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Abstract 
The number of Earth orbiters and deep space probes has 

grown dramatically over the past decade, and this trend is 
expected to continue. This rate of growth has brought a new 
focus on autonomous and self-preserving systems, all of 
which depend on fault diagnosis. Although diagnosis is 
needed for any autonomous system, current approaches tend 
to be “ad-hoc,” inefficient, and incomplete. Systematic 
methods of general diagnosis exist in literature but all suffer 
from two major drawbacks that limit their practical 
applications. First, they tend to be large and complex and 
hence difficult to apply. Second and more importantly, they 
rely on algorithms with exponential computational cost, and 
hence become impractical as the number of system 
components increases. 

We have developed a new and powerful diagnosis engine 
that overcomes these limitations through a two-fold 
approach. First, we propose a novel and compact 
reconstruction of the General Diagnosis Engine (GDE), one 
of the most fundamental approaches to model-based 
diagnosis. We then present a novel algorithmic approach 
for calculation of minimal diagnosis set. This approach uses 
a powerful yet simple representation to map minimal 
diagnosis set calculation onto two well-known problems, 
namely the Boolean Satisfiability and Integer Programming 
problems. We report the details of a new and powerful tool, 
Diagnosis Engine version 1.0, that we have developed based 
on these techniques. 

The mapping onto Boolean Satisfiability enables the use 
of very efficient algorithms with a super-polynomial rather 
than an exponential complexity for the problem. The 
mapping onto 0/1 Integer Programming problem enables the 
use of a variety of algorithms that can efficiently solve the 
problem for up to several thousand components. These new 
algorithms significantly improve over the existing ones, 
enabling efficient diagnosis of large complex systems. In 
addition, the latter mapping allows, for the first time, 
determination of the bound on the solution, i.e., the 
minimum number of faulty components, before solving the 
problem. This is a powerful insight that can be exploited to 
develop yet more efficient algorithms for the problem. 

At the end, we report the results of validating and 
benchmarking of our engine based on this technology, and 
the results of estimating the bounds for specific problems. 

1. Introduction 
The diagnosis of a system is the task of identifying faulty 

components that cause the system not to function as it was 
intended. The diagnosis problem arises when some 
symptoms are observed, that is, when the system’s actual 
behavior is in contradiction with the expected behavior. The 
solution to the diagnosis problem is then determination of 
the set of faulty components that fully explains all the 
observed symptoms. Of course, the meaningful solution 
should be a minimal set of faulty components since the 
trivial solution, that assumes all components are faulty, 
always explains all inconsistencies. 

The model-based diagnosis, frrst suggested by Reiter [ 1 J 
and later expanded by de Kleer et a1 [2], is the most 
disciplined technique for diagnosis of a variety of systems. 
This technique, which reasons from first principle, employs 
knowledge of how devices work and their connectivity in 
form of models. In the model-based diagnosis the focus is on 
the logical relations between components of a complex 
system. So the function of each component and the 
interconnection between components all are represented as a 
logical system, called the system description SD. The 
expected behavior of the system is then a logical 
consequence of SD. This means that the existence of faulty 
components leads to inconsistency between the observed 
behavior of the system and SD. Therefore, the determination 
of the faulty components (or, diagnosis) is reduced to 
finding those components for which assumption of their 
abnormality could explain all inconsistencies. 

In summary, the diagnosis process starts with identifymg 
symptoms that represent inconsistencies (discrepancies) 
between the system‘s model (description) and the system’s 
actual behavior. Each symptom identifies a set of conflicting 
components as initial candidates. A minimal diagnosis is the 
smallest set of components that intersects all candidate sets. 
Therefore, finding the minimal diagnosis set is accomplished 
in two steps: first generating candidate sets from symptoms, 
and then calculating minimal set of faulty components. 
However, there are two major drawbacks in the current 
model-based diagnosis techniques that severely limit their 
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practical applications (see also Section 2). First, current 
model-based techniques tend to be large and complex and 
hence difficult to apply. Second and more importantly, in 
order to find the minimal diagnosis set, they rely on 
algorithms with exponential computational cost and hence 
are highly impractical for application to many systems of 
interest. 

