
Amir Fijany, 3/19/03 3:28 PM -0800, Abstract of paper for Japan Conference 2

Printed for Stephanie Chong cStephanie.P.Chong@jpl.nasa.gov> 2

An Advanced Model-Based Diagnosis Engine

Amir Fijany, Farrokh Vatan, Anthony Barrett, Mark James, and Ryan Mackey
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91 109, USA

{ Amir.Fijany, Farrokh.Vatan, Anthony.C.Barrett, Mark.James, Ryan.M.Mackey) @jpl.nasa.gov

keyworde Model-Based Diagnosis, Hitting Set Problem,
Integer Programming, Boolean Satisfiability

Abstract
The number of Earth orbiters and deep space probes has

grown dramatically over the past decade, and this trend is
expected to continue. This rate of growth has brought a new
focus on autonomous and self-preserving systems, all of
which depend on fault diagnosis. Although diagnosis is
needed for any autonomous system, current approaches tend
to be “ad-hoc,” inefficient, and incomplete. Systematic
methods of general diagnosis exist in literature but all suffer
from two major drawbacks that limit their practical
applications. First, they tend to be large and complex and
hence difficult to apply. Second and more importantly, they
rely on algorithms with exponential computational cost, and
hence become impractical as the number of system
components increases.

We have developed a new and powerful diagnosis engine
that overcomes these limitations through a two-fold
approach. First, we propose a novel and compact
reconstruction of the General Diagnosis Engine (GDE), one
of the most fundamental approaches to model-based
diagnosis. We then present a novel algorithmic approach
for calculation of minimal diagnosis set. This approach uses
a powerful yet simple representation to map minimal
diagnosis set calculation onto two well-known problems,
namely the Boolean Satisfiability and Integer Programming
problems. We report the details of a new and powerful tool,
Diagnosis Engine version 1.0, that we have developed based
on these techniques.

The mapping onto Boolean Satisfiability enables the use
of very efficient algorithms with a super-polynomial rather
than an exponential complexity for the problem. The
mapping onto 0/1 Integer Programming problem enables the
use of a variety of algorithms that can efficiently solve the
problem for up to several thousand components. These new
algorithms significantly improve over the existing ones,
enabling efficient diagnosis of large complex systems. In
addition, the latter mapping allows, for the first time,
determination of the bound on the solution, i.e., the
minimum number of faulty components, before solving the
problem. This is a powerful insight that can be exploited to
develop yet more efficient algorithms for the problem.

At the end, we report the results of validating and
benchmarking of our engine based on this technology, and
the results of estimating the bounds for specific problems.

1. Introduction
The diagnosis of a system is the task of identifying faulty

components that cause the system not to function as it was
intended. The diagnosis problem arises when some
symptoms are observed, that is, when the system’s actual
behavior is in contradiction with the expected behavior. The
solution to the diagnosis problem is then determination of
the set of faulty components that fully explains all the
observed symptoms. Of course, the meaningful solution
should be a minimal set of faulty components since the
trivial solution, that assumes all components are faulty,
always explains all inconsistencies.

The model-based diagnosis, frrst suggested by Reiter [1 J
and later expanded by de Kleer et a1 [2], is the most
disciplined technique for diagnosis of a variety of systems.
This technique, which reasons from first principle, employs
knowledge of how devices work and their connectivity in
form of models. In the model-based diagnosis the focus is on
the logical relations between components of a complex
system. So the function of each component and the
interconnection between components all are represented as a
logical system, called the system description SD. The
expected behavior of the system is then a logical
consequence of SD. This means that the existence of faulty
components leads to inconsistency between the observed
behavior of the system and SD. Therefore, the determination
of the faulty components (or, diagnosis) is reduced to
finding those components for which assumption of their
abnormality could explain all inconsistencies.

In summary, the diagnosis process starts with identifymg
symptoms that represent inconsistencies (discrepancies)
between the system‘s model (description) and the system’s
actual behavior. Each symptom identifies a set of conflicting
components as initial candidates. A minimal diagnosis is the
smallest set of components that intersects all candidate sets.
Therefore, finding the minimal diagnosis set is accomplished
in two steps: first generating candidate sets from symptoms,
and then calculating minimal set of faulty components.
However, there are two major drawbacks in the current
model-based diagnosis techniques that severely limit their

1

mailto:jpl.nasa.gov

practical applications (see also Section 2). First, current
model-based techniques tend to be large and complex and
hence difficult to apply. Second and more importantly, in
order to find the minimal diagnosis set, they rely on
algorithms with exponential computational cost and hence
are highly impractical for application to many systems of
interest.

