of

activities and interfaces. The current instantiation of the Decision Layer, which we use at JPL, features a tight coupling
of the planner and the executive. For this example, the planner implementation is the CASPER planning and scheduling
system [7] and the executive implementation is the TDL executive system [19].

The Decision Layer interacts with the Functional Layer using a client-server model. The Decision Layer queries the
Functi0~1 Layer about availability of system resources in order to predict the resource usage of a given operation. The
Decision Layer sends commands to the Functional Layer at various levels of granularity. The Decision Layer can utilize
encapsulated Functional Layer capabilities with relatively high-level commands, or access lower-level capabilities and
combine them in ways not provided by the Functional Layer. The former is valuable when planning capabilities are
limited, or when under-constrained system operation is acceptable. The latter is valuable if detailed, globally optimized,
planning is possible, or if resource margins are small. CLARpty supports both modes of operation. Status on resources,
state conditions, and activity execution is reported fiom the Functi0~1 Layer to the Decision Layer asynchronously or
synchronously at rates specified by the Decision Layer.

4. CHALLENGES IN SYSTEM DECOMPOSITION
The proper decomposition for a generic robotic system, in large, depends on what elements of the software are targeted
for reuse in future applications. One approach for an architectural decomposition is to highlight the runtime model and
inter-component communication mechanism independent of the domain it addresses [161. Another would be to highlight
the states of the system making them explicit with global scope [6]. A third would be to highlight the abstract behavior
and interface to the states of the system while hiding runtime models. CLARAty adopted the latter approach in order to
hide the variability that arises fiom various implementations.

Two fundamental notions of CLARAty are: (1) abstractions at various levels of granularity, and (2) encapsulation of
information at the appropriate levels of the hierarchy. First, abstractions are an important notion in a robotic system in order
to reduce complexity and to provide an operational interface at various levels of the system architecture. Algorithmic
development can occur at any level of abstraction. second, without the proper encapsulation, implementation specific
information and assumptions can “bubble up” to higher levels and break reusability across &mains and platform. This
does not mean that CLARA@ does not support platform specific algorithms. Specific algorithm are ones that either cannot
be generalized, or would be ineffective if generalized to a broader scope.

There are three main types of abstractions in the Functional Layer: (1) data structure classes, (2) generic/specialized
physical classes, (3) generic/ specialized functional classes. All classes are designed to “ize code reuse across
disciplines, eliminate duplicated functionality without compromising efficiency, and simplify code integration.

Both functional and physical generic components: (a) provide interface definitions and implementations of basic
functionality, (b) manage local resources, and (c) support state and resource queries by the Decision Layer.

4.1. Data Structure Classes
Data structure classes, which handle data transformation and storage, enable easy propagation of software optimization,
and allow easy serialization and transport between processors. One characteristic of data structures is that they do not
have any executive capability. While their efficiency is of prime importance, they themselves do not invoke other
threads. These classes provide the extended interface for communication among generic physical and W t i 0 ~ 1
components. Since general-purpose data structures are reusable beyond the scope of robotics applications, we are
leveraging s t “ d * developmnts such as the Standard Template Libmy [3]. However, not all such needs could be
adequately met fiom standan.llzed ’ sources. CLARA@ provides some general data structures and a number of domain speci6c
ones. Such classes include points, bits, arrays, vectors, matrices, rotation matrices, images, h o m g m u s transfm,
quaternions, frames, flame trees, messages, and resources.

4.2. Generic Physical Classes
Generic physical components (GPC) define the structure and behavior of physical objects in an abstract sense. Some of
these classes have partial implementations since specialized physical or simulation classes will complete their
implementation. A generic physical component can be extended along two axes: function and implementation. The

functional extension includes the addition of control and operational capabilities. The implementation axis includes
specialization to hardware and, where necessary, the oveniding of the generic default implementation. A generic
physical component can also have a model that describes the device without specifying how it is implemented. For
example, a locomotor abstraction provides an interface to any type of mobility mechanism, whether it be wheeled,
legged, or hybrid. The interface allows specifying a point on the vehicle to be moved to a Merent point in the world,
and allows other parameters, such as the path and speed, to either be specified or left unconstrained. There are also a
number of queries about the state of the vehicle and it pose. Without further knowledge of the type of mechanism, it is
not possible to get more infomution without imposing additional constraints on the type. In addition to defining the
interface and behavior, the generic physical classes also defme the finite state machines of an abstraction.

