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ABSTRACT 
A long duration robotic presence on lunar and planetary surfaces will allow the acquisition of scientifically interesting 
information from a diverse set of surface and sub-surface sites. The wide range of terrain types including plains, cliffs, 
sand dunes, and lava tubes will require the development of robotic systems that can adapt to possibly rapidly changing 
terrain. These systems include single as well as teams of robots. In this paper, we describe the development of an 
integrated suite of autonomous, adaptive hardwarehoftware control methods called SMART Gystem for Mobility and 
- Access to Rough Terrain) that enables mobile robots to explore potentially important science sites currently beyond the 
reach of conventional rover designs. SMART uses the behavior coordination mechanisms of CAMPOUT, a previously 
developed system for multi-agent control. For the specific application area of cliffside exploration, SMART consists of a 
distributed sensing/mobility system for cooperative map-making called MITSAF (Model-based Information Theoretic 
- Sensing And Fusion) and rappelling down a cliff, moving to a designated way-point, and science sample acquisition 
from the cliff face. We also report the results of some experimental studies on highly sloped terrain and cliff faces. 
Keywords: Cooperative robots, information theory, unstructured environments, cliff exploration 

1. INTRODUCTION 
A greater level of rover autonomy is required for a long duration robotic presence on lunar and planetary surfaces. 
Modular, adaptive robotic systems open up access to a wide range of terrain types including plains, cliffs, sand dunes, 
and lava tubes (examples shown in Figure l a  and IC). These systems will include single as well as teams of robots. 
Recent developments in planetary rover technology''2 have provided capabilities for semi-autonomous robotic traverse 
over relatively benign terrain. For a conventional wheeled rover, this usually means mobility over continuous natural 
surfaces having area rock densities of 5-to-10%, modest inclines (<30%), and a hard base with modest soft debris or sand 
pack (i.e., good flotation properties relative to wheel pressures of current rigid chassis designs). "Semi-autonomous" 

Figure 1. Wide variety of hadplanetary surface terrains and technology example for autonomous access to high risk, 
scientifically interesting regions. (a) Mars cliff-face with signs of water outflows; (b) JPL technology prototype cliff-bot 
ensemble; (c) lunar South Pole-Aitken Basin where signs of water were found by Clementine and Lunar Prospector; (d) 
JPL technology prototype of an terrain-adaptive reconfigurable rover. 
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operation means the rover is sequenced by remote commands usually uplinked once a day, a situation that would not be 
ideal for outer planet exploration such as that detailed in the recently released Decadal R e p ~ r t . ~  This observation even 
carries through for lunar surface studies using extended long duration rover traverses coupled with in situ analysis and 
sample return for geological site characterization in order to deconvolve the interplay between tectonic, impact, and 
volcanic processes? Lunar craters less than 14km in diameter tend to have smooth floors, whereas those with larger 
diameters have a floor that contains widely mixed terrain types. Of particular interest in these lunar and planetary 
missions is the stratigraphic site history contained in the surfaces that are exposed by the highly sloped terrain. 

Our primary objective is the development of an integrated suite of advanced, adaptive hardwarehoftware control 
methods called SMART (@stem for Mobility and Access to Rough Terrain) that enables mobile robots to safely move 
about highly sloped environments and explore potentially important science sites currently beyond the reach of 
conventional rover designs. The mobility enhancements enabled by SMART are vital for pose reconfiguration for safe 
access to areas such as those seen in Figure IC, where the recent Clementine and Lunar Prospector missions indicated the 
possible presence of water in the Aitken Basin at the south lunar pole, which is extremely rugged terrain and in some 
places is 13km deep. It is usually possible to build “point” designs to satisfy the demands from the exploration 
environment - examples include robots employing legged loc~motion,~ large inflatable tires, et al. Our approach is to 
have the robot(s) recognize adverse terrain conditions beyond their nominal operational envelope, and intelligently adapt 
mobility Two examples are shown in Figure Ib and Id, where respectively, a cliff-bot is cooperatively 
driving on a cliff face with the assistance of two anchored tether-bots and a rover reconfigures its shoulder angles and 
center-of-gravity to enable access to steeply sloped terrain. Enabling such behavior is a dual problem of sensing the 
conditions that require rover adaptation, and controlling the rover actions as to implement this adaptation in a well 
understood way (relative to metrics of rover stability, traction, power utilization, etc.). 