It should be mentioned that a widely employed approach
to overcome limitations of model-based diagnosis
techniques is to develop a set of Fault Protection Modes,
that is, a set of Symptoms-to-Cause Rules. In this approach,
the human experts, by relying on their detailed knowledge of
the target system, attempt to predict and analyze all possible
faults and determine their causes. Obviously, in this
approach human knowledge is used to overcome the
exponential computational complexity. As a result, this
approach is time-consuming, costly and prone to human
errors (since it is impossible to predict all possible faults in
advance). As an example, the development of Fault
Protection Modes for Cassini Spacecraft took more than 20
work years [4].

In this paper, we present a novel and two-fold approach
for model-based diagnosis to overcome the two above-
mentioned limitations and to achieve a powerful engine that
can be used for fast diagnosis of large and complex systems.
This approach starts by a novel and compact reconstruction
of General Diagnosis Engine (GDE), as one of the most
fundamental approaches to model-based diagnosis. More
importantly, we present a novel algorithmic approach for
calculation of minimal diagnosis set. We first discuss the
relationship between this calculation and solution of the
well-known Hitting Set Problem. We then discuss a
powerful yet simple representation of the calculation of
minimal diagnosis set. This representation enables the
mapping onto two well-known problems, that is, the
Boolean Satisfiability and O/ 1 Integer Programming
problems. The mapping onto Boolean Satisfiability enables
the use of very efficient algorithms with a super-polynomial
complexity for the problem (see Section 4). The mapping
onto 0/1 Integer Programming problem enables the use of
variety of algorithms that can efficiently solve the problem
for up to several thousand components. Therefore, these new
algorithms significantly improve over the existing ones,
enabling efficient diagnosis of large complex systems. In
addition, the latter mapping allows, for the first time,
determination of the bound on the solution, i.e., the
minimum number of faulty components, before solving the
problem. This powerful insight can potentially lead to yet
more powerful algorithms for the problem.

This paper is organized as follows. In Section 2, we
review the main notions and concepts of model-based
diagnosis by considering GDE, as applied to the hydrazine
propulsion subsystem of Cassini spacecraft. We also briefly
discuss a novel and compact reconstruction of GDE and its
advantages. In Section 3, we discuss the relationship

between the calculation of minimal diagnosis set and the
Hitting Set Problem. In Section 4, we discuss a simple
representation of both the Hitting Set and calculation of
minimal diagnosis set problems that allows simple mapping
onto Boolean Satisfiability and Integer Programming,
discussed in details in Section 4 and 5. In Section 6 we
describe our tool, Diagnosis Engine version 1.0, which we
have developed based on techniques described in this paper.
We also present the results of benchmarking of this tool,
based on experiments on circuits with up to 100
components. In Section 7, we show that the mapping onto
Integer Programming can be used for a priori determination
of bound on the solution, i.e., on the number of faulty
components. We show that these bounds could provide
sharp results for specific cases. Finally, some concluding
remarks and discussion of future works are presented in
Section 8.

2. Model-based diagnosis: general diagnosis engine
(GDE)

The model-based diagnosis approach was first suggested
by Reiter [11 and later expanded more by de Kleer et al [2].
The General Diagnostic Engine (GDE) [5] is one of the
most fundamental approaches to model-based diagnosis.
GDE combines a model of a device with observations of its
actual behavior to detect discrepancies and diagnose root
causes. Here a system is represented as

S = (SD, COMPONENTS, OBS),
where COMPONENTS is a finite set of components
constituting the system (they are the constants of the logical
theory describing the system), and SD and OBS are finite
sets of first-order sentences describing the system
description and observations, respectively. There is a
distinguished unary predicate AB, where AB(c) is interpreted
as “the component c is abnormal or faulty.” For example,
consider the system described in the following diagram:

Figure 1 An Adder-Multiplier network.

Here the system has five components, represented by boxes.
There are two different types of gates: the adder and the
multiplier. We use the predicates ADDER and
MULTIPLIER to denote these two types. In this example,
COMPONENTS consists of five gates: M1, M2, M3, AI,
and A2. The following sentences determine the type of each
gate:

2

ADDER(A1). ADDER(A2), MULTIPLIER(Ml),
MULTlPLJER(M2), MULTlPLJER(M3).

