
A Software Defect Detection Methodology
Ronald Kirk Kandt

ronald.k.kandt@jpl.nasa.gov
California Institute of Technology

Jet Propulsion Laboratory

Abstract. This paper identifies baseline procedures for verifying software for individual, small
team, and large team development efforts for mission-critical and non-mission-critical software. It
is based on defect-based inspections and basis path testing. Basis path testing provides a unified
approach for performing unit, integration, and functional tests, whereas defect-based inspections
are primarily used for verifying requirement and design documents. However, in situations where
practitioners cannot afford to be as thorough as basis path testing permits, several heuristics are
defined for prioritizing the remaining verification efforts and deciding which technique to apply. In
addition, several studies are discussed that identify the relative merit of various verification tech-
niques.

Keywords: software inspections, unit testing, integration testing, functional testing.

Few people would argue that software developed in most organizations today seldom is of high quality. To compen-
sate for this lack of quality, people have proposed four common approaches to improving it. One approach is to hire
the best and brightest personnel, although seldom is the criteria for selecting such people ever defined. Another man-
tra is to reuse software instead of developing it anew. Unfortunately, few organizations have been able to develop
general, reliable software that can be reused without significant modification. Yet another scheme is to develop soft-
ware at higher levels of abstractions. However, it is still rare to convince others of the wisdom of this approach in
light of anticipated system performance penalties. Therefore, the final approach is the one most commonly followed.
It advocates the adoption of improved software processes that reduce the number of defects and the variability of
them over time. This is the topic of this paper, which attempts to a define defect detection methodology for several
different kinds of software development activities.

Since it is currently impractical and financially prohibitive to deliver defect-free software for anything other than triv-
ial programs, a software defect detection methodology should identify cost effective-methods for detecting defects.
The combined benefit of such a software defect detection methodology could be significant because defect detection
and correction activities consume about fifty percent of the labor to create software [4] and as much as seventy-five
percent of total software life cycle costs [19]. Side benefits of improved product quality may include improved pro-
ductivity of software development personnel and improved predictability of cost and schedules. However, what
should an organization reasonably expect to achieve if adopting a defect detection methodology? In the long-term, it
should be able to sustain defect reduction rates of nine per cent per year, year after year [25]. However, if the defect
detection methodology is initially ad hoc, an organization may see defect reduction rates much higher than this in the
first year or two. With regard to increased productivity, it is unclear what an organization should expect. Although
some organizations have reported significant benefits, they are suspect because of flawed data collection procedures,
omissions in cost contributors, and other factors. On the other hand, many people can produce numerous personal
accounts and rational arguments for why productivity does increase.

The remainder of this paper addresses two key questions. What are useful defect detection techniques? How is the
adequacy of a defect detection technique determined? The answers to these questions are used to specify a defect
detection methodology.

1. Merit of Defect Detection Techniques

The two principle means for detecting defects include various inspection and testing techniques, which have proven
complementary to one another [20,24]. For example, one experiment showed that using inspection and testing tech-

1

mailto:ronald.k.kandt@jpl.nasa.gov

niques found sixty-eight percent of the defects, whereas only performing one inspection or test identified fifty percent
of the defects [3]. Thus, a software defect detection methodology should consider applying both techniques to remove
defects from software artifacts because it is more effective to use both techniques than using either alone.

Unfortunately, the existing evidence does not clearly indicate the preferability of one specific inspection technique
over another, a specific testing technique over another, or a specific inspection technique over a specific testing tech-
nique, or how the different techniques correlate. Following are a list of claims.

Inspections are more efficient and effective than functional testing, which are more effective than structural test-
ing [l].
Inspections are better than equivalence partitioning, boundary value analysis, and structural testing [3], although
functional testing was the most cost-effective technique [131.
Functional and structural testing were equally effective, but inspections are inferior to the two [111.
Inspections, functional testing, and structural testing had similar effectiveness, although inspections are less effi-
cient [20].
The differences between ad hoc, checklist, and scenario-based inspections are insignificant [lo].
All-p-uses testing is more effective than an inspection, which is more effective than assertion usage, although all-
p-uses testing is less eficient than inspections [24].