Our previous related work under the NASA Code R Cross Enterprise Technology Development Program (CETDP) 
concentrated on developing and testing the components needed for an integrated approach to all terrain exploration 
(ATE). In FYOO, we developed and demonstrated on-line reconfigurable control of rover motion and geometry for 
traverse of challenging terrain (e.g., Mars VLUVL2-type topographies) and on slopes of up to 50°.6.7 In FYO1, we 
demonstrated a first-of-kind approach to coordinated multi-robot control using behavior networks and publish/subscribe 
sharing of distributed state information for way-point navigation on a 70” slope cliff face while maintaining stability 
(wrt. singularities, tether tension, and rappeller m~b i l i t y )~  implemented under the multi-robot control architecture 
CAMPOUT (Control Architecture for Multirobot Planetary O ~ g p o s t s ) . ~ ’ ~ ~ ’ ~  The work reported in this paper was done in 
FY02, where we integrated and demonstrated a distributed sensing/mobility system called MITSAF (Nodel-based 
information Theoretic Sensing And Fusion) for mapping, traverse and science data acquisition on a cliff-side wall. 
MITSAF was developed to address the short-range sensor limitations of a robot traversing a cliff-face for safe 
navigation. SMART system capabilities for this mission scenario included cooperative map-making and rappelling down 
a cliff, moving to a designated way-point, and science sample acquisition from the cliff face. 

The next section briefly describes the cliff-bot concept and its implementation under CAMPOUT. This is followed 
by a discussion of the underlying theory and implementation details of the MITSAF intelligent senging technique used 
for the map-making and path planning on the cliff-face. Finally, there is a description of our preliminary experiments in 
the laboratory and field, followed by a summary of results. 

2. CLIFF-BOT CONCEPT 
Cliff-bot is part of a technology concept developed under SMART for modular robotic exploration of planetary surfaces. 
The components of the modular robotic system travel as a unit and then autonomously reconfigure themselves as 
dictated by the terrain. An artist’s depiction of the process is shown in Figure 2. We depart from the systems that use 
relatively low-level modules in order to build systems with enhanced in that the components used for our 
system are full-fledged autonomous vehicles. This approach gives the best mix of mobility for the widest variety of 
terrain types. The modular cliff-bot system reported in this paper (shown in Figure 3) consists of two anchor-bots that are 
anchored at the top of the cliff and serve as tether handlers for the vehicle on the cliff-face, a cliff-bot that actively drives 
on the cliff-face and is stabilized using the dual tethers, and a mobile vehicle at the top of the cliff that can survey the 
cliff face and provide direction to the cliff-bot. Further details can be found in the paper by Pirjanian, et al.’ 

2.1. Multi-Agent Cliff Access 
Figure 3 shows four physically interacting cooperative robots working in an unstructured field environment to assist one 



Figure 2. Modular reconfigurable multi-robotic system for traverse of steeply sloped cliff faces. (a) System travels as a unit; (b) 
reconfigures and positions itself with anchor-bots on either end and a cliff-bot on tethers; (c) cliff-bot traverses the cliff-face. 