The operation of each type of gates can be described by the
following (first order) logical sentences:

VX[ADDER(X)A -AB(X) * out(x) = inl+ in2(x)],
VX[MULTIPLZER(X)A ~ B (x) * out(x) = inlxin2(x)].

The predicates inl, in2, and out are used for describing the
interconnections of the gates. For example,

out(Ml)=inl(Al), ouC(M2)=in2(Al), , . .
Since this system is dealing with the numbers, we should
also add the axioms of the theory of numbers to the set SD.
Thus in this example, the set SD consists of all the above
sentences. The set OBS describes the inputs and their
corresponding outputs. In our example, the following
sentence describes the inputs and the corresponding outputs:

(inl(M1) = 3) A (in2(Ml) = 2) A (inl(M2) = 2) A

(in2(M2)=3)~(inl(M3)= 2)~(in2(M3)= 3) ~
(out(Al)= 1 0) ~ (out(A2)= 12)

A conflict of the system S is a disjunction of the
following form:

where cj E COMPONENTS and Fj = ABor F, = d B such
that

SD,OBS 3 r.
Le., r is a logical consequence of SD and OBS. The
conflict r is positive if Fj =AB for every j= l , ..., k. The
conflict r is a minimal conflict if no subclause of it is a
conflict.

A diagnosis of the system S is a conjunction of the
following form determined by a subset D of COMPONENTS
of the form

such that the set {SO, OBS, A(D)} is consistent. The
diagnosis A(D) is a minimal diagnosis if for every proper
subset F of D the conjunction A(F) is not a diagnosis.

The central issue of the diagnosis problem is to find small
minimal diagnosis. So we formally formulate the diagnosis
problem as follow.

Diagnosis
Instance: A system S = (SD, COMPONENTS, OBS) with n
components and a number 0 e c c 1.
Question: Is there a diagnosis A (D) for S such that
ID(S c n ?

In [6] we have proved the following theorem that shows the
problem of finding minimal diagnosis, in general, is
intractable.

Theorem (see [6]): The problem Diagnosis is NP-hard,
even if c is a constant in the interval (0,0.5].

For solving the diagnosis problem, the General
Diagnostic Engine (GDE) first performs a causal simulation
by taking variable observations and using rules to compute
the values of other variables in the network. Since
computations have underlying assumptions, GDE tags each
value with the assumptions that contribute to its
computation. A discrepancy arises when two incompatible
values are assigned to the same variable. Typically in the
course of causal simulation, no discrepancies are found, but
when failures occur, multiple incompatible assumption sets
appear. This process continues to determine new
incompatible sets until the causal simulation is completed.
The next step after causal simulation is to the find minimal
set of assumptions that intersects with all detected
incompatible sets. This set contains the actual diagnoses of
the root causes for contradictory measurements. However,
GDE also suffers from the two main limitations of other
model-based diagnosis approach; that is, the complexity of
software makes its application difficult, and there is an
exponential computational cost for finding the minimal set.

In order to overcome the first limitation, we have
developed a novel and compact reconstruction of GDE.
Traditionally GDE has been implemented using an inference
engine to reason about a device model combined with an
Assumption-based Truth Maintenance System (ATMS) to
keep track of assumptions. A surprising result that arose
from our rational reconstruction of GDE involves merging
the ATMS with the inference engine. It turns out that the
ATMS and the inference engine have many similarities, and
combining the two dramatically simplifies the algorithm.
The resulting system was completely implemented in under
150 lines of LISP code! This reconstruction also has some
valuable properties for improving reasoning performance.
Directly linking the reasoning about a device with reasoning
about underlying assumptions facilitates the use of
computation reduction heuristics.

The second limitation is, however, by far more
challenging, as it was stated in the above theorem. However,
in the following we show that, by mapping the diagnosis
problem onto Boolean Satisfiability and Integer
Programming problems, algorithms with much better
performance and hence with a much wider range of
applicability can be devised.

3. Hitting set problem
The Hitting Set Problem, also known as the Transversal

Problem, is one of the key problems in the combinatorics of
finite sets (see [7]) and the theory of diagnosis (see [1,2]).