Generic physical classes can be active, i.e. they provide their own threading model. Examples of such components are:
manipulator, locomotor, controlled motor, wheel, camera, and I/O to name few, A complete list of these components and
their characteristics can be found in [13].

The base abstraction for generic physical components is the device class fiom which other classes derive. It uses a
generic mechanism to query device properties and can retrieve both generic and specialized properties of a device via a
generic mechanism. The device class provides a centralized infrastructure for device thread safety. Devices include three
types of information: attributes (static parameters such as initialization parameters), parameters (dynamic parameters that
are changed by the user or application at runtime), and device output data. Devices also have standardized interfaces to
query their given names and ancestries.

43. Generic Functional Classes
A generic functional class is an abstract class that describes the interface and functionality of a generic algorithm. A
generic functional class can have a complete implementation of its functionality because it interfaces with generic
physical classes. Examples of generic functional classes are: mapper, navigator, traversability analyzer, and visual
tracker. Just like physical classes, functional classes can be active and can generate separate threads of execution.

An example of a generic functional class is the navigator. The navigator provides a functional behavior that will evaluate
a terrain and assess its traversability, then move a mobility platform using both local and global information. The
navigator interfaces with a locomotor for controlling the vehicle, an estimator for querying of pose information, a
traversability analyzer for converting sensor data into a model of the world, an action selector to determine the
appropriate next action for the robot to perform given its current state, and cost functions for converting terrain
evaluation data into a form that can be used by the path planner. A detailed description of the navigator functional
classes can be found in [21].

The estimator is another type of generic functional component that can be specialized to a particular type of state
propagation filter such as a Kalman Filter or a Bayesian Filter.

4.4. Specialized PhysicaUFunctional Classes
Specialized classes are extensions of generic classes that adapt the general configuration or algorithm to a particular
robotic platforxu An example of a specialized physical class is found in the Rocky 7 rover implementation. For the
development of the Rocky 7 mast software, the generic manipulator class is specialized to a Rocky 7 mast class. This
class specifies the link dimensions, joint limits, actuator types, and end effector(@. The base manipulator class provides
the generic forward and inverse kinematics, joint motion control, trajectory tracking, conditional motion, and error
recovery. The Rocky 7 mast class overrides the generic kinematics of the manipulator class with the closed-form
kinematics that are specifically derived for the Rocky 7 mast.

Specialized functional classes are derived fiom their generic counterparts. They specialize a particular configuration and
tune the behavior. For example, a rocker bogie locomotor model is a specialization of a generic wheel locomotor model
(the rocker bogie is a mechanism that hasdifferential motion of the left and right sides of a six wheel vehicle -
commonly used for Mars rovers).

4.5.
Because CLAMty supports systems with Merent
hardware architectures, the runtime model changes across
robotic platfiorms. As a result, it is important to encapsulate
the specialized runtime implementation but characterize the
usage of resources.

Runtime and Data Flow Models

Two models of data flow are used in CLAMty. Both push
and pull models are used depending on the adaptation layer
and matching hardware architecture. For systems that have
bandwidth limitations on a shared bus, and where the need
for the data is asynchronous and constitutes a subset of all
possible information that can be obtained, a pull model
allows m a x i “ flexibility. If the usage is predictable and
synchrounous then a push model is used. For a given bus,
and if both modes are supported by hardware, it is possible to
switch the system between these two modes depending on
the system configuration. For example, on a rover that uses a
shared bus for c o d c a t i n g with distributed motion
controllers connected to both the mast and the arm, the
system may only retrieve information on the manipulator that
is being controlled.

Generic interfaces bridge between the timing requirements
of consumers and actual data flow of a given device, as
well as support extendible data sets with strong typing.