robot (cliff-bot) during a traverse on the surface of a cliff face that is not accessible by a single robot alone. Two robots 
(anchor-bots) act as anchor points for tethers leading down to the cliff-bot, and a fourth robot, RECON-bot (Umote  
- Cliff Observer and Navigator) serves as a 
mobile observedsensing module. All 
robots are equipped with a limited sensor 
suite, modest computational power and 
communication bandwidths. The cliff-bot, 
usually the lightest system, is primarily 
equipped with a science sensor suite, and 
short-range sensors for navigation. The 
RECON-bot autonomously surveys the 
environment to be traversed by the cliff- 
bot using maximum information measures 
to guarantee optimal coverage of the 
environment, and communicates the 
relevant data (e.g. for navigation) to the 
cliff-bot. This system has an 
independently mobile camera and other 
onboard sensors to map the environment. 
Sensing and sensor placement is limited, 
resulting in uncertainties and occlusions 
(due to rocks, outcroppings, other robots, 

Figure 3. Concept for a cooperative robot cliff descent, consisting of two fixed 
anchorbots and a tethered cliffbot. RECONbot surveys cliif face from the top 
edge of the cliff, and passes the path to a chosen goal to the cliffbot. 

_ _  - 
etc). Additionally, there is significant task uncertainty in relative pose between the robots and the environment model. 
Due to these limitations and uncertainties, classical robot control and planning techniques break down. 

2.2.CAMPOUT 
CAMPOUT839,'0 is currently in use on a suite of JPL robots and has a proven record for real-time, real-world multi-agent 
control (http://prl.jpl.nasa.gov). CAMPOUT is a behavior-based control system that consists of a number of key 
mechanisms and architectural components that facilitate development of single and multi-robot systems for cooperative 
and coordinated activities. In general, the CAMPOUT infrastructure defines a network of resources that include plans, 
behaviors, sensors, and actuators. CAMPOUT uses mechanisms that are based on multiple objective decision theory 
(MODT) to support a sound approach to description and validation of system behavior, thus providing performance 
guarantees. l 3  

Control for a tightly coupled system of three robots negotiating a traverse of a cliff-face requires collective 
estimation and distributed synchronization. An example of a behavior network for control of one of the anchor-bots is 
shown in Figure 4, where the mapping from perception to action is accomplished through the behavior coordination 
mechanisms in CAMPOUT. 

http://prl.jpl.nasa.gov


Figure 4. Behavior network for control of tether velocity for Anchor-bot 1. The three behaviors of Match Velocity, Stability, and 
Haul are fused based on a priority weighting scheme, and then combined with the Maintain Tension behavior using behavior 
coordination mechanisms in CAMPOUT. 

(MODT) to support a sound approach to description and validation of system behavior, thus providing performance 
guarantees. l 3  

Control for a tightly coupled system of three robots negotiating a traverse of a cliff-face requires collective 
estimation and distributed synchronization. An example of a behavior network for control of one of the anchor-bots is 
shown in Figure 4, where the mapping from perception to action is accomplished through the behavior coordination 
mechanisms in CAMPOUT. 

There are four main behaviors that govern the tether support for the cliff-bot. These are Maintain Tension, used to 
maintain the tether velocities in order to keep a constant tension; Match Velocity, used to regulate the tether velocities 
based on the current velocity of the cliff-bot on the cliff-face; Stability, used to monitor the pitch and roll of the cliff-bot 
in order to compensate for instability or abort the traversal if the cliff-bot is in potential danger of tip-over; and Haul, 
used to overcome the cliff-bot’s inertia at the start of an uphill traverse on a steep slope with an initial tug on the tethers. 
Match Velocity, Stability, and Haul are all related to cliff-bot safety issues and are coordinated through a priority based 
arbitration scheme (shown as numbered rectangles on the behaviors in Figure 4) under CAMPOUT, with Stability 
having the highest priority followed by Haul and Match Velocity. All state data is shared between the modules using a 
publish and subscribe communication protocol. 

3. MITSAF 
The basic MITSAF algorithm was developed by Sujan.14 This algorithm fuses sensory information from one or multiple 
agents using physical sensor/robot/environment models to yield geometrically consistent surrogate information in lieu 
of missing data. This overcomes the environment, task, robot and sensor uncertainties. Concurrently, the 
planner/controller efficiently repositions the systems’ sensors using an information theoretic approach. Thus sensor 
positions are planned to help fill in uncertainlunknown regions of the environment model. Sensory information obtained 
from this process is distributed to the agents. The key idea of the algorithm is to build a common environment model by 
fusing the data available from the individual robot(s), providing both improved accuracy as well as knowledge of 
regions not visible by all robots. 