It should be mentioned that a widely employed approach 
to overcome limitations of model-based diagnosis 
techniques is to develop a set of Fault Protection Modes, 
that is, a set of Symptoms-to-Cause Rules. In this approach, 
the human experts, by relying on their detailed knowledge of 
the target system, attempt to predict and analyze all possible 
faults and determine their causes. Obviously, in this 
approach human knowledge is used to overcome the 
exponential computational complexity. As a result, this 
approach is time-consuming, costly and prone to human 
errors (since it is impossible to predict all possible faults in 
advance). As an example, the development of Fault 
Protection Modes for Cassini Spacecraft took more than 20 
work years [4]. 

In this paper, we present a novel and two-fold approach 
for model-based diagnosis to overcome the two above- 
mentioned limitations and to achieve a powerful engine that 
can be used for fast diagnosis of large and complex systems. 
This approach starts by a novel and compact reconstruction 
of General Diagnosis Engine (GDE), as one of the most 
fundamental approaches to model-based diagnosis. More 
importantly, we present a novel algorithmic approach for 
calculation of minimal diagnosis set. We first discuss the 
relationship between this calculation and solution of the 
well-known Hitting Set Problem. We then discuss a 
powerful yet simple representation of the calculation of 
minimal diagnosis set. This representation enables the 
mapping onto two well-known problems, that is, the 
Boolean Satisfiability and O/ 1 Integer Programming 
problems. The mapping onto Boolean Satisfiability enables 
the use of very efficient algorithms with a super-polynomial 
complexity for the problem (see Section 4). The mapping 
onto 0/1 Integer Programming problem enables the use of 
variety of algorithms that can efficiently solve the problem 
for up to several thousand components. Therefore, these new 
algorithms significantly improve over the existing ones, 
enabling efficient diagnosis of large complex systems. In 
addition, the latter mapping allows, for the first time, 
determination of the bound on the solution, i.e., the 
minimum number of faulty components, before solving the 
problem. This powerful insight can potentially lead to yet 
more powerful algorithms for the problem. 

This paper is organized as follows. In Section 2, we 
review the main notions and concepts of model-based 
diagnosis by considering GDE, as applied to the hydrazine 
propulsion subsystem of Cassini spacecraft. We also briefly 
discuss a novel and compact reconstruction of GDE and its 
advantages. In Section 3, we discuss the relationship 

between the calculation of minimal diagnosis set and the 
Hitting Set Problem. In Section 4, we discuss a simple 
representation of both the Hitting Set and calculation of 
minimal diagnosis set problems that allows simple mapping 
onto Boolean Satisfiability and Integer Programming, 
discussed in details in Section 4 and 5. In Section 6 we 
describe our tool, Diagnosis Engine version 1.0, which we 
have developed based on techniques described in this paper. 
We also present the results of benchmarking of this tool, 
based on experiments on circuits with up to 100 
components. In Section 7, we show that the mapping onto 
Integer Programming can be used for a priori determination 
of bound on the solution, i.e., on the number of faulty 
components. We show that these bounds could provide 
sharp results for specific cases. Finally, some concluding 
remarks and discussion of future works are presented in 
Section 8. 

2. Model-based diagnosis: general diagnosis engine 
(GDE) 

The model-based diagnosis approach was first suggested 
by Reiter [ 11 and later expanded more by de Kleer et al [2]. 
The General Diagnostic Engine (GDE) [5] is one of the 
most fundamental approaches to model-based diagnosis. 
GDE combines a model of a device with observations of its 
actual behavior to detect discrepancies and diagnose root 
causes. Here a system is represented as 

S = (SD, COMPONENTS, OBS), 
where COMPONENTS is a finite set of components 
constituting the system (they are the constants of the logical 
theory describing the system), and SD and OBS are finite 
sets of first-order sentences describing the system 
description and observations, respectively. There is a 
distinguished unary predicate AB, where AB(c) is interpreted 
as “the component c is abnormal or faulty.” For example, 
consider the system described in the following diagram: 

Figure 1 An Adder-Multiplier network. 