Figure t: Various types of wheeled locomotors

Consumers can choose whether to force a new update, access stored data fiom the most recent transactions, or retrieve a
data source object. In the latter case, the consumer can customize its timing constraints, and either use it for future
queries or pass it on to another consumer such as a data logger. When new information becomes available, any
consumers waiting on such a data source wake up and receive the update. If new data is not available within the timing
consbaints of a given consumer, they wake up empty handed and can choose to force an update.

5. IMPLEMENTATION OF LOCOMOTION ON

One of the main challenges in developing generic
components and adaptating them to Merent robots stems
fiom the variability of the platforms and their capabilities. In
this section, we will use the example of wheeled locomotion
to illustrate how to use domain knowledge to classifi
vehicles to enable the development of generic and reusable
classes. We will also discuss the challenges that arise fkom
adapting the generic algorithms to a number of rover
platforms with different hardware architectures

VARIOUS MOBILE PLATFORMS

Wheeled locomotors have different capabilities depending
on their mechanical configuration. Consider the locomotion
capabilities of a number of mobile platforms shown in
Figure 2 (the ATRV, Rocky 7, Rocky 8, FIDO, K9,

Sun Semor

Figure 3: Distributed motion control architecture for Rocky 8
and IC9

Sojourner, and Hyperion rovers). These wheeled vehicles have different maneuvering capabilties. The proper
classification of these vehicles will be based on the domain knowledge of the kinematics and dynamics for controlling
these vehicles. One approach, which we adopted, is to separate vehicles with moveable axles (e.g. Hyperion) fiom ones
with all fixed axles (or fixed contact model - all others). For fixed axle robots, one can further classify these as non-
steerable (or skid steerable) such as the ATRVs, partially steerable such as the Rocky 7 and Sojourner rovers, and fully
steerable such as the Rocky 8, FIDO, and K9 rovers. Partially steerable vehicles can have different configurations. For
example the Sojourner rover has six drive wheels and two non-steerable center wheels. On the other hand, Rocky 7 has
only two steerable h n t wheels. As such, partially steerable wheeled locomotors are constrained to instantaneously move
about a rotation center that lies along the non-steerable wheel axle (or a virtual axle that averages all non-steerable axles in
order to minimize slip). Fully steerable vehicles can do crab maneuvers and can maintain a certain heading while driving
along a path trajectory. Partially steerable vehicles have more constraints and cannot independently control path and
headin& but can use parallel a parking maneuver to achieve a crab equivalent [141.

A general way for describing the motion of all fmed axle models is by specifying three independent control variables
that are a function of time: delta length of traverse, delta heading, and motion direction angle. For fully steered vehicles
one can use all tbree parameters. For partially steered vehicles, the motion direction angle is constrained by the fixed
axle@). The latter is a degenerate case of the fully steered model.

A second challenge that arises in addressing these classes of vehicles comes fiom the accessibility to the system's
control parameters. For example, the ATRV provides independent control for each side of the vehicle only but not for
each individual wheel. So the control model for the vehicle is different fiom those vehicles where each wheel can be
controlled individually.

A third challenge stems fiom the different motion control architectures. Consider the motion control architecture of
Rocky 7, Rocky 8, K9 and FIDO (all have six wheels and almost all have full steering capabilities). While closer in
resemblence to each other than to the ATRVs, for instance, the control architecture for each vehicle is still unique.
Starting with the Rocky 8 and IC9 rovers [171 (Figure 3), both rovers use a distributed motion control architecture where
each motor interfaces with a single-axis microprocessor controlling the motor servo loop and, in some cases, profiling a
trajectory. Distributed micocontrollers can, as in the case of Rocky 8, also perform analog and digital I/O operations.
They also possess some additional programmable processing capabilities. In a distributed system, microcontrollers are
connected to the main processor via some type of a serial bus. The K9 rover uses a multi-drop RS422 serial link for the
control of its mobility motors. Rocky 8 uses a single I2C bus for its locomotor, arm, and mast subsystems. There is an
important coupling between the d m a s t and the locomotor as a result of the shared bus. The software architecture has
to enable the simultaneous operation of the manipulator and locomotor subsystems by managing the shared resource.
While the two subsystems are linked in their implementation, functionally they are not.