3.1. Algorithm Overview 
The algorithm consists of three main stages. 
Stage I-In the first stage the system(s) is initialized. This involves initializing the environment map, localizing robots, 
and generating a first map. In earlier implementations of the MITSAF architecture, the environment map was a 3D 
probabilistic occupancy grid (each grid voxel value represents the probability that it is o~cupied) . ’~  Here, the 
environment is mapped to a 2.5D elevation grid where each grid cell value represents the elevation at that cell. Next, all 



traverse a geometrically complex cliff edge without falling over. In cliff edge parameterization, the surface currently in 
contact with the RECON-bot is identified in the environment model. This surface is then approximated by a best-fit 
polygon. The tolerance of the fit is limited by the known rover wheel diameter (fit tolerance = wheel characteristic 
length/length per grid cell). For this the incomplete environment model is temporarily completed by a Markovian 
approximation for unknown grid cells. In the Markovian approximation, a worst case initial guess is assumed for all 
unknown points. This value is the lowest elevation value currently in the known model. A nearest measured neighbor 
average is performed and iterated till convergence. 

Using the Markovian approximation of the environment, the current rover contact surface (called the plateau) is first 
identified. This is achieved by setting a height threshold bound to the environment model and projecting the resulting 
data set onto the XY plane, followed by a region growing operation around the current known rover coordinates. Next, 
the binary image is smoothed by a mathematical morphology close operation (dilation + erosion). Plateau edge pixels are 
identified at this stage. However, to remove small holes in the plateau, an edge following operation is performed, 
yielding a single closed loop of boundary pixels. Finally, this set of points is parameterized by a closed polygon. This is 
initiated by fitting the full set of boundary pixels to a straight line. For any given subset of boundary pixels that is 
currently fit to a line, if the error bound on this fit exceeds the prescribed tolerance, then the pixel set is divided into two, 
and the process is repeated. However, before error bound evaluation, line segments tit to each subset of boundary pixels, 
are joined to form a closed polygon. 
Stage 3-In the third stage, the MITSAF planner, controller and sensor fusion modules select new vision sensor 
positions for the model “building” agents (i.e. RECON-bot), reposition the system for optimal viewing, and resolve the 
true new position for accurate data fusion. A rating function is used to determine the next pose of the camera from which 
to look at the unknown environment. The aim is to acquire new information about the environment that would lead to a 
more complete environment map. In selecting this new camera pose the following four constraints are considered 
(0 Goal configuration is unoccupied 
(ii) 
(iii) 

(iv) 

Goal reached by a collision free path 
Goal configuration should not be far from the current one-a Euclidean metric in configuration space is used to 
define the distance moved by the camera. 
Measurement at the goal configuration should maximize information intake-the new information H i s  equal to 
the expected information of the unknowdpartially known region viewed from the camera pose under 
consideration. This is based on the known obstacles from the current environment model, the field of view of 
the camera and a framework for quantifLing information. Shannon’s information content measure is extended to 
a 2.SD signal-environment elevation map. The new information content for a given camera view pose is given 
by: 

where H is summed over all grid cells i visible from camera pose camx,y,z,op,oy, nin.d is the number of 

environment points measured and mapped to cell Z, n‘$y is the maximum allowable mappings to cell I ,  and 

P; is the probability of visibility of cell i from the camera test pose given. Pi is evaluated by computing the 
likelihood of occlusion of a ray using the elevation, Ob,,, and the associated uncertainty, u ~ , ~ , ~ ,  at all 
cells lying along this ray path shot through each position in the environment grid to the camera center. This is 
given by: 

This definition for H behaves in an intuitively correct way, in that regions with higher visibility and higher 
levels of associated unknowns yield a higher expected H value, and more highly occluded or better known 
regions result in lower expected H values. 