3

The problem is simply described as follows. A collection
S = {SI, . . ., S,) of nonempty subsets of a set M is given. A
hitting set (or transversal) of S is a subset H of M that meets
every set in the collection S ; i.e., Si n H # { }, for every
j = 1,. . .,m. Of course, there are always trivial hitting sets,
for example the background set M is always a hitting set.
Actually we are interested in minimal hitting sets with
minimal cardinality: a hitting set H is minimal if no proper
subset of H is a hitting set.

Our primary interest to Hitting Set Problem is its
connection with the problem of diagnosis. The main theorem
in the theory of model-based diagnosis states that the
minimal diagnoses of the system are exactly the minimal
hitting sets of the sets of conflicts

M = (m, , m2, ..., m,,}, finding one minimal hitting set is
easy. The more challenging, and more interesting both from
practical and theoretical point of view, is the problem of
finding hitting sets of small size. It turns out that this is a
hard problem. First let formalize the problem.

Hitting Set
Instance: A system S = {SI, ..., S,) of subsets of the set M

and aconstant -sc<l.

Question: Is there a hitting set H such that /HI

Note that for any system S of subsets of the set

1
2

c [MI ?

We should mention that it is well known that the above
problem is NP-complete if the condition is replaced by
(HI < K, where K I (MI (see [8]). It is also known that, in
this latter form, the problem remains NP-complete even if
(S j l 5 2, for every j = 1,. ..,m. Utilizing our results on the

complexity of the diagnosis problem, it is possible to show
that this stronger form of the problem is NP-complete. In
[13] the complexity of several other problems related to
hitting sets is investigated.

As mentioned before, we are interested in the Hitting Set
Problem because of its connection with the problem of
diagnosis. In fact, as it was discussed, each symptom
identifies a set of conflicting components as initial
candidates and minimal diagnoses are then the smallest sets
of components that intersect all candidate sets. The main
theorem in the theory of model-based diagnosis [1,2] also
states that the minimal diagnoses of the system are exactly
the minimal hitting sets of the conflict sets (see Figure 2).

The Reiter's hitting set algorithm [11 is one of the major
algorithms for finding minimal hitting sets. The correction
of this algorithm is presented in [9] and a modified and more
efficient version in [lo]. The original algorithm and its
modifications are based on generating the lattice of the
subsets of the background set M and then extracting a
sublattice of it that provides the minimal hitting sets. If the
goal is to find a minimal hitting set with minimal cardinality,

then this algorithm is not efficient by any means; because it
requires to save the whole sublattice which leads (in the
worst case) to an exponential size memory to save the
sublattice. We will show that it is possible to find a minimal
hitting set with minimal cardinality with an algorithm that
requires a linear size memory (while it still may needs an
exponential time to complete the computation).

Figure 2 Diagnosis as the hitting set of the conflicts.

Our approach for solving the Hitting Set Problem and
thus calculation of minimal diagnosis set is two-folded. On
one hand, we map the problem onto the Monotone Boolean
Satisfiability Problem. This provides the opportunity of
utilizing the super-polynomial algorithms for finding the
prime implicants of monotone functions (see [11,14]) and
thus minimal diagnosis set. Also, this mapping makes it
possible to better understand the complexity of the Hitting
Set Problem, by comparing it with the well-studied Boolean
function problems. On the other hand, we map the problem
onto an Integer Programming Optimization Problem. This
simple mapping gives us access to a vast repertoire of
Integer Programming techniques that in some cases can
effectively solve problems with several thousands variables.
We would like to mention that mapping of the problem of
finding prime implicants (not necessarily prime implicants
of monotone formulas) onto the Integer Programming has
already been introduced; see, e.g., [16,17]. The mappings of
the hitting set problem onto monotone satisfiability and
Integer Programming, which is introduced in this paper,
provides a new mapping of the problem of finding prime
implicants of monotone formulas onto the Integer
Programming.