Another aspect of hardware architecture is hardware synchronization. The K9 system supports hardware synchronization
of motors via broadcasting serial commands which tell all axes to synchronously execute their loaded trajectory, or
synchronously stop. The Rocky 8 rover implements synchronization in software by loading all motor trajectories first
and then issuing start commands to all motors sequentially to minimize latency between the first and last motor. Once
again the software architecture should support these two different modes of synchronizations. As such, support for
device groups is an essential part of the CLARQty architecture. The flexibility in the implementation of group commands
is also important since hardware implementations can vary dramatically.

The Rocky 7 system uses commercial-of-the-shelf (COTS) microcontroller chips (LM629) for the motor control (Figure
4). These controllers are laid out on a central motion control board and are connected to the host processor via a custom
parallel port connection with chip multiplexing. All actuators in the system share the same bus, but the communication
bandwidth is higher than the serial links for both Rocky 8 and K9. Similar to Rocky 8, this motion control board
supports the locomotion and manipulation subsystems. As in the case of Rocky 8 and K9, the closed loop servo control
is done on the microcontrollers that have fixed control law with programmable parameters and modes.

Rocky 7

ParalblcuSmmlnQfsg

Figure 4: Custom parallel bus for the multiplexed
motion controllers on Rocky 7

Figure 5: Centralized memory-mapped motion
control architecture for FIDO

Figure 5 shows a third implementation of a motion control architecture. The FIDO rover [I81 uses a centralized
hardware-mapped control architecture. The motors are directly connected to an analog output board and the encoders are
directly connected to a quadrature encoder board. All hardware states and registers from the PC104+ boards are mapped
via the PCI backplane to the host processor’s memory making them readily accessible to the software. There is virtually
zero cost fiom a software architecture standpoint to retrieve the value of any register as compared to the other systems.
Hence the coupling among the various motor/encoder states is abstracted by the hardware. However, since there is only
one processor (host) in the system, the servo loops for all actuators have to be done on the main processor. This
introduces a coupling between the servo control of the motors and the application algorithms which will be competing
for the same computational resources. It also places a requirement on the operating system and the software architecture
to meet hard real-time scheduling guarantees. So while the K9 and Rocky 8 rovers can operate in a soft real-time
environment such as Linux, the FIDO rover requires the operating System and supporting architecture to run in hard real-
time. On the other hand, the FIDO architecture has the advantage of allowing the software to easily modify the control
law and insert validation checks in case a motor or encoder failure occurs.

Non-Resuable Layer

Ye ni i L n n d u c f n r

Figure 6: Generic Controlled Motor and Joint classes and their adaptations to several real and simulated rovers. Only middle layer
is non-reusahle

Despite all these architectural variations, there is a level of abstraction that can be used to interoperate across these
systems. Given that each motor is controlled via the generic controlled motor interface, the runtime model for each
implementation will vary. For a system such as Rocky 8, pushing all motor and YO information via the I2C bus limits
the bandwidth since the type of information requested may vary depending on the algorithm that is in operation at any
time. Using a pull model, a single thread for trajectory generation (20 Hz) is used on the host while the microcontrollers
run a leadflag compensator for servo control. Motor commands are sent to the hardware using a synchronous cooperative
scheduling model. Alternatively, the FIDO rover uses two threads, one for closed loop PID servo control at 200 Hz, and
a second for trajectory generation. The Rocky 7 and K9 motors run no additional threads and pass the necessary
trajectory parameters to the motor controllers, which run their own hardware threads. Hence, an asynchronous
communication model is used.