During the mapping process some regions expected to be visible may not be. This may be attributed to sensor 
characteristics (e.g. lack of stereo correspondence due to poor textures or lighting conditions) and inaccuracies in the 
data model (e .g .  expected neighboring cell elevations and uncertainties-occlusions). However, after repeated 
unsuccessful measurements of cells expected to be visible, it becomes more likely that sensor characteristics are the 
limitation. This limitation is addressed in MITSAF using a data quality function that decreases as the number of 
unsuccessful measurements of the visible cell increases. The probability of visibility of the cell i ,  P; , is pre-multiplied 



by an “interest” function for the cell i in order to minimize the number of times that a region is visited without 
successfully obtaining more information. 

A final step in environment map building is to identify the motion of the camera. This process eliminates 
manipulator positioning errors and vehicle suspension motions, and allows for accurate data fusion. Spatial points in the 
reference frame are selected and tracked based on a Forstner interest operator and a homography transform’ which 
results in a set of linear equations that can be solved using conventional techniques. The least mean square error solution 
to this set of equations is used in combination with a recursive method to determine the mean and covariance of the 
rotational and translational components of the transform. This essentially maintains a measure on how certain the camera 
motion is w.r.t. its original configuration (assuming the original configuration is known very precisely w.r.t. the common 
reference frame). 

This three phase algorithm will produce a 2.5D map that is optimized for maximal information content within the 
mission time and power resource constraints, and which can be used by the RECON-bot to plan a safe path to potential 
science targets on the cliff-face. In order to maximize the use of limited communication bandwidth between the RECON- 
bot and cliff-bot, a safe path consisting of a number of positional waypoints is the only information passed to the cliff- 
bot. The cliff-bot uses its short-range sensors for additional obstacle avoidance during the traverse of the cliff-face. The 
next sub-section gives brief details of the ROAMAN (ROAd MAD Navigation) algorithm’ that is used for this process. 

3.2. Safe Path Planning to Goal 
The range of the stereo hazard cameras on the cliff-bot is typically 1 to 1.5 meters, which could lead to a entrapment 
problem for long traverses on cliff-faces . Long range path planning on the cliff-face is done by the RECON-bot using 
the optimized map that has been generated by Phases 1-3 of MITSAF. The RECON-bot autonomously generates a series 
of waypoints using ROAMAN that are passed to the local path planning algorithm (DriveMaps) for local obstacle 
avoidance during the traverse of the individual legs. Both the long and short range portions of the algorithm use an 
occupancy grid representation to perform hazard detection and path planning. The algorithm is not guaranteed to 
generate an optimal shortest path, but will maintain the safety of the rover. A traversability map generation process 
similar to that in Singh, et al.15 is used to generate a labeled map of potential hazards. A ID medial axis or Voronoi 
transform for each row of the grid similar to that in Wilmarth, et a1.I6 and Choset” is performed to mark the center spots 
between hazards. The rover footprint is virtually driven on the paths as they develop in order to maintain safety in the 
event that a turn might be necessary. A depth first search algorithm is run to find the longest connected paths, followed 
by a least squares fit to the longest connected path in order to determine waypoints for the traverse. After receipt of the 
navigation waypoints, the cliff-bot then autonomously performs the traverse using its hazard cameras for local path 
planning and obstacle avoidance. Further details about ROAMAN can be found in Huntsberger, et al? 

4. EXPERIMENTAL STUDIES 
We conducted a number of experimental studies in the Planetary 

Robotics Laboratory (PRL) at JPL, and in the field at a cliff-site near the 
Tujunga Dam in Tujunga, CA. The experimental setup for the first study 
in the PRL is shown in Figure 5, where the Sample Return Rover (SRR), 
a JPL technology prototype, is acting in the role of the RECON-bot 
discussed in the text. The SRR is a four-wheeled mobile robot with 
independently steered wheels and independently controlled shoulder 
joints. A stereo pair of cameras (15cm baseline, individual camera 45” 
field-of-view) is mounted on a four degree-of-freedom manipulator at the 
front of the SRR. The SRR is equipped with a 266 MHz Pentium I1 
processor in a PC-104+ stack configuration and operates under the real- 
time OS VxWorks5.4. Five mapping techniques were implemented with 
increasing levels of sophistication. These include: 
1. 
2. 
3. 