Here the system has five components, represented by boxes. 
There are two different types of gates: the adder and the 
multiplier. We use the predicates ADDER and 
MULTIPLIER to denote these two types. In this example, 
COMPONENTS consists of five gates: M1, M2, M3, AI, 
and A2. The following sentences determine the type of each 
gate: 
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ADDER(A1). ADDER(A2), MULTIPLIER(Ml), 
MULTlPLJER(M2), MULTlPLJER(M3). 

The operation of each type of gates can be described by the 
following (first order) logical sentences: 

VX[ADDER(X)A -AB(X) * out(x) = inl+ in2(x)], 
VX[MULTIPLZER(X)A ~ B ( x ) *  out(x) = inlxin2(x)]. 

The predicates inl, in2, and out are used for describing the 
interconnections of the gates. For example, 

out(Ml)=inl(Al), ouC(M2)=in2(Al), , . . 
Since this system is dealing with the numbers, we should 
also add the axioms of the theory of numbers to the set SD. 
Thus in this example, the set SD consists of all the above 
sentences. The set OBS describes the inputs and their 
corresponding outputs. In our example, the following 
sentence describes the inputs and the corresponding outputs: 

(inl(M1) = 3) A (in2(Ml) = 2) A (inl(M2) = 2) A 

(in2(M2)=3)~(inl(M3)= 2)~(in2(M3)= 3 ) ~  
(out(Al)= 1 0 ) ~  (out(A2)= 12) 

A conflict of the system S is a disjunction of the 
following form: 

where cj E COMPONENTS and Fj = ABor F, = d B  such 
that 

SD,OBS 3 r. 
Le., r is a logical consequence of SD and OBS. The 
conflict r is positive if Fj =AB for every j= l ,  ..., k. The 
conflict r is a minimal conflict if no subclause of it is a 
conflict. 

A diagnosis of the system S is a conjunction of the 
following form determined by a subset D of COMPONENTS 
of the form 

such that the set {SO, OBS, A(D)} is consistent. The 
diagnosis A(D) is a minimal diagnosis if for every proper 
subset F of D the conjunction A(F) is not a diagnosis. 

The central issue of the diagnosis problem is to find small 
minimal diagnosis. So we formally formulate the diagnosis 
problem as follow. 

Diagnosis 
Instance: A system S = (SD, COMPONENTS, OBS) with n 
components and a number 0 e c c 1. 
Question: Is there a diagnosis A ( D )  for S such that 
ID( S c n ? 

In [6] we have proved the following theorem that shows the 
problem of finding minimal diagnosis, in general, is 
intractable. 

Theorem (see [6]): The problem Diagnosis is NP-hard, 
even if c is a constant in the interval (0,0.5]. 

For solving the diagnosis problem, the General 
Diagnostic Engine (GDE) first performs a causal simulation 
by taking variable observations and using rules to compute 
the values of other variables in the network. Since 
computations have underlying assumptions, GDE tags each 
value with the assumptions that contribute to its 
computation. A discrepancy arises when two incompatible 
values are assigned to the same variable. Typically in the 
course of causal simulation, no discrepancies are found, but 
when failures occur, multiple incompatible assumption sets 
appear. This process continues to determine new 
incompatible sets until the causal simulation is completed. 
The next step after causal simulation is to the find minimal 
set of assumptions that intersects with all detected 
incompatible sets. This set contains the actual diagnoses of 
the root causes for contradictory measurements. However, 
GDE also suffers from the two main limitations of other 
model-based diagnosis approach; that is, the complexity of 
software makes its application difficult, and there is an 
exponential computational cost for finding the minimal set. 

In order to overcome the first limitation, we have 
developed a novel and compact reconstruction of GDE. 
Traditionally GDE has been implemented using an inference 
engine to reason about a device model combined with an 
Assumption-based Truth Maintenance System (ATMS) to 
keep track of assumptions. A surprising result that arose 
from our rational reconstruction of GDE involves merging 
the ATMS with the inference engine. It turns out that the 
ATMS and the inference engine have many similarities, and 
combining the two dramatically simplifies the algorithm. 
The resulting system was completely implemented in under 
150 lines of LISP code! This reconstruction also has some 
valuable properties for improving reasoning performance. 
Directly linking the reasoning about a device with reasoning 
about underlying assumptions facilitates the use of 
computation reduction heuristics. 