While these are four different implementations of a motion control system, the behavior and functional requirements of
the controlled motor are the same (Figure 6). All these implementation variations are part of the encapsulated
specialization of the controlled motor and motor group abstractions. To the user of a controlled motor, the abstraction of
the controlled motor and the resources its adaptation consumes is what is needed without necessarily exposing the details
of the implementation. In any of these implementations, you would still like to do position commanding, velocity
profiling, and trajectory control. You would also like to detect and report stall conditions and be able to intemupt the
motion. Furthermore, you would like to read the current and desired positions, velocities, accelerations, and health
status. For a person developing a general wheel coordination algorithm for a mobile robot, it should only be necessary to
understand the behavior of the component rather than have intimate howledge of the implementation and hardware
details. Nor should a particular implementation inadvertently influence the design of the coordination algorithrns. The
controlled motor and motor group classes are an abstract representation for motion control that define what the
components are supposed to do. These components hide the details of the implementation without compromising
particular features of the hardware. The controlled motor abstraction is then used in a wheel abstraction and later a wheel
locomotor model. The same paradigm applies at various levels of CLAR4ty.

Preliminary results showed that for one implementation of wheeled locomotor, around 90% of the implementation was
reusable among FIDO, Rocky 8 and Rocky 7 (measured in lines of code which included comments). For the controlled
motor, the reusable percentage ranged from 50%-70%. These statistics consider that all software drivers are non-
reusable, even though they can be reused when boards share the same COTS chips.

6. IMPLEMENTATION OF MANIPULATION ON VARIOUS MOBILE PLATFORMS

In this section, we will discuss various manipulation abstractions that can be developed using the same paradigm. Figure
7 shows the manipulator class hierarchy and its relationship with its parent, aggregates, and children. Close to the top of
the hierarchy is the manipulator class. This class derives from the generic physical class called “composite device.” The
composite device class, which uses the composite design pattern [IO], is both a device and has a number of devices
associated with it. The manipulator class aggregates a variable number of controlled joints and link objects. The
manipulator class provides generic functionality such as individual joint mode control and global velocity/acceleration
control. It also contains strategies for recovery from error conditions when an expected system shutdown occurs.
Additionally, it provides hooks for attaching to various end effectors. Two manipulator types can be derived from the
manipulator class: the serial manipulator class and the parallel manipulator class. A serial manipulator is a robotic arm
that concatenates a number of joints and links. A parallel manipulator is a mechanism whose links are attached, in
parallel, to an output plane. An example of a parallel manipulator is the Stewart platform that is used in motion
simulators. There is a duality in the equations governing the kinematics of serial and parallel manipulators. Serial
manipulators have relatively simple forward kinematics while parallel manipulators have relatively simple inverse
kinematics. Hence, the serial manipulator class has the generic forward kinematic equations that will apply to all types of
serial manipulators, while the specialized Rochy8 arm will have the closed-form inverse kinematics for the particular
ann Similarly, the parallel manipulator class will have the generic inverse kinematics. There are numerical methods for
solving general inverse kinematic problems for serial manipulators. These can also be made available in the serial
manipulator class. Hybrid manipulators that combine both serial and parallel linkages are represented by a separate class

i --- -- -
Composite Device

- __ ___ 7r ---- - - ’

Motion Contro1::ControlledJoint I
- , I..* r-7 - ___- L-- -J 1 1

Manipulator
+ Link

A

/

__. __ /-- -

Se ria I-Man i p u lator

-

Rover-Man i pula tor

: R8-Arm i 1 R8-Mast
I

‘\

Parallel-Manipulator

1 R8-Mast & R8-Arm are Specialized Classes

Figure 7: Manipulation abstractions with specialization to the Rocky 8 rover

(not shown here). A serial manipulator can be used as an arm or a leg for a robot. It can be mounted on a fixed platform
or on a mobile robot. Each of these options requires additional functionality and behavior that a serial manipulator must
support. For example, it is helpful for a manipulator mounted on a mobile platform to know about the mobility system
and be able to control it in some cases. One such case is when you are tele-operating this arm. If the arm was not aware
of the mobility system, as you extend the arm to the edge of its workspace, the arm loses dexterity and soon becomes
singular. But because the arm knows that it is mounted on a mobile platform, then the arm can command the mobility
system to advance the robot slightly so as to shift the workspace of the arm forward, keeping the arm in the most
dexterous region of its workspace. The arm interface remains the same but its functionality and workspace are extended.
This functionality can be implemented within a mobile manipulator class, which uses a generic locomotor class in its
implementation. The mobile manipulator is derived fkom the serial manipulator class. One type of mobile manipulator is
the rover manipulator class. In addition to supporting the functionality of a mobile manipulator, the rover manipulator
class extends the interface of the mobile manipulator class to include additional operations, such as stow, unstow and
other rover specific functionality.