4. Mapping onto Boolean satiafiability problem
In order to describe mapping of the Hitting Set Problem

onto Boolean Satisfiability and 04 Integer Programming,
consider a different representation of the problem by
describing the attribution of the members (or, components)
to subsets (or, initial candidate sets) as given by the
following matrix:

. . . .
... s,

(1)

4

where S = {SI, ..., S,) and M = {ml , m2, .. ., m,,) denote the
set of nonempty subsets and the set of members (elements),
respectively. The (ij)* entry in this matrix is denoted as ay
and we have ay = 1 if m, belongs to Si, otherwise ay = 0. To
map the problem onto Boolean Satisfiability, we introduce
the Boolean variables xl. xZr ..., x,,,, where each variable xi
represents the member mi. Then to each subset Si = {mil, miz,
..., mhi) (i.e., each row of matrix (1)) we correspond the
disjunction

F, = x i , v x i z V ' " V X i n i (2)

i.e., for each "1" in the i* row of matrix (1) the
corresponding Boolean variable appears in the disjunction
(2). For example, if the i* row of matrix (1) is (0,l , l ,O,O, 1,O)
then 4 = x, v x3 v x,. Now the formula

(3)

represents the mapping of the Hitting Set Problem
associated with the system S onto the Boolean Satisfiability
Problem in the sense that every hitting set of the system S, in
a natural way, corresponds with a satisfying truth-
assignment for the formula Fs, and vice versa. Let (sI, s~, . . . ,
s,,) be a Boolean vector that satisfies the formula Fs, and let
the subset S be the corresponding set. Then the formula (2)
guarantees that S intersects the set Si, and (3) guarantees that
S intersects all sets SI, S2, ..., S,. Thus S is a hitting set.

We should notice that the Boolean formula (3) is in fact
monotone. In the case of monotone formulas, the standard
form of the Satisfiability Problem should be slightly
modified to avoid the trivial cases. Note that, in the case of
the monotone formulas, the all-one vector (l , l , ..., 1) is
always a satisfying truth-assignment (or equivalently, the
background set M is always a hitting set). Here, the correct
formulation of the problem is to find the assignments with
bounded weight, or in the hitting set setting, the problem is
to find hitting sets with bounded number of members. We
have shown that the problem of finding truth-assignments

for monotone formulas with weight I cn , for - I 1, is

NP-complete [6] . Also, the problem of finding minimal
hitting sets of the system S reduces to the problem of finding
prime implicants of the monotone function Fs.

We should mention here a new result [11,14] that
suggests a major breakthrough regarding finding hitting sets
in the most general case of the problem. They show that
there is an algorithm that produces the list of prime
implicants of a monotone Boolean function such that each
prime implicant is produced in the time O(nt+no'b6"'),
where t is the time needed to determine the value of the
Boolean function at any point. Also the list that produced by
this algorithm has no repetitions. Practical implication of
this result for hitting set problem is that for the systems that
do not have large number of minimal hitting sets (i.e., there

1
2

are at most superpolinomailly many minimal hitting sets), it
is possible to solve the hitting set problem in
superpolynomial time, instead of exponential time of a
typical NP-complete problem.

6. Mapping onto 011 programming problem
In order to describe the mapping onto 011 Integer

Programming Problem, define the n x m matrix
associated with the system S, as defined

in matrix (1). Note that, by this definition, each row of A
corresponds to a subset and each column to a member. The
mapping onto 0/1 Integer Programming Problem is simply
obtained by considering an operator application of A as
follows. Identification of a minimal subset of members,
representing a minimal hitting set, is equivalent to finding a
minimal subset of columns of the matrix A whose
summation results in a vector with elements equal to or
greater than 1. This can be better described in terms of
matrix-vector operations as follows. Let the vector Ai, for i =
1, .. ., m, denotes the i" row of the matrix A. Also, define a
binary vector x = (xlr nz. ..., x,,), wherein xi = 1 if the
member mi belongs to the minimal hitting set, otherwise x, =
0. Since at least one member should belong to every Si, for
everyi= 1, ..., m,wethenhave

A = (a, Li&, lsjsn

4 *xL1.

Since, by the definition of the minimal subset, the above
equation should be simultaneously satisfied for all i =
1, ..., m, we then have the following formulation of the
problem as an 0/1 integer programming problem

minimize wt(x)
subject to A x T 2 b T , x, =Oorl

where b = (l,l,..,l) is the all-one vector, and we denote the
Hamming weight, i.e., the number of one-components of the
binary vector x, by wt(x). With this setting, identification of
the minimal hitting set is then equivalent to solution for the
binary vector x from (4). which corresponds to the solution
of the 0/1 Integer Programming Problem.

Note that (4) represents a rather special case of the 011
Integer Programming Problem since the matrix A is a binary
matrix, i.e., with 1 or 0 entries only. Interestingly, our above
derivation also establishes a mapping of the Monotone
Boolean Satisfiability Problem onto this special case of 0/1
Integer Programming Problem. To see this, note that any
Monotone Boolean Satisfiability Problem, given by the
formula (3). can be equivalently represented by a matrix
similar to (1). from which the mapping onto this special case
of 0/1 Integer Programming Problem follows immediately.