The second limitation is, however, by far more 
challenging, as it was stated in the above theorem. However, 
in the following we show that, by mapping the diagnosis 
problem onto Boolean Satisfiability and Integer 
Programming problems, algorithms with much better 
performance and hence with a much wider range of 
applicability can be devised. 

3. Hitting set problem 
The Hitting Set Problem, also known as the Transversal 

Problem, is one of the key problems in the combinatorics of 
finite sets (see [7]) and the theory of diagnosis (see [1,2]). 
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The problem is simply described as follows. A collection 
S = {SI, . . ., S,) of nonempty subsets of a set M is given. A 
hitting set (or transversal) of S is a subset H of M that meets 
every set in the collection S ;  i.e., Si n H # { }, for every 
j = 1,. . .,m. Of course, there are always trivial hitting sets, 
for example the background set M is always a hitting set. 
Actually we are interested in minimal hitting sets with 
minimal cardinality: a hitting set H is minimal if no proper 
subset of H is a hitting set. 

Our primary interest to Hitting Set Problem is its 
connection with the problem of diagnosis. The main theorem 
in the theory of model-based diagnosis states that the 
minimal diagnoses of the system are exactly the minimal 
hitting sets of the sets of conflicts 

M = (m, ,  m2, ..., m,,}, finding one minimal hitting set is 
easy. The more challenging, and more interesting both from 
practical and theoretical point of view, is the problem of 
finding hitting sets of small size. It turns out that this is a 
hard problem. First let formalize the problem. 

Hitting Set 
Instance: A system S = {SI, ..., S,) of subsets of the set M 

and aconstant -sc<l. 

Question: Is there a hitting set H such that /HI 

Note that for any system S of subsets of the set 

1 
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c [MI ? 

We should mention that it is well known that the above 
problem is NP-complete if the condition is replaced by 
(HI < K, where K I (MI (see [8]). It is also known that, in 
this latter form, the problem remains NP-complete even if 
( S j l  5 2, for every j = 1,. ..,m. Utilizing our results on the 

complexity of the diagnosis problem, it is possible to show 
that this stronger form of the problem is NP-complete. In 
[13] the complexity of several other problems related to 
hitting sets is investigated. 

As mentioned before, we are interested in the Hitting Set 
Problem because of its connection with the problem of 
diagnosis. In fact, as it was discussed, each symptom 
identifies a set of conflicting components as initial 
candidates and minimal diagnoses are then the smallest sets 
of components that intersect all candidate sets. The main 
theorem in the theory of model-based diagnosis [1,2] also 
states that the minimal diagnoses of the system are exactly 
the minimal hitting sets of the conflict sets (see Figure 2). 

The Reiter's hitting set algorithm [ 11 is one of the major 
algorithms for finding minimal hitting sets. The correction 
of this algorithm is presented in [9] and a modified and more 
efficient version in [lo]. The original algorithm and its 
modifications are based on generating the lattice of the 
subsets of the background set M and then extracting a 
sublattice of it that provides the minimal hitting sets. If the 
goal is to find a minimal hitting set with minimal cardinality, 

then this algorithm is not efficient by any means; because it 
requires to save the whole sublattice which leads (in the 
worst case) to an exponential size memory to save the 
sublattice. We will show that it is possible to find a minimal 
hitting set with minimal cardinality with an algorithm that 
requires a linear size memory (while it still may needs an 
exponential time to complete the computation). 

Figure 2 Diagnosis as the hitting set of the conflicts. 