Consider the Rocky 8 rover, which defines two specialized classes derived from the rover manipulator class. They are
the R8 Mast class and the R8 Arm class. These classes define the joint configuration and parameters, link types and
dimensions, inverse kinematics, and other properties unique to these manipulators. During the adaptation process of the
ann and mast software, the generic Rover Manipulator class is specialized to an R8 Arm and an R8 Mast classes. The
rover manipulator class provides generic forward and inverse kinematics, joint motion control, trajectory tracking,
conditional motion, and error recovery. The specialized R8 Arm and R8 Mast classes specify the link dimensions, joint
limits, actuator types, and end effector type. They also override the generic kinematics of the Manipulator class with the
closed-fonn kinematics that are specifically derived for these instances.

Figure 8: The Rocky 8 manipulators Figure 9: The Rocky 7 rover

6.6. Running on different manipulation platforms

The Rocky 8 mockup platform (Figure 8) consists of a 4-DOF arm and a 4-DOF mast mounted on a fixed manipulation
platform. Both the mast and the arm have a similar joint configuration, which includes a shoulder roll, a shoulder pitch,
an elbow pitch and a wrist pitch. The arm has a single DOF gripper while the mast has a stereo camera pair. On the
Rocky 8 rover, the arm and the mast joints are actuated using the single axis motion controllers called the “widget
boards” which were presented earlier. The Rocky 8 motion control architecture is distributed via the widget boards which
communicate over an 12C serial bus. In the mockup platform above (Figure 8) the same manipulators are connected to a
centralized motion control architecture similar to Rocky 7. The computing system consists of a 3U cPCI running a
Pentium processor and a number of digital and analog YO boards and a pair of vision hnegrabbers.

The Rocky 7 system also has two manipulators: a two degree-of-freedom (DOF) arm with two independently actuated
scoops, and a three degree-of-freedom mast. The arm has a shoulder roll and a shoulder pitch, while the mast has an
additional elbow pitch. The computing system consists of a 3U cPCI backplane with a PowerPC 750 MHz processor and
a number of analog YO, digital YO, and hmegrabber boards. Each joint actuator (DC brushed) is controlled by a
separate micro-controller chip (LM629) using an 8 bit parallel bus connected to the digital I/O board. Both systems run
the VxWorks real-time operating system.

These two platforms have different physical characteristics as well as Merent hardware implementations. CLARAty
was adapted to operate both systems. On the Rocky 7 rover, we demonstrated parallel operation of the arm, the mast and
the mobility subsystems, which all share hardware resources. On the Rocky 8 manipulator platform, we also
demonstrated parallel arm and mast operations, which were used for in a vision-based sample acquisition application.
The code base that was shared between these two systems for the manipulation operation was on the order of 60%. Much
of the custom adapted code related to the drivers for the various boards, the custom inverse kinematics for each
manipulator, and the unique sequence of motions needed for operations such as stowing and unstowing. Additional
adaptations of this software included the K9 rover arm, which has five degrees of freedom.

7. SUMMARY
Currently, the CUR& architecture has been adapted to five real rovers with different hardware architectures and
physical capabilities. It has also been adapted to high-fidelity simulation platforms. CUR& is operating the Rocky 8,
FIDO and Rocky 7 rovers at JPL. It is also running on the K9 rover at ARC and an ATRV rover at CMU. Various

capabilities have been demonstrated on these vehicles. We have presented a brief overview of the CLARAty architecture
and some of the challenges in designing interoperable software that can run on varying physical rover platforms. We are
continuing the development of CLARQty to achieve its goals of a generic reusable robotic sohare base that we hope to
publish as open source.