(4)

6. The tool and benchmarking: model-based diagnosis
engine, version 1.0

We have developed a tool that combines all the

5

techniques we have discussed in this paper. This tool,
Diagnosis Engine, version 1 .O, constitutes several
components so that it has the capability to an end-to-end
diagnosis. The key components of the tool are: 105

105
105 Description of the system. The first step of

diagnosis process of a specific system is to define
the system. This step itself involves two stages. (i)
We have to specify the functionality of all possible
components used by the system. Right now, the
code we have developed in LISP is capable of
handling components in arithmetical (adder-
multiplier gates) and Boolean (logical gates)
settings. Extending the LISP code to other discrete
settings is straightforward. (ii) We have to define
the interconnections between the components of the
system. We have adapted a natural way to specify
these interconnections in the LISP code. The inputs
and the observations of the system are treated as
part of system description, and are provided by this
component.
Conflict finding proceee. The conflict finding
routine of version 1.0 of Engine is based on a
reconstruction of GDE method [5] . The output of
this component is a matrix A of the form of matrix
(1).
Integer programming solver. The conflict
matrix A, that is the output of the conflict finding
routine, will be used to solve the integer
programming problem (4). To solve (4), the version
1.0 of Engine has two methods in its disposal. One
is an enhanced version of the brute force method.
This method is very successful in the cases of small
number of faults. We will describe it later. The
other method for solving (4), is the GLPK @NU
- Linear Programming Kit), version 3.2. This is a set
of routines in the ANSI C programming language.
The integer programming routine of GLPK
(actually it is much more powerful routine and is
capable of solving mixed integer programming
problems) applies a variant of branch-and-bound
method for the problem. The GLPK, like other
available integer programming solver tools,
provides only one solution of (4). The version 1.0
of Engine has capability of finding all possible
solution of (4). The routine that provides this
feature is described later in this section.

0

10x105 2 < 1 SEC.
12x105 3 < 1 SEC.
12x105 4 < 1 SEC.

Benchmarking
As the first stage of benchmarking and validation of the

tool, we applied our engine on test cases of circuits with
adder and multiplier gates. The Table 1 shows the results of
these experiments.

105
105
39

Table 1 Some of the results of benchmarking
I Numberof I Sizeofthe I Numberof I Time: I

~

17x105 5 < 1 SEC.
23x105 6 2 SEC.
48x39 9 <lSeC.

1

1 components I matrix I faults I Engine I

39 I 48x39 I 9 I <lsec.
52 I 62x52 I 10 I

I
_ - --
65 I 33x65 I 13 I lsec.

I 78 I 94x78 I 16 I ssec. 1
Finding all solutions of integer programming problem

The GLPK routine finds only one solution of the integer
programming problem (4). To find all possible solutions, the
version 1 .O of Engine applies the following procedure. After
finding the first solution u1 of (4), a new integer
programming problem is defined by simply adding a new
row to the matrix A to form matrix Ai : the new row is the
complement of uI (note that, for example, if u~=(1,0,0,1,0)
then its complement is (O,l,l,O,l)). So the new problem is
defined by substituting A by A, in (4). It is easy to check that
a1 is not the solution of the new system, and all solutions of
the new system are all solutions of the old one except ai.
This method will be continued till the new system becomes
infeasible.

Enhanced brute force algorithm
There is a trivial exhaustive search method for finding

solutions of the integer programming problem (4): check all
possible binary vectors x. This method, of course, is
extremely inefficient, as the number of such vectors x is 2",
where n is the number of components of the system. But a
closer examination of the problem (4). shows that there is a
much better way to carry out such search. The problem (4) is
monotone, in the sense that if a is a solution and u I b , then
b is also a solution. Since the objective function of this
optimization problem is the Hamming weight of the vector
x, it follows that once a solution u of the weight wr(u) = k is
found, we do not have u, look for solutions among binary
vectors of weight larger than k. Therefore, the enhanced
search algorithm looks for the solutions of (4) by
systematically checking the vectors of weight 1, 2, 3, ... in
the increasing order of their weights; i.e., the algorithm does
not starts checking vectors of weight k before it examines all
vectors of smaller weights (see Figure 3).