Our approach for solving the Hitting Set Problem and 
thus calculation of minimal diagnosis set is two-folded. On 
one hand, we map the problem onto the Monotone Boolean 
Satisfiability Problem. This provides the opportunity of 
utilizing the super-polynomial algorithms for finding the 
prime implicants of monotone functions (see [11,14]) and 
thus minimal diagnosis set. Also, this mapping makes it 
possible to better understand the complexity of the Hitting 
Set Problem, by comparing it with the well-studied Boolean 
function problems. On the other hand, we map the problem 
onto an Integer Programming Optimization Problem. This 
simple mapping gives us access to a vast repertoire of 
Integer Programming techniques that in some cases can 
effectively solve problems with several thousands variables. 
We would like to mention that mapping of the problem of 
finding prime implicants (not necessarily prime implicants 
of monotone formulas) onto the Integer Programming has 
already been introduced; see, e.g., [16,17]. The mappings of 
the hitting set problem onto monotone satisfiability and 
Integer Programming, which is introduced in this paper, 
provides a new mapping of the problem of finding prime 
implicants of monotone formulas onto the Integer 
Programming. 

4. Mapping onto Boolean satiafiability problem 
In order to describe mapping of the Hitting Set Problem 

onto Boolean Satisfiability and 04 Integer Programming, 
consider a different representation of the problem by 
describing the attribution of the members (or, components) 
to subsets (or, initial candidate sets) as given by the 
following matrix: 

. . . .  
... s, 

(1) 
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where S = {SI, ..., S,) and M = {ml ,  m2, .. ., m,,) denote the 
set of nonempty subsets and the set of members (elements), 
respectively. The (ij)* entry in this matrix is denoted as ay 
and we have ay = 1 if m, belongs to Si, otherwise ay = 0. To 
map the problem onto Boolean Satisfiability, we introduce 
the Boolean variables xl. xZr ..., x,,,, where each variable xi 
represents the member mi. Then to each subset Si = {mil, miz, 
..., mhi) (i.e., each row of matrix (1)) we correspond the 
disjunction 

F, = x i ,  v x i z  V ' " V X i n i  (2) 

i.e., for each "1" in the i* row of matrix (1) the 
corresponding Boolean variable appears in the disjunction 
(2). For example, if the i* row of matrix (1) is (0,l , l  ,O,O, 1,O) 
then 4 = x, v x3 v x,. Now the formula 

(3) 

represents the mapping of the Hitting Set Problem 
associated with the system S onto the Boolean Satisfiability 
Problem in the sense that every hitting set of the system S, in 
a natural way, corresponds with a satisfying truth- 
assignment for the formula Fs, and vice versa. Let (sI, s~, . . . , 
s,,) be a Boolean vector that satisfies the formula Fs, and let 
the subset S be the corresponding set. Then the formula (2) 
guarantees that S intersects the set Si, and (3) guarantees that 
S intersects all sets SI, S2, ..., S,. Thus S is a hitting set. 

We should notice that the Boolean formula (3) is in fact 
monotone. In the case of monotone formulas, the standard 
form of the Satisfiability Problem should be slightly 
modified to avoid the trivial cases. Note that, in the case of 
the monotone formulas, the all-one vector ( l , l ,  ..., 1) is 
always a satisfying truth-assignment (or equivalently, the 
background set M is always a hitting set). Here, the correct 
formulation of the problem is to find the assignments with 
bounded weight, or in the hitting set setting, the problem is 
to find hitting sets with bounded number of members. We 
have shown that the problem of finding truth-assignments 

for monotone formulas with weight I cn , for - I 1, is 

NP-complete [6] .  Also, the problem of finding minimal 
hitting sets of the system S reduces to the problem of finding 
prime implicants of the monotone function Fs. 

We should mention here a new result [11,14] that 
suggests a major breakthrough regarding finding hitting sets 
in the most general case of the problem. They show that 
there is an algorithm that produces the list of prime 
implicants of a monotone Boolean function such that each 
prime implicant is produced in the time O(nt+no'b6"'), 
where t is the time needed to determine the value of the 
Boolean function at any point. Also the list that produced by 
this algorithm has no repetitions. Practical implication of 
this result for hitting set problem is that for the systems that 
do not have large number of minimal hitting sets (i.e., there 

1 
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are at most superpolinomailly many minimal hitting sets), it 
is possible to solve the hitting set problem in 
superpolynomial time, instead of exponential time of a 
typical NP-complete problem. 