8. ACKNOWLEDGMENTS
The work described in this paper was carried out by the entire CLARQty team at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract to the National Aeronautics and Space Administration, and at
Camegie Mellon University and Ames Research Center.

9. REFERENCES:
R. Alami et al. An Archtecture for Autonomy. Int’l Joumal of Robotics Research, 17(4), April 1998.
R. C. Arkin “Motor schema based mobile robot navigation,” Int ’1 J. ofRobotics Research, 4(8):92-112, 1989.
M. H. Austern. Generic Programming and the STL Addison-Wesley Professional Computing Series, Reading, MA, October
1998.
3. Borrelly et al. The ORCCAD Architecture. Inf ‘I J . ofRobotics Research, 17(4), April 1998.
R. A. Brooks. A robust layered control system for a mobile robot. IEEE Transactions on Robotics and Automation, 2(1):14-23,
1986.
D. Dvorak, “Software Architecture Themes In JPL’s Mission Data System”, Proc. IEEE Aerospace Conference, .Big Sky
Montana, 2000
T. Estlin, et al. “Using continuous planning techniques to coordinate multiple rovers.” Proc. of the IJCAI Workshop, Sweden,
August 1999.
R. Firby. “Adaptive Execution in Complex Dynamic Worlds” PhD thesis, Yale University, Department of Computer Science,
1989.
F. Fisher, et ai., “An automated deep space communications station,” Proc. IEEE Aerospace Conference, Colorado, March 1998.

[lo] E. Gamma, et al., “Design Patterns: Elements of Reusable Object-Oriented Software,” Readking, Mass: Addison-Wesley, 1995.
[113 E. Gat. “On ThreaLayer Architectures,” In Artificial Intelligence and Mobile Robots, Boston, MA, 1998. MIT
[121 K. Konolige, et.al. “‘The saphira architecture: A design for autonomy.” J. of Experimental and Theoretical AI, 9(1):215-235,

1997.
[131 LA. Nesnas, et.al. ‘Toward Developing Reusable Software Components for Robotic Applications“ Proc. Int ‘I Conf on Intelligent

[141 LA. Nesnas, et.al. “Rover Maneuvering for Autonomous Vision-Based Dexterous Manipulation,” IEEE Con$ on Robotics and

[15]L. Parker, “Alliance: An architecture for fualt tolerant multi-robot cooperation,”. ORNL TM12920, Oak Ridge National

[161 G. Pardo-Castellote et.al, “Controlshell: A software architecture for complex electromechanical systems,” Inf ‘I Journal of

[171 L.M. Pedersen, et al., “Integrated Demonstration of Instrument Placement, Robust Execution and Contingent Planning,” Proc.

[18]P. Schenker, et.al., “Planetary rover developments supporting Mars science, sample return and future human robotic

[191 R. Simmons and D. Apfelbaum, “A Task Description Language for Robot Control,” IEEh7RS.J Intelligent Robotics and Systems

[20] Mobility Software. httu:/lisrobotics.comirwi/software.htm. Real World Interface, division of IRobot, Somenille, MA.
[21]C. Urmson, et.al., “A Generic Framework for Robotic Navigation,” Proc. IEEE Aerospace COR$, Montana, March 2003.
[22]R. Volpe, et.al. “The CLARAty architecture for robotic autonomy,” Proc. ofIEEEAerospace Con$, Montana, March 2001.
[23] B.B. Werger and M.J. Mataric, “From Insect to Internet: Situated Control for Networked Robot Teams,” Annals of Mathematics

Robots and Systems, Hawaii, Oct, 2001

Automation, CA, 2000

Laboratory, Oak Ridge, TN, 1995.

Robotics Research, 17(4), 1988.

Int’l Symp on AI, Robotics and Automation for Space, 2003.

colonization,” Autonomous Robots, 103- 126,2003

Conf, Canada, October 1998.

andAZ,31:14,pp. 173-198,2001

