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1 Abstract 
Satellite-based augmentation systems (SBAS) such as the United States’ Wide Area 

Augmentation System (WAAS), the European Geostationary Navigation Overlay Service 
(EGNOS), and the Japanese Global Navigation Satellite System (MSAS) are designed to 
improve the accuracy and ensure the integrity of user position estimates determined from 
Global Positioning System (GPS) measurements. In the absence of selective availability, the 
ionosphere is the largest source of positioning error for single-frequency users of the GPS 
signals. A critical objective of any SBAS system is to estimate ionospheric delays accurately 
and to bound the errors in these estimates reliably. Irregularities in the ionosphere that go 
undetected can result in significant user delay error. Thus, the accuracy of a given delay 
estimate can depend sharply on the spatial distribution of GPS measurements from which the 
delay estimate is derived. This paper presents a method for characterizing in terms of a scalar 
metric the degree to which a given spatial region is sampled densely and uniformly by a given 
set of GPS measurements. The metric is used to assess the danger posed to WAAS delay 
estimate accuracy by undersampled ionospheric irregularities. 

2 Introduction 
In SBAS systems such as WAAS (see RTCA, 1996), an ionospheric delay error and its 

confidence bound at a user location are derived from vertical ionospheric delay estimates, 
modeled at a set of regularly-spaced intervals in latitude and longitude, Le., at ionospheric grid 
points (IGPs). The vertical delay estimate at each IGP is calculated from a planar fit of 
neighboring slant delay measurements, projected to vertical using the standard thin shell 
model. The points where the measurement raypaths cross the ionospheric shell height are 
known as ionospheric pierce points (IPPs). When the spread of lPPs surrounding a given IGP 
is highly skewed, a region near or to one side of the IGP may be undersampled, allowing a 
significant ionospheric disturbance to remain undetected. 



To protect the user from the danger posed by undersampled irregularities, WAAS 
augments the error bounds that are broadcast for each vertical delay estimate at an IGP. The 
amount of this augmentation is derived from an ionospheric threat model. The spatial threat 
model is derived by systematically excluding data from planar fits of vertical delay 
measurements within a neighborhood of each ionospheric grid point (IGP). The excluded data 
are then used to evaluate the maximum fit residual as a function of two metrics that quantify 
the spatial spread of the measurements: (1) the radius of a circle, centered at the IGP, large 
enough to encompass the lPPs used in the fit, and (2) the ratio of the IPP centroid radius to 
the fit radius, where the IPP centroid radius defines the distance from the IGP to the centroid of 
the fit IPPs. This latter ratio, the relative centroid, is meant to characterize the degree to which 
the lPPs are distributed uniformly across the fit region. 

The primary purpose of defining a spread metric is to identify IPP configurations that might 
fail to sample a significant ionospheric irregularity. The extent to which a given metric is 
successful in achieving this goal has a direct impact on the magnitude of the ionospheric error 
bounds or grid ionospheric vertical error (GIVE). Since each user must be protected from the 
effects of poor sampling, any sampling metric that tends to confuse “better” and “worse” IPP 
distributions will cause the “better” distributions to be treated too conservatively, Le., when the 
broadcast error bound depends upon the value of the spread metric, a higher error bound will 
be broadcast than is actually warranted. Using the relative centroid as a spread metric has 
proven critical to successful WAAS operation. 

In this paper, we discuss a new spread metric that offers, in contrast to the relative 
centroid, a greater sensitivity to the nature of the IPP distribution (note: much of the material 
presented here has appeared previously - see Sparks et a/., 2003). This spread metric is 
designed to meet the following requirements: (1) the metric should be sensitive to the angular 
distribution of the IPPs about the IGP; (2) the contribution of a single IPP to the metric defined 
at a given IGP should decrease with separation distance; (3) the metric should improve 
monotonically as the number of IPPs increases; and, (4) the parameterization of the metric 
should permit control of its sensitivity to the variation of a single IPP location. The metric varies 
in magnitude between 0 and 1, where 0 represents a “good” IPP spread and 1 a “poor” IPP 
spread. Proper choice of the free metric parameters depends upon the range in the number of 
points to be included in each fit and the range in the size of fit radii centered at each IGP. 

We report the results of an initial study that has generated a spatial threat model using the 
new metric. We find that the contribution to the GIVE that protects against the threat of an 
undersampled irregularity can be reduced, on average, by at least 32%. Hence, we conclude 
that the new spread metric can aid SBAS performance by helping to define error bounds that 
are safe but not overly conservative. 