6. Mapping onto 011 programming problem 
In order to describe the mapping onto 011 Integer 

Programming Problem, define the n x m  matrix 
associated with the system S, as defined 

in matrix (1). Note that, by this definition, each row of A 
corresponds to a subset and each column to a member. The 
mapping onto 0/1 Integer Programming Problem is simply 
obtained by considering an operator application of A as 
follows. Identification of a minimal subset of members, 
representing a minimal hitting set, is equivalent to finding a 
minimal subset of columns of the matrix A whose 
summation results in a vector with elements equal to or 
greater than 1. This can be better described in terms of 
matrix-vector operations as follows. Let the vector Ai, for i = 
1, .. ., m, denotes the i" row of the matrix A. Also, define a 
binary vector x = (xlr nz. ..., x,,), wherein xi = 1 if the 
member mi belongs to the minimal hitting set, otherwise x, = 
0. Since at least one member should belong to every Si, for 
everyi= 1, ..., m,wethenhave 

A = (a, Li&, lsjsn 

4 *xL1.  

Since, by the definition of the minimal subset, the above 
equation should be simultaneously satisfied for all i = 
1, ..., m, we then have the following formulation of the 
problem as an 0/1 integer programming problem 

minimize wt(x) 
subject to A x T  2 b T ,  x,  =Oorl 

where b = (l,l,..,l) is the all-one vector, and we denote the 
Hamming weight, i.e., the number of one-components of the 
binary vector x, by wt(x). With this setting, identification of 
the minimal hitting set is then equivalent to solution for the 
binary vector x from (4). which corresponds to the solution 
of the 0/1 Integer Programming Problem. 

Note that (4) represents a rather special case of the 011 
Integer Programming Problem since the matrix A is a binary 
matrix, i.e., with 1 or 0 entries only. Interestingly, our above 
derivation also establishes a mapping of the Monotone 
Boolean Satisfiability Problem onto this special case of 0/1 
Integer Programming Problem. To see this, note that any 
Monotone Boolean Satisfiability Problem, given by the 
formula (3). can be equivalently represented by a matrix 
similar to (1). from which the mapping onto this special case 
of 0/1 Integer Programming Problem follows immediately. 

(4) 

6. The tool and benchmarking: model-based diagnosis 
engine, version 1.0 

We have developed a tool that combines all the 
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techniques we have discussed in this paper. This tool, 
Diagnosis Engine, version 1 .O, constitutes several 
components so that it has the capability to an end-to-end 
diagnosis. The key components of the tool are: 105 

105 
105 Description of the system. The first step of 

diagnosis process of a specific system is to define 
the system. This step itself involves two stages. (i) 
We have to specify the functionality of all possible 
components used by the system. Right now, the 
code we have developed in LISP is capable of 
handling components in arithmetical (adder- 
multiplier gates) and Boolean (logical gates) 
settings. Extending the LISP code to other discrete 
settings is straightforward. (ii) We have to define 
the interconnections between the components of the 
system. We have adapted a natural way to specify 
these interconnections in the LISP code. The inputs 
and the observations of the system are treated as 
part of system description, and are provided by this 
component. 
Conflict finding proceee. The conflict finding 
routine of version 1.0 of Engine is based on a 
reconstruction of GDE method [5 ] .  The output of 
this component is a matrix A of the form of matrix 
(1). 
Integer programming solver. The conflict 
matrix A, that is the output of the conflict finding 
routine, will be used to solve the integer 
programming problem (4). To solve (4), the version 
1.0 of Engine has two methods in its disposal. One 
is an enhanced version of the brute force method. 
This method is very successful in the cases of small 
number of faults. We will describe it later. The 
other method for solving (4), is the GLPK @NU 
- Linear Programming Kit), version 3.2. This is a set 
of routines in the ANSI C programming language. 
The integer programming routine of GLPK 
(actually it is much more powerful routine and is 
capable of solving mixed integer programming 
problems) applies a variant of branch-and-bound 
method for the problem. The GLPK, like other 
available integer programming solver tools, 
provides only one solution of (4). The version 1.0 
of Engine has capability of finding all possible 
solution of (4). The routine that provides this 
feature is described later in this section. 

0 

10x105 2 < 1 SEC. 
12x105 3 < 1 SEC. 
12x105 4 < 1 SEC. 

