[

JavaOne S Sehe and
Implementing

Real-time Control
Systems

Technical Staff
Jet Propulsion Laboratory

03/18/03

I JavaOne 2003 | Session #1220

Overall Presentation Goal -

Learn how to architect and
iy lement

UM Uonor, _ N
using the Real-Time Specification for
Java (RTSJ).

+ Audience should gain the ability to:

- Separate architecture requirements from real-
time/performance requirements

- Implement a maintainable and extensible control loop
architecture

03/18/03

| JavaOne 2003 | Session #1220

Is real-time Java for real?

. [
O S S R cag A

« Story about Java is a web language and could never compete with
languages like C/C++ in the embedded, real-time arena.

¢+ Biggest problem with real-time designs is intuitive decision making
+ Foreshadow results that it is not an oxymoron.

03/18/03

| JavaOne 2003 | Session #1220

03/18/03

Control Overview (2)

The Equations of State
* Differential -

Z
> F r+MS=£-
0 — .

Py

G(s)==
N -
» State Variable 0
x=Ax+Bu A=) l:B=|rlic=[1 o]
y=Cx -
IJ

Variable definition table:

+ F = force vector

« 'r' = radius from center of mass to force

+ M_s = moment from solar pressure

+ | = inertia tensor

« theta_ddot = acceleration of the body
Differential equation specifies rigid body.
Moment from solar pressure is small enough to ignore.
Frequency model of the plant is double integrator

State variable model of plant is also double integrator, but not so
obvious to the uninitiated.

The satellite will be considered rigid body for reasons of simplicity.
It should be noted that these are text book cases and can be found
in almost any book on controls if one wants to understand it

better.

The frequency model of the plant is the easiest to understand in
the shortest time. It is simply the La Place transform of the right
hand side of the differential equation.

1 JavaOne 2003 | Session #1220

RTSJ Isolation (1/7)

03/18/03

e Scheduler (1/5)

¢ Periodic Tasks
* One-shot Tasks
» Non-real-time Tasks

Coddiodaed”

public interface TimeEventHandler extends Hurnnable

{
public boolean isReady();

The control law was developed in the analog world and the
appropriate z-transform will bring it to the digital world. In doing so,
it brings along some temporal requirements like jitter and latency
limits as well as periodicity

The system requires that threads be scheduled in three classes of
which two are for real-time processing (Periodic and One-shot)
and the third (standard Java thread) is for general processing.

Periodic threads are used to read the sensor and execute the
processing loop. Typically the sensor will be read at a rate 10 time
faster than the control loop is executed. The data is then filtered in
some way to remove the high frequency noise. Hence, the jitter of
the periodic thread needs to be at least 100 times smaller than the
period of the control loop so that sampling theory still holds.
Depending on the K chosen for the compensator, the control loop
stability will be intolerant to delays between the sensor and
execution of the control loop.

There are some threads executing that do not care about
processing time at all because they need integrated processing
power, not instantaneous. Examples are logging, non-essential
monitoring, etc.

Important to note that we extend commonly used interface for
making something runnable. We do not try to invent our own.

| JavaOne 2003 | Session #1220

03/18/03

RTSJ Isolation (3/7)

¢ Scheduler (3/5)

e Scheduler Event Connections
-~ TimeEventManager

Thlig interface Mime™vrantManansy:
{
publiec wniAd

public boolean idoesContain (TimeEventManager 1idj;
public boolean isEqual (TimeEventManager id);

public boolean isRoot();
public TimeEventManager getParentManager();
public String toString();

The TimeEventManager is basically a thread group. It allows a
‘'supervisor’' or 'manager’ to operate on one or many threads in a
single call. In our system, we have three primary thread groups:

» Periodic
* One-shot
« Java Threads

The important calls is the ability to enable/disable a thread. The
idea is that it will enable/disable its scheduling and NOT its current
execution state. This allows a one-shot to be disabled before it is
fired by the thread it is watching.

In a rate monotonic system, a manager could decide it needs all
100 Hz tasks be disabled to allow the 10 Hz all the processing
power. All the 100 Hz could be disabled in a single call until the
manager decided otherwise.

The TimeEventManager is a tree that can be walked either
direction and contains a scheduler defined root.

10

JavaOne 2003 | Session #1220

03/18/03

RTSJ Isolation (5/7)

e Scheduler (5/5)

* One-shot Tasks
public TimeEventManager schedule(

Date when,
String label,
T T oy enaicic 1,

Duty e load,

M S o b Y e
Lioaldlel Llikshvedithia.. o

Tim il migaedTimaioo

TimeEventHandler overrunTimeEventHandler) ;

public TimeEventManager schedule(

Date when,
String label,
boolean enabled,
DutyCycle load,
Duration duration,

TimeEventHandler timeEventHandler,
TimeEventHandler overrunTimeEventHandler);

et R

There are two ways of scheduling for one-shots and the difference
is if there is a dead-line that the one-shot must make.

The first case includes the necessary interface for notifying some
entity that the dead-line was missed.

The second case allows for a duty cycle, but there is no drop dead
time that all processing must be completed by.

In both cases, the thread is called at the specified time (if not
disabled at the time of dispatch) and will execute to completion. It
will not be rescheduled by the scheduler or any of its components.