In the sections that follow, we first review how WAAS currently deals with the threat of 
undersampled ionospheric irregularities. After discussing the limitations of the relative centroid 
as a spread metric, we describe the new spread metric and its dependence on two fixed 
parameters. Finally we provide an example where the new metric has been incorporated into 
the spatial threat model, and we discuss the consequent reduction in broadcast error bounds. 



3 Assessing the threat posed by undersampled irregularities 
This section provides brief review of the methodology we use to assess the threat posed by 

undersampled ionospheric irregularities. Specifically, we review (1 ) the algorithm used to 
estimate vertical delay at ionospheric grid points, (2) the metrics WAAS currently uses to 
characterize IPP distributions, and (3) the threat model used to bound the error posed by 
undersampled ionospheric irregularities. 

3.1 Estimation of vertical delay at IGPs 
The current WAAS algorithm for estimating the local vertical delay at each IGP is based 

upon the thin shell model of the ionosphere (see, for example, Mannucci et a/., 1999, Birch et 
a/., 2002). By treating the ionosphere as if it were collapsed into a shell at a specified height h, 
a slant delay measurement S may be related to an estimate V of the vertical delay at the IPP 
by a simple geometric factor: 

s = M ( a , h ) . V  (1) 

where 

M ( a ,  h )  = 
- ( R e  ";z 

Re + h 

is the thin-shell obliquity factor dependent upon h, the earth radius Re, and the elevation angle 
a. 

WAAS IGPs are spaced uniformly at 5" intervals in the conterminous United States ( I O "  in 
Alaska). To estimate the vertical delay at an IGP, measurements with lPPs near the IGP are 
projected to vertical and fit to a plane. All measurements with lPPs that lie within a minimum fit 
radius R,, are included in the fit. If the number of such measurements is less than Npts, the fit 
radius is extended until it defines a circle that surrounds Npfs points. If a circle with a maximum 
fit radius of R,, fails to encompass Npts points, the fit is performed with fewer points, provided 
that at least Nmin lie within R,,,. 

3.2 Characterizing the spatial distribution of lPPs near IGP 
The estimate of the local vertical delay at the IGP can be highly inaccurate when the 

distribution of lPPs in the vicinity of the IGP is poor, Le., when this distribution contains large 
gaps or the bulk of the lPPs lie to one side of the IGP (as will often be the case when dealing 
with IGPs near the edge of the WAAS grid). Thus it proves useful to define metrics that 
characterize the spatial distribution of the lPPs included in the fit. A useful set of metrics should 
be highly sensitive to the density and the uniformity of the IPP coverage in the fit domain. 

As noted previously, WAAS currently uses two metrics to characterize an IPP configuration: 
the fit radius, and the ratio of the IPP centroid radius to the fit radius. As the fit radius 
increases, the IPP density decreases, which permits larger irregularities to escape detection. 
The fit radius may thus be regarded as a rough indicator of the mean IPP density. The relative 



centroid serves to measure the degree of uniformity provided by the IPP sampling. When lPPs 
are spaced uniformly throughout the fit domain, this metric vanishes; on the other hand, it 
approaches unity when lPPs congregate near a single point at the edge of the fit domain. 
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Figure 7. The distribution of relative centroid and fit radius for IPP configurations corresponding 
to slant TEC measurements recorded by WAAS receivers on July 2, 2000. 

Figure 1 shows a typical distribution of metric values for fits at WAAS IGPs over the course 
of one day. In the analysis Npfs, Nmh, R,, and I?,,,,, have been set to representative values: 30 
points, I O  points, 800 km, and 2100 km, respectively. (Note: optimal values for these 
parameters have yet to be determined.) The distribution is characterized by broad peaks 
except when the fit radius is near Rmin. Note that all tabulated counts concerning fits that 
include less than N,,points (Le., the fit radius is RmaJ are relegated to the final column. 

3.3 The spatial threat model 
To place an upper bound on the effects of undersampled irregularities, WAAS uses a 

spatial threat model that is designed to quantify a set of worst-case errors according to their 
dependence upon the IPP distribution. Since the threat due to undersampled irregularities is 
likely to be largest under disturbed conditions, such a threat model is developed using data 
recorded on days when significant ionospheric disturbances have occurred. The procedure for 
generating a threat model is summarized here (for more details, see Sparks et al., 2001). 