4. 
5. 

Figure 5. Experimental setup in PRL at JPL 
with SRR as a RECON-bot, three rock piles, 
and a small step edge (marked with dotted 
lines) serving as the cliff-edge. 

Raster scanning without mast-based camera panning 
Raster scanning with mast-based camera panning 
Information based environment mapping with cliff edge assumed to 
be a straight line segment 
Information based environment mapping with cliff edge approximated as a non-convex polygon 
Information based environment mapping with interest function and cliff edge approximated as a non-convex 
PolYgon 



Methods 1 and 2 reflect commonly used mapping schemes used on NASA missions. Methods 3, 4 and 5 reflect with 
increasing complexity the algorithms discussed in this paper. 

Figure 6 shows the number of environment grid cells explored as a function of the number of stereo imaging steps. 
From this, the improved efficiency of the method presented in this paper over conventional raster scanning methods can 
be seen, with an order of magnitude more points being mapped by Method 5 over those returned from Method 1 for the 
same number of stereo imaging steps. Additionally, a significant improvement in efficiency is noted while progressing 
from Method 3 to Method 5. In Method 4, by parameterizing the cliff edge, the rover is able to follow the edge more 
aggressively, thus covering a larger variety of view points. Further, it is observed that the left region of the sandpit in 
Figure 5 yields poor data (due to lack of stereo correspondence). Since this region is expected have high information 
content (due to lack of occlusions), the algorithm in Method 3 tends to converge to view points looking in that direction. 
However, in Method 5 ,  the algorithm concludes that the data quality is poor and eventually loses interest in this region. 
Figure 7 shows an overhead view of the mapped area with Method 3 on the left and Method 5 on the right. Method 5 
maps approximately twice the spatial region and has denser coverage as compared to Method 3 in the same number of 
imaging steps. 

Max. Infa. 
f Cliff edge param. 
-c Interest function 

Max. Info. 
+ Cliff edge param. 

Figure 6. Comparison of the five control methods for efficiency of environment coverage versus the number of imaging steps. 
An order of magnitude increase in the number of points mapped for the same number of imaging steps is seen when going from 
the simple Method 1 of raster mapping without any camera pan to Method 5 with camera pose control by maximum information 
content, cliff edge parameterization, and interest function. 

The Tujunga Dam cliff-site used in the second experimental study is shown in Figure 8, where the goal point and 
potential obstacles are labeled in Figure 8a shot from the bottom of the cliff, and Figure 8b is shot from the top of the 
cliff. The average terrain slope in the study area on the cliff was 79". Once again, the SRR is playing the role of the 
RECON-bot at the top of the cliff. A representative stereo pair taken with the navigation cameras on the SRR end 
effector is shown in Figure 9. The cliff edge (shown with arrow in Figure 9 )  was marked by the algorithm as any area in 
the image with a slope greater than 45". Due to time constraints, we were only able to run the experimental tests for 
Method 4 using the maximum information content and Method 5 using the maximum information content with interest 
function. The results of the study for 10 imaging steps is shown in Figure 10. Comparison with Figure 6 where the gain 
in environment coverage between the two techniques is 100% and Figure 10 where the gain is only 30% indicates that 
the stereo maps are better in the laboratory environment due to more controlled lighting and contrast conditions. We ran 
the ROAMAN path planning algorithm on the 2.5D labeled grid map using a goal position selected from the surveillance 
imagery (marked with a star in Figure 8), and produced a safe path to the goal as shown in Figure 11. Although the 
labeled cells are sparse, the ROAMAN algorithm found a single path to the goal. Unfortunately, time constraints 
precluded us from exercising this path to the goal on the cliff-face. 



d 

Max. Info. 