To compare the performance of this enhanced search
algorithm with the trivial exhaustive search, note that if the
size of the minimal diagnosis is t, then the enhanced
algorithm requires checking

6

q n) j= l J

Number of
components

vectors. For small values of t , the number defined by (5) is
proportional to n'. This means that, for small values of the
number of faulty components t, the complexity of the
enhanced algorithm grows polynomially. For example, if we
want to run the enhanced algorithm for 1 minute, then the
algorithm can handle the cases of 2, 3, and 4 faulty
components for circuits of size (about) 1200, 160, and 70,
respectively

Size of the The actual Lower
matrix size of the bound

diagnosis

f o r j = l to n do
I
test all vectors x as sum o f j columns of the
matrix A;

I 52 I 62x52 I 10 1 6 1

break, if a solution is found;
I

52
52
52

Figure 3 The enhanced brute force algorithm.

44x52 4 4
45x52 5 5
62x52 10 6

7. Lower bounds
As stated before, the Integer Programming is known to be

an intractable problem (see [SI), though there are several
reasonably good algorithms that can solve the problem
either exactly for certain size or approximately for any size.
However, our recent discovery of the bounds on the size of
the solution of (4) opens a new direction for improving the
efficiency of existing algorithms and/or devising new and
more efficient algorithms. Here, we briefly describe these
new results.

For two vectors x =(x1,x2, ..., x ,) and
y=(y , ,y , ,..., y,) in R", we write y 2 x if and only if
y 2 xi , for every j = 1 ,. . . ,n. Also, we consider the l-norm
and 2-norm of vectors defined as

52
52

For the vector b in (4), we then have IbIl, = m and

ku, = &. Since the elements of both vectors Axr and b in
(4) are positive, we can then drive the following two
inequalities:

I 44x52 I 4 1 4
I 45x52 I 5 1 5

Since x is a binary vector, then both norms in (6) give the
bound on the size of the solution, that is, the number of
nonzero elements of vector x which, indeed, corresponds to
the minimal diagnosis set. Note that, depending on the
structure of the problem, i.e., the 1- and 2-norm of the

matrix A and m, a sharper bound can be derived from either
of (6). To our knowledge, this is the first time that such
bounds on the solution of the problem have been derived
without any need to explicitly solve the problem. Such a
priori knowledge on the size of solution will be used for
developing much more efficient algorithms for the problem.

The following table shows that results of application of
these bounds on several instances of the problem. As this
table shows, these bounds provide non-trivial estimates, and
in some cases exact values, for the size of the minimal
diagnoses. Here we applied the above lower bound method
on circuits of the type we used in our benchmarking.

20x15

39 17x39

t 39 6
39 I 48x39 1 9 1 4

We would like to mention several applications of these
lower bounds. First of all, the a priori lower bound, before
starting to solve the hard problem of finding the minimal
hitting sets, allows us to separate the cases where the high
number of faulty components requires another course of
action instead of usual identification of faulty components.
Second, a good lower bound could determine whether the
enhanced brute-force algorithm (discussed in Section 6) can
provide a solution efficiently. Finally, these lower bounds
can be used for finding bounds for subproblems in branch-
and-bound method for solving integer programming
problem.

8. Conclusion
We proposed a two-folded approach to overcome the two

major limitations of the current model-based diagnosis
techniques, that is, the complexity of the tools and the
exponential complexity of calculation of minimal diagnosis
set. To overcome the first limitation, we have developed a
novel and compact reconstruction of GDE. To overcome the
second and more challenging limitation, we have proposed a
novel algorithmic approach for calculation of minimal
diagnosis set. Starting with the relationship between the
calculation of minimal diagnosis set and the celebrated
Hitting Set problem, we have proposed a new method for
solving the Hitting Set Problem, and consequently the
diagnosis problem. This method is based on a powerful yet

7

simple representation of the problem that enables its
mapping onto two other well-known problems, that is, the
Boolean Satisfiability and 011 Integer Programming
problems. The mapping onto Boolean Satisfiability enables
the use of very efficient algorithms with a super-polynomial
rather than an exponential complexity for the problem.