12

| JavaOne 2003 | Session #1220

RTSJ Isolation (6/7)

* Memory Areas

é . public interface MemoryAllocator
{

iyl 3 Arend fT e b £ b B DR T T [N
public void entor {5 ple runnahliosl hhvose : L imns

%%% public Object newArray(Class type, int number)
: throws IllegalAccessException, InstantiationException;
; public Object rnewInstance(Class type)
throws IllegalAccessException, InstantiationException;
public Object newInstance(Constructor c, Object{] args)
throws IllegalAccessException, InstantiationException;

public long size():;

» The type of memory is an implementation detail and a single
interface can be used to represent the gambit. Two side benefits
are the pluggable technology and extensibility.

+ A thread enters a memory area by calling the enter method with a
Runnable. When it is done in the scope, the run() must return.

+ The memory can be monitored and checked to see how much
memory has been consumed and remains. Nice to prevent out of
memory errors

« The total size of the memory area is known as well.

03/18/03 14

| JavaOne 2003 | Session #1220

03/18/03

SIS G

Improving Robustness (2/4)

The Units Interface (2/3)

<<final3s <<{Intertaces>

Unitlessvalue EngineeringScalarvalue
“value: final double | vabs () ¢ neeringscalarva.
svariance: final double +negate() : !::gineaxingsularvalue
+scale (by: double)

B inssringScalarValue
valvey: Ergl ingScalarvalue

+aC :
vtoString() : String

IZee
' AngularThirdTim

{interfaress
Angularveloctiy
<<interface>)>
Area
<<1nterface>>
Distance
<<interfoce>>
Force

SRR

The class diagram for the interfaces which make up the scalar part
of the units. Notice that all of the units are interfaces. This allows
the implementer to determine the interaction between them.

Note that adding a new derived or base unit not currently
supported is simply adding a new interface at this layer. The actual
work of adding the interaction with the other units depends on the
specific implementation of this design.

16

I JavaOne 2003 | Session #1220

03/18/03

Improving Robustness (%)

The Units Implementation

TCIntetTacers
EngineeringScalasValue

<«<interface))
EnginceringVectorvalue

Notice the relationships between vectors and scalars - there is
none.

Notice that the inverse mathematical relationship exists between
vector, matrix, and tensor. In math, one would say that a vector is
a special case of the tensor (rank == 1). In OO, however, a tensor
is a child of the vector because it requires more information to
uniquely define it.

The relation between a matrix and vector is the same as between
the tensor and vector.

it then becomes obvious how a self consistent implementation can
be built using a standard set of units (mks for instance) and yet
they can interact without having to cast from one to another.

To add a base or derived unit not currently supported requires the
addition of the interface from previous slides and then a concrete
class whose state is the value and contains some basic
implementations of abstract methods from its parent.

18

I JavaOne 2003 | Session #1220

Transform Control to Software

* Model basic components of all control loops
* Sensor

» Compensator
s TV At

+ AUd Lecessary mualiageinciil
» Conformity
* Dynamically changing compensator
» Fault tolerance
* Solar panel control

« All control loops contain three essential components (frequency
model). These three components can be mapped directly to
interfaces improving the understandability of the software. This can
be done for the State Variable model as well. It requires that all
control loops be implemented from the same canonical form.

+ Some extra management is usually necessary when implementing
software modules in a complex system.

« Typically it is nice to have each subcomponent share a
common interface and behavior.

- Often the compensator changes depending on the mode of
the system; e.g., the compensator for detumble mode is
different from pointing.

« In the case of embedded systems, high fault tolerance is
required. In these cases, the system must be able to react
autonomously to event and exceptions that occur.

« In our case, the attitude control system also has some
particular control over the solar panels.

03/18/03 20

| JavaOne 2003 | Session #1220

Putting It All Together (2)

* Building Control Loops with Units

* Limits error sources
- Scale
- Sign

Slrony (Some manager)
| periodicId = scheduler.schedule(
new Hertz (10),
units.zeroTime,
"DetumbleLoop",
false,)
scheduler.indeterminate,
oneLoopCycle,
notifyMeOfAMiss,
null) ;

» One major advantage of using units in the compensator is that the
error sources become limited. In the case of doing the software for
the demo, errors in the control signal were easy to find and remove
using analysis tools like Octave. Since all the units are correct,
then if the loop did not behave correct, it was a problem with the
magnitude of a gain or its sign. Comparing theoretical with
software output made it next to trivial to find the typos.

* The control loops are scheduled through proxy — some manager or
other. oneLoopCycle.run() will be called at 10 Hz with no offset
from the epoch. The thread is allocated and ready to run, but is
created disabled. In this way, all threads can be allocated at some
expensive startup time and then simply enabled/disabled as
needed. Currently, we are not using overrun measurements.
Lastly, TimeEventSignal waiting to do something if the thread
misses one of its “rising edges”.

03/18/03 22

Javaline 2008 1 Session #1990

« Two demonstrations: real-time and eye candy

« The first part of the demonstration is reviewing the output of run that operated in
real-time.

+ The second part is the eye candy (t-ball) where the audience can watch a graphical
display of the satellite detumble.

03/18/03 24

| JavaOne 2003 | Session #1220

One Thing...

IWCai- bl 153 lJOSSlblb\ iiA Slvew G
be more productive and cost-effective
than using C/C++.

 The productivity claims for Java are supported by NIST and can be
found at http://www.itl.nist.gov/div897/ctg/real-timefintro.html

03/18/03

26

http://www.itl.nist.gov/div897/ctg/real-time/intro

H

davaline SO

03/18/03

Sun’s 003 Worlitwide Sava Devstoper Confarence

30