Benchmarking 
As the first stage of benchmarking and validation of the 

tool, we applied our engine on test cases of circuits with 
adder and multiplier gates. The Table 1 shows the results of 
these experiments. 

105 
105 
39 

Table 1 Some of the results of benchmarking 
I Numberof I Sizeofthe I Numberof I Time: I 

~ 

17x105 5 < 1 SEC. 
23x105 6 2 SEC. 
48x39 9 <lSeC. 

1 

1 components I matrix I faults I Engine I 

39 I 48x39 I 9 I <lsec. 
52 I 62x52 I 10 I 

I 
_ -  -- 
65 I 33x65 I 13 I lsec. 

I 78 I 94x78 I 16 I ssec. 1 
Finding all solutions of integer programming problem 

The GLPK routine finds only one solution of the integer 
programming problem (4). To find all possible solutions, the 
version 1 .O of Engine applies the following procedure. After 
finding the first solution u1 of (4), a new integer 
programming problem is defined by simply adding a new 
row to the matrix A to form matrix Ai :  the new row is the 
complement of uI (note that, for example, if u~=(1,0,0,1,0) 
then its complement is (O,l,l,O,l)). So the new problem is 
defined by substituting A by A, in (4). It is easy to check that 
a1 is not the solution of the new system, and all solutions of 
the new system are all solutions of the old one except ai. 
This method will be continued till the new system becomes 
infeasible. 

Enhanced brute force algorithm 
There is a trivial exhaustive search method for finding 

solutions of the integer programming problem (4): check all 
possible binary vectors x. This method, of course, is 
extremely inefficient, as the number of such vectors x is 2", 
where n is the number of components of the system. But a 
closer examination of the problem (4). shows that there is a 
much better way to carry out such search. The problem (4) is 
monotone, in the sense that if a is a solution and u I b , then 
b is also a solution. Since the objective function of this 
optimization problem is the Hamming weight of the vector 
x, it follows that once a solution u of the weight wr(u) = k is 
found, we do not have u, look for solutions among binary 
vectors of weight larger than k. Therefore, the enhanced 
search algorithm looks for the solutions of (4) by 
systematically checking the vectors of weight 1, 2, 3, ... in 
the increasing order of their weights; i.e., the algorithm does 
not starts checking vectors of weight k before it examines all 
vectors of smaller weights (see Figure 3). 

To compare the performance of this enhanced search 
algorithm with the trivial exhaustive search, note that if the 
size of the minimal diagnosis is t, then the enhanced 
algorithm requires checking 
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q n )  j= l  J 

Number of 
components 

vectors. For small values of t ,  the number defined by (5 )  is 
proportional to n'. This means that, for small values of the 
number of faulty components t, the complexity of the 
enhanced algorithm grows polynomially. For example, if we 
want to run the enhanced algorithm for 1 minute, then the 
algorithm can handle the cases of 2, 3, and 4 faulty 
components for circuits of size (about) 1200, 160, and 70, 
respectively 

Size of the The actual Lower 
matrix size of the bound 

diagnosis 

f o r j = l  to n do 
I 
test all vectors x as sum o f j  columns of the 
matrix A; 

I 52 I 62x52 I 10 1 6 1  

break, if a solution is found; 
I 

52 
52 
52 

Figure 3 The enhanced brute force algorithm. 

44x52 4 4 
45x52 5 5 
62x52 10 6 

7. Lower bounds 
As stated before, the Integer Programming is known to be 

an intractable problem (see [SI), though there are several 
reasonably good algorithms that can solve the problem 
either exactly for certain size or approximately for any size. 
However, our recent discovery of the bounds on the size of 
the solution of (4) opens a new direction for improving the 
efficiency of existing algorithms and/or devising new and 
more efficient algorithms. Here, we briefly describe these 
new results. 