For a given epoch and a given IGP, a subset of the measurements is selected to represent 
possible user measurements, and these data are withheld from the fit. Subsequently the 
excluded measurements are projected to vertical and compared to the corresponding 
estimated values based upon the planar fit. Fit errors are tabulated only when non-storm (or 
near-storm) conditions exist, that is, only for fits that fail to trigger the storm detector. (The 
storm detector is based on a 2 "goodness-of-fit" statistic: local storm conditions are declared 
whenever the 2 of the planar fit exceeds a specified threshold; see Walter et a/., 2000). 

This process is repeated for many other choices of subsets of excluded data. Two types of 
data deprivation domains are used: annular and three-quadrant. Fits that exclude data from 
annular regions about the IGP allow us to assess the impact of localized spatial irregularities. 
A second deprivation domain excludes data from three quadrants of a rectangular (latitude- 
longitude) grid, whose origin lies on a diagonal passing through the IGP in question. Use of 



this type of domain serves to quantify errors that arise when the IPP distribution is skewed to 
one side of the IGP. 

The data set used in the analysis consists of six days of slant delay measurements 
collected by the existing 25 WAAS Reference Stations on the following days: January 11, 
2000, April 6, 2000, April 7, 2000, July 15, 2000, July 16, 2000, and March 31, 2001. On each 
of these days, the ionosphere experienced one or more strong disturbances. These data are 
first post-processed (1) to eliminate interfrequency biases, (2) to remove the effects of cycle 
slips in carrier phase measurements, (3) to level the carrier phase measurements to the 
corresponding range measurements, and (4) to filter spurious measurements by means of the 
redundancy provided by multiple receivers at each station. The resulting data, designated 
supertruth, contain minimal error due to measurement noise and range multipath. 

(a) fit radius (km) (b) fit radius (km) 

Figure 2. (a) Maximum fit residual and (b) overbound as functions of relative centroid and fit 
radius using the data deprivation algorithm applied to supertruth data from the following dates: 
January I?, 2000, April 6, 2000, April 7, 2000, July 15, 2000, July 16, 2000, and March 31, 
2001. 

Figure 2a displays pixel colors that represent the maximum error that occurs for a given fit 
radius and relative centroid. Only points that lie within a 5" by 5" threat domain centered on the 
IGP are represented. Again note that all tabulated errors concerning fits that include less than 
Npts points are relegated to the final column. As expected, the behavior exhibited in the final 
column indicates that, as the number of points used in the fit drops below Npfs, the probability of 
large irregularities going undetected increases dramatically. 

Figure 2b presents an overbound of the previous figure, where the maximum delay error is 
required to be a monotonically increasing function of each metric and the resulting bounds 
have been increased by 10% to provide padding. From such an overbound WAAS determines 
the amount by which the broadcast error bounds must be augmented to protect against the 
possible presence of undetected irregularities. The mean value of this augmentation is 
determined by the frequency with which each region of the overbound is accessed, as 
specified by an IPP distribution such as that given in Fig. 1. 

4 New spread metric 
Use of the relative centroid as an IPP spread metric has proven critical to permitting WAAS 

to meet performance specifications. Nevertheless, this metric possesses certain attributes that 



restrict its ability to distinguish IPP configurations that may fail to sample significant 
ionospheric irregularities. After enumerating these attributes, a new metric is proposed in this 
section that surmounts these limitations. 

4.1 Deficiencies of relative centroid as a spread metric 
A spread metric based upon the centroid of the IPP distribution will not be particularly 

sensitive to the angular distribution of lPPs about the IGP. For example, Fig. 3 shows six 
distinct IPP configurations that all have the same centroid (an IGP is assumed to coincide with 
the origin of each set of coordinate axes). Clearly the sampling of the region in the vicinity of 
the IGP is very different in each case, and the size of an irregularity that could go unsampled 
varies considerably from one case to another. 

0 0 +++ 
Figure 3. Six distinct IPP configurations that all have the same centroid. 

Another limitation of a spread metric based upon the IPP centroid is that the contribution of 
a single IPP to the metric is complex and depends upon the number and placement of the 
other lPPs in the fit. In particular, adding a single IPP can make the coverage appear worse, 
i.e., it can increase the magnitude of the centroid radius. Finally, there are no free parameters 
that allow one to adjust the sensitivity of the metric to the movement of a single IPP. 