Top view of mapped region - 10 steps 

Figure 7. Comparison of relative efficiency of mapping between (left) Method 3 using maximum information content alone; 
(right) Method 5 using maximum information content, cliff-edge parameterization, and an interest function. Spatial coverage is 
twice as dense in half the number of imaging steps. 

(a) (b) 
Figure 8. Tujunga Dam cliff-site used in second experimental study. (a) View from bottom of cliff, with obstacles marked with 
oval and goal marked with a star; (b) view from the top of the cliff. 

5. SUMMARY AND CONCLUSIONS 
We have presented an integrated approach to navigation called SMART that is used for the control of modular 
reconfigurable robotic systems. Its utility for analysis of and access to rough, highly sloped terrain was demonstrated 
using a cliff-bot scenario. A surveillance rover was incorporated into the mobility portion of the system using an 
algorithm called MITSAF, that optimizes the use of system resources for mapping through rover mobility and pose 
control based on information content measures. The algorithm demonstrated an order of magnitude increase over raster 
based scanning methods in the coverage of the environment. The ROAMAN long range path planning algorithm was 
used to plan a safe path with waypoints around an obstacle to a pre-selected goal on the Tujunga Dam cliff-face. Due to 



function. The results of the study for 10 imaging steps is shown in Figure 10. Comparison with Figure 6 where the gain 
in environment coverage between the two techniques is 100% and Figure 10 where the gain is only 30% indicates that 
the stereo maps are better in the laboratory environment due to more controlled lighting and contrast conditions. We ran 
the ROAMAN path planning algorithm on the 2.5D labeled grid map using a goal position selected from the 
surveillance imagery (marked with a star in Figure S), and produced a safe path to the goal as shown in Figure 11. 
Although the labeled cells are sparse, the ROAMAN algorithm found a single path to the goal. Unfortunately, time 
constraints precluded us from exercising this path to the goal on the cliff-face. 

Figure 9. Representative left and right images at the Tujunga Dam site from the stereo navigation cameras on the end effector 
of the RECON-bot positioned at the top edge of the cliff. Stereo disparity is used to determine the cliff-edge (shown with 
arrow) for image acquisition planning purposes. 

5. SUMMARY AND CONCLUSIONS 
We have presented an integrated approach to navigation called SMART that is used for the control of modular 
reconfigurable robotic systems. Its utility for analysis of and access to rough, highly sloped terrain was demonstrated 
using a cliff-bot scenario. A surveillance rover was incorporated into the mobility portion of the system using an 
algorithm called MITSAF, that optimizes the use of system resources for mapping through rover mobility and pose 
control based on information content measures. The algorithm demonstrated an order of magnitude increase over raster 
based scanning methods in the coverage of the environment. The ROAMAN long range path planning algorithm was 
used to plan a safe path with waypoints around an obstacle to a pre-selected goal on the Tujunga Dam cliff-face. Due to 
time constraints, we were only able to demonstrate a precision approach to a science target on the cliff-face mockup in 
the PRL at JPL. We plan to return to the field and complete the traverse to the goal and to collect data for a comparison 
between the five methods detailed in the text. In addition, we are examining limbed designs18 for advanced systems that 
will enable access to cliff-face areas such as overhangs and vents that are even beyond those demonstrated in the present 
paper. 
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Figure 10. Comparison of the mapping of the cliff-face for Method 3 using maximum information content and Method 
4 using maximum information content and an interest function. The increase in mapping is about 30% for the same 
number of imaging steps. 
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Figure 11. ROAMAN path plan overlaid on overhead view of Tujunga Dam cliff-face looking from the top edge, 
with goal position and obstacles as shown in Figure 9. ROAMAN used portion of map with densest 2.5D labels, thus 
favoring the path to the right of the obstacles over the left due to the lack of valid range data in that area. 