For two vectors x =(x1,x2, ..., x , )  and 
y=(y , ,y ,  ,..., y,) in R", we write y 2 x  if and only if 
y 2 xi , for every j = 1 ,. . . ,n. Also, we consider the l-norm 
and 2-norm of vectors defined as 

52 
52 

For the vector b in (4), we then have IbIl, = m  and 

ku, = &. Since the elements of both vectors Axr and b in 
(4) are positive, we can then drive the following two 
inequalities: 

I 44x52 I 4 1 4  
I 45x52 I 5 1 5  

Since x is a binary vector, then both norms in (6) give the 
bound on the size of the solution, that is, the number of 
nonzero elements of vector x which, indeed, corresponds to 
the minimal diagnosis set. Note that, depending on the 
structure of the problem, i.e., the 1- and 2-norm of the 

matrix A and m, a sharper bound can be derived from either 
of (6). To our knowledge, this is the first time that such 
bounds on the solution of the problem have been derived 
without any need to explicitly solve the problem. Such a 
priori knowledge on the size of solution will be used for 
developing much more efficient algorithms for the problem. 

The following table shows that results of application of 
these bounds on several instances of the problem. As this 
table shows, these bounds provide non-trivial estimates, and 
in some cases exact values, for the size of the minimal 
diagnoses. Here we applied the above lower bound method 
on circuits of the type we used in our benchmarking. 

20x15 

39 17x39 

t 39 6 
39 I 48x39 1 9 1 4  

We would like to mention several applications of these 
lower bounds. First of all, the a priori lower bound, before 
starting to solve the hard problem of finding the minimal 
hitting sets, allows us to separate the cases where the high 
number of faulty components requires another course of 
action instead of usual identification of faulty components. 
Second, a good lower bound could determine whether the 
enhanced brute-force algorithm (discussed in Section 6) can 
provide a solution efficiently. Finally, these lower bounds 
can be used for finding bounds for subproblems in branch- 
and-bound method for solving integer programming 
problem. 

8. Conclusion 
We proposed a two-folded approach to overcome the two 

major limitations of the current model-based diagnosis 
techniques, that is, the complexity of the tools and the 
exponential complexity of calculation of minimal diagnosis 
set. To overcome the first limitation, we have developed a 
novel and compact reconstruction of GDE. To overcome the 
second and more challenging limitation, we have proposed a 
novel algorithmic approach for calculation of minimal 
diagnosis set. Starting with the relationship between the 
calculation of minimal diagnosis set and the celebrated 
Hitting Set problem, we have proposed a new method for 
solving the Hitting Set Problem, and consequently the 
diagnosis problem. This method is based on a powerful yet 
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simple representation of the problem that enables its 
mapping onto two other well-known problems, that is, the 
Boolean Satisfiability and 011 Integer Programming 
problems. The mapping onto Boolean Satisfiability enables 
the use of very efficient algorithms with a super-polynomial 
rather than an exponential complexity for the problem. 

The mapping onto 0/1 Integer Programming problem 
enables the use of variety of algorithms that can efficiently 
solve the problem for up to several thousand components. 
These new algorithms significantly improve over the 
existing ones, enabling efficient diagnosis of large complex 
systems. In addition, this mapping allows, for the first time, 
a priori determination of the bound on the solution, i.e., the 
minimum number of faulty components, before solving the 
problem. This is a powerful insight that can potentially lead 
to yet more powerful algorithms for the problem. It should 
be mentioned, however, that (4) represents a rather special 
case of the 0/1 Integer Programming Problem, by being 
specific to the calculation of minimal diagnosis set, since the 
matrix A is a binary matrix, and the vector b is the all-one 
vector. We are currently devising new techniques to exploit 
this special structure of this mapping to develop yet more 
efficient algorithms, optimized for calculation of the 
minimal diagnosis set. 

We described the tool, Diagnosis Engine version 1 .O, that 
we have developed based on the above technologies. This 
tool is capable of performing an end-to-end diagnosis 
process. We reported the results of benchmarking of the 
Engine on systems with up to 100 components with different 
number of faults. Also, by applying our lower bounds on 
some specific cases, we demonstrated that these bounds 
could provide sharp estimates on the number of faulty 
components. 

Our current effort on developing a more powerful and 
practical model-based diagnosis engine builds upon the 
unique and compact reconstruction of GDE. In addition, the 
integration of these novel efficient algorithms within this 
reconstruction of GDE enables the development of new 
tools that can efficiently diagnose large systems. 
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