4.2 Definition of new spread metric 
To overcome these limitations, we have defined a new metric to which each IPP in the fit 

contributes a distinct term. Let each IPP determine a pie-shaped wedge such that the line 
passing through the IPP and the IGP bisects the wedge (see Fig. 4). Specify that the width of 
the wedge diminish as the IPP moves away from the IGP. The metric then consists of the 
fraction of the area of the unit circle surrounding the IGP that is not covered by any of the pie- 
slices that constitute the fit. Good IPP coverage will then correspond to a metric value of zero, 
while poor coverage will have a metric value closer to unity. For example, the coverage 
represented in Fig. 4 corresponds to a metric value of approximately 0.3. 



Figure 4. Schematic representation of the new spread metric. Each IPP defines a pie- 
shaped wedge that covers a portion of the unit circle. The metric is proportional to the area 
of the unit circle that remains uncovered. 

To make this definition more quantitative, define the angular spread of each pie-slice to be 

2n 

Aspd + 5' I Rid'  
s. = ' 

where rj 'is the distance from the IGP to the ith IPP (in km) and As@ and Rspd are constants 
(Aspd is dimensionless; Rspd has units of km). We have chosen the asymptotic dependence of 
the metric to vary inversely with the square of the distance from the IGP. The spread metric at 
a given IGP is then 

1 
2n 

Mspd = 1--& (4) 

where the summation is performed exclusive of overlap. Note that Mspd lies within the range 

0 I Mspd c 1 .  

Proper choice of the constants Aspd and Rspd will be problem-dependent. The primary 
considerations that govern the choice of these constants are (1) the range of the number of 
points used in fits, and (2) the range of the fit radius. An inappropriate assignment of these 
constants can lead to wedge widths that are either too small and, consequently, metric values 
will tend to congregate near unity, or too large causing metric values to vanish. Ideally a proper 
choice of these constants will give rise to metric values that vary over a significant fraction of 
the interval between zero and one. 

Aspd controls the width of the wedge for an IPP that lies near the IGP. Rspd controls how 
rapidly the wedge width shrinks as the IPP moves away from the IGP. For two different 
choices of As@ and three different choices of Rs@ we have displayed in Fig. 5 the variation in 
the width of the pie slice as the IPP moves from the IGP to a distance of 2100 km from the 



IGP. Notice that making A,@ and Rspd larger tends to make the spread metric less sensitive to 
lPPs near the IGP. 
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Figure 5. Ranges of IPP wedge widths for representative Aspd and RS@. In each pair of 
wedges, the top wedge refers to an IPP near the IGP, and the lower wedge refers to an 
IPP at 2100 km. 

By design this spread metric overcomes the limitations associated with the relative 
centroid. The metric is more sensitive to the angular distribution of the lPPs about the IGP than 
is the relative centroid. Furthermore, the contribution of a single IPP to the metric decreases 
with distance from the IGP, and the metric varies monotonically as the number of lPPs 
increases. Finally the parameterization of the metric permits control of its sensitivity to the 
variation of a single IPP location. 

We use a simple but quick algorithm for computing the new spread metric, an algorithm 
that provides an approximation of its analytic value. First, we define a grid of Nspdspokes 
emanating from the IGP and spaced uniformly. (In practice we set Nspd = 360.) For each IPP, a 
pie-shaped wedge is calculated, and any spoke lying within the wedge is eliminated from the 
set. After all lPPs have been processed, the metric is computed as 1 minus the fraction of 
spokes that remain in the set. 

5 Spatial threat model parameterized by new metric 
The motivation for defining a new spread metric has been to identify more reliably IPP 

configurations that allow potentially significant ionospheric irregularities to go undetected. 
There are two distinct aspects to this problem. First, the choice of spread metric affects how 
IPP configurations are characterized (e.g., see Fig. 1). Second, it affects how the fit residual 
overbound is characterized (e.g., see Fig. 2b). Changing the spread metric does not change 
the magnitudes of the fit residuals to be tabulated (e.g., Fig. 2a), but it does redefine the bins in 
which the counts are accrued. From the point of view of optimal SBAS performance, a good 
spread metric will tend to move the larger fit residuals to bins that are accessed less often. 
Such considerations will influence the optimal specification of constants in the new spread 
metric. 