The mapping onto 0/1 Integer Programming problem
enables the use of variety of algorithms that can efficiently
solve the problem for up to several thousand components.
These new algorithms significantly improve over the
existing ones, enabling efficient diagnosis of large complex
systems. In addition, this mapping allows, for the first time,
a priori determination of the bound on the solution, i.e., the
minimum number of faulty components, before solving the
problem. This is a powerful insight that can potentially lead
to yet more powerful algorithms for the problem. It should
be mentioned, however, that (4) represents a rather special
case of the 0/1 Integer Programming Problem, by being
specific to the calculation of minimal diagnosis set, since the
matrix A is a binary matrix, and the vector b is the all-one
vector. We are currently devising new techniques to exploit
this special structure of this mapping to develop yet more
efficient algorithms, optimized for calculation of the
minimal diagnosis set.

We described the tool, Diagnosis Engine version 1 .O, that
we have developed based on the above technologies. This
tool is capable of performing an end-to-end diagnosis
process. We reported the results of benchmarking of the
Engine on systems with up to 100 components with different
number of faults. Also, by applying our lower bounds on
some specific cases, we demonstrated that these bounds
could provide sharp estimates on the number of faulty
components.

Our current effort on developing a more powerful and
practical model-based diagnosis engine builds upon the
unique and compact reconstruction of GDE. In addition, the
integration of these novel efficient algorithms within this
reconstruction of GDE enables the development of new
tools that can efficiently diagnose large systems.

Acknowledgement
The research described in this paper was performed at the

Jet Propulsion Laboratory (JPL), California Institute of
Technology, under contract with National Aeronautics and
Space Administration (NASA). This work is supported by
JPL Interplanetary Network and Information Systems
Directorate under the State Diagnosis task.

References
111 R. Reiter, “A theory of diagnosis from first principles,”

Art$cial Intelligence 32,57-95, 1987.
[2] J. de Kleer, A. K. Mackworth and R. Reiter,
“Characterizing diagnoses and systems,” Artificial
Intelligence 56, 197-222, 1992.

[3] Cassini Program Environmental Impact Statement
Supporting Study, Volume 3: Cassini Earth Swingby Plan,
JPL D-10178-3, November 18,1993.
[4] Robert Rasmussen, Personal Communication, 2001.
[5] J. de Kleer and B. Williams, “Diagnosing Multiple
Faults,” Readings in Model-Based Diagnosis, Morgan
Kaufmann Publishers, San Mateo, CA, 1992.
[6] F. Vatan, “The complexity of diagnosis and monotone
satisfiability,” submitted to Discrete Applied Mathematics.

[7] C. Berge, Hypergraphs: Combinatorics of Finite Sets,
Elsevier-North Holland, Amsterdam, The Netherlands,
1989.
[8] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness,
W. H. Freeman and Company, New York. 1979.
[9] R. Greiner, B. A. Smith, and R. W. Wilkerson, “A
correction to the algorithm in Reiter’s theory of diagnosis,”
Artificial Intelligence 41.79-88, 1989.
[lo] F. Wotawa, “A variant of Reiter’s hitting-set
algorithm,” Information Processing Letters 79, 45-5 1,
2001.
[l l] V. Gurvich and L. Khachiyan, “On generating the
irredundant conjunctive and disjunctive normal forms of
monotone Boolean Functions,” Discrete Appl. Math. 96-97,

[12] T. Bylander, D. Allemang, M. C. Tanner and J. R.
Josephson, “The computational complexity of abduction,”
Artificial Intelligence 49,2540, 1991.
[13] T. Eiter and G. Gottlob, “Identifying the minimal
transversals of a hypergraph and related problems,” SIAM J.
Comput. 24,1278-1304,1995.
[14] M. Fredman and L. Khachiyan, “On the complexity of
dualization of monotone disjunctive normal forms,” J. of
Algorithms 21, 618428, 1996.

[15] G. Friedrich, G. Gottlob and N. Nejdl, “Physical
impossibility instead of fault models,” Proceedings of
Eighth National Conference on Artificial Intelligence AAA I-
90, vol. 1, MIT Press, Cambridge, 331-336, 1990.
[16] V. M. Manquinho, P. F. Flores, J. P. M. Silva and A. L.
Oliveira, “Prime implicant computation using satisfiability
algorithms,” Proceedings Ninth IEEE International
Conference on Tools with Artijicial Intelligence, IEEE
Computer Society, Los Alamitos, CA, 232-239, 1997.
[17] L. Palopoli, F. Pirri and C. Pizzuti, “Algorithms for
selective enumeration of prime implicants,” Artificial
Intelligence 111,41-72, 1999.

363-373,1999.

8