Increasing influence of lPPs far from IGP - 

Figure 6. Distributions of IPP spread (Mspd) and fit radius for IPP configurations 
corresponding to slant TEC measurements recorded by WAAS receivers in the course 
of one day (July 2, 2000), using different values for the spread metric constants Aspd 
and Rspd. Arrows indicate changes in the metric constants that lead to an increasing 
influence of lPPs far from the IGP. 



For the same set of IPP configurations (Le., the same set of fits) used to generate Fig. 1, 
Fig. 6 shows distributions of metric values corresponding to different values for Aspd and &pd- 

Note that there is a stronger correlation between the value of the fit radius and the spread 
metric, especially when Aspd = 15, than there was when the relative centroid was used as the 
spread metric (Fig. 1). In other words, as the fit radius increases, the IPP coverage as 
measured by the new spread metric tends to get worse. In contrast, the relative centroid can 
remain good (Le., a metric value near zero) even as the fit radius increases, if the lPPs are 
spread around the IGP. Arrows are drawn in Fig. 6 to indicate that the influence of lPPs far 
from the IGP grows as Aspd and Rspd increase. 

For several values of Aspd and Rspdr we have generated spatial threat models. To compare 
results, we evaluate the mean overbound that would be accessed by a given set of IPP 
configurations for a representative day (July 2, 2000). This mean value, B ,  is calculated as 
follows: 

where nu is the number of counts in the bin of the ith spread metric andjth fit radius (e.g., see 
Fig. I), and bq is the corresponding overbound (e.g., see Fig. 2b). 

The lowest value of B achieved to date has been for Aspd set to 15 and Rspd set to 424 km. 
Figure 7 displays the distributions of fit residuals in the generation of the spatial threat models, 
tabulated as a function of (a) relative centroid and (b) the new spread with these values for As@ 
and Rspd- Notice that the IPP configurations that produce large fit residuals are more sharply 
confined to the region of high metric values in the latter case; that is, the latter spread metric is 
better at distinguishing IPP configurations that are more likely to produce large residuals. 
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Figure 7. Distribution of fit residuals tabulated for threat models parameterized by (a) relative 
centroid and (b) a spread metric with As@ = 15 and Rspd = 424 m. The data and processing are 
identical to those used to generate Fig 2. 
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Figure 8. (a) Maximum fit residual and (b) as functions of IPP spread ( M s ~ )  and fit radius for 
threat model parameterized by a spread metric with Aspd = 75 and RS@ = 424 m. The data and 
processing are otherwise identical to those used to generate Fig 2. 

Figure 8 displays the maximum fit residuals and their overbound, tabulated as a function of 
the new spread metric and fit radius, when Aspd is set to 15 and Rspd is set to 424 km. 
Comparing Fig. 8b to Fig. 2b, we find that overbounds at a given level (Le., color) have tended 
to move to higher spread metric values. Comparing Fig. 1 and the distribution for Aspd = 15 and 
Rspd = 424 km in Fig. 6, we find distributions that are roughly comparable (except that the 
former contains some counts in the lower right-hand corner that are missing in the latter 
distribution, as discussed previously). Thus we should expect that, on average, the new 
distribution of spread metric values accesses regions of large overbounds less often, and this 
is indeed what we find. Using the new spread metric reduces the mean overbound accessed 
from 10.7 f 10.0 meters to 7.3 & 6.1 meters (where the uncertainty represents one standard 
deviation), a decrease of 32%. The contribution to the GIVE that protects against the threat of 
an undersampled irregularity is proportional to the overbound. Thus, we should expect that it 
will also be reduced, on average, by a similar amount, depending upon precisely what data 
sets are used to generate the spatial threat model. 

6 Conclusions 
We have defined a new IPP spread metric designed to identify readily GPS measurement 

configurations that might fail to sample a significant ionospheric irregularity in the vicinity of an 
SBAS IGP. This metric exhibits the following attributes: (1) the metric is sensitive to the 
angular distribution of the lPPs about the IGP; (2) the contribution of a single IPP to the metric 
defined at a given IGP decreases with separation distance; (3) the metric improves 
monotonically as the number of lPPs increases; and, (4) the parameterization of the metric 
permits control of its sensitivity to the variation of a single IPP location. 

Using this metric to parameterize the spatial threat model, we have shown that the 
magnitude of the error bounds broadcast by WAAS can be reduced. In particular, the 
contribution to the GIVE that protects against the threat of an undersampled irregularity has 
been reduced, on average, by 32%. Thus, the new spread metric can aid SBAS performance 
by helping to define error bounds that are safe but not overly conservative. 
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