Several causes are responsible for the inconsistency of these claims. Many experiment reports did not clearly identify
to what extent testing was performed. In other words, they did not identify the adequacy of a test suite and whether
automation was used to help generate test cases. Some studies may have been prejudicial or biased towards a result.
However, the best explanation of the results seems to be that the efficiency and effectiveness of verifying software is
dependent on the nature of the programs and their defects [32].

Consequently, the proposed defect detection baseline uses both software inspections and testing. The inspection and
testing procedures that are proposed as part of this methodology are first described. Afterwards, how they are applied
is described.

2. The Basic Inspection Process

The software inspection process is a formal review applicable to any type of artifact and uses defined entry and exit
requirements, participant roles and behaviors, measurement activities, and follow-up actions. The emphasis of a soft-
ware inspection is to identify and correct defects, whereas the emphasis of other review processes, such as walk-
throughs and peer reviews, generally fulfill other needs. Software inspections typically find about one-half of all
defects [3, 51, although higher detection rates have been found [16]. In addition, reinspections find about one-half of
the remaining defects of a first inspection [5].

Since the original introduction of Fagan inspections in 1976 [9], there have been many proposed changes to the soft-
ware inspection process [6, 14, 171. Three important changes affect the team size, the method of reading artifacts, and
the use of inspection meetings. Several studies, for instance, have attempted to determine what constitutes an effec-
tive team size for inspections [6, 8, 15,20,21]. Based on this data, it now appears that the use of two to four person
teams are efficient and effective, and that two inspectors are best for performing code inspections,

In addition, the original method for conducting an inspection did not identify how inspectors should read artifacts.
Since that time, several people have proposed various techniques for reading them. One of these is called defect-
based reading. Defect-based reading techniques allocate specific responsibilities to inspectors and provide guidance
to them on what checks to perform and how to perform them [23]. Typically, a scenario consists of a limited set of
questions and a detailed set of instructions. Defect-based scenarios are derived from defect types that are typically
encountered by practitioners during software development and has been shown to be better than a checklist based
approach [23].

2

Software inspections were originally proposed to use inspection meetings, where inspectors gathered to identify and
discuss defects [9]. The reason for having such meetings was that it was hypothesized that a synergy effect would
occur. However, recent experience indicates that little synergy actual occurs during inspection meetings [12, 161.
More specifically, it has been shown that seventy-five to ninety-five percent of all defects are found when individuals
review documents to prepare for inspection meetings [7,28]. Further, inspection meetings are time consuming, often
require a significant effort to coordinate [23], and are potentially inefficient because only two reviewers interact at
any given time and few inspectors actually listen to the conversations [2].

As a result of these three factors, the following inspection methodology is being used. First, entry criteria must be
established. The basic criteria are that only completed products will be inspected and that each inspector is qualified
to perform his or her role. That is, the characteristics of a reviewed artifact determines who will inspect it. Further-
more, an inspection should be limited to two hours and a specified review rate must be prescribed, which is typically
about six pages per hour. Finally, records of every inspection, including collected metrics, must be captured.

2.1. Roles

An inspection is performed by several people that fulfill several specific roles. Facilitators are responsible for sched-
uling inspections and distributing review packages. Review packages should include the artifact under review, over-
views of it, inspection objectives, review criteria, and the due date for providing feedback. Reviewers should have at
least three days and generally no more than five days to review the material. Facilitators record all action items result-
ing from inspections and produce reports of inspections and distribute them to review participants after acquiring
approval from the authors.

Reviewers examine artifacts and identify problems using the defined objectives and review criteria, which identify
the requirements and guidelines for validating reviewed artifacts. Criteria should include measures for correctness,
completeness, quality, and compliance with requirements and standards. Reviewers note all detected anomalies, sty-
listic issues, omissions, contradictions, improvement suggestions, and decisions.

Authors change artifacts in response to the action items derived from inspections. Authors may need to research one
or more action items and notify the facilitator of the need to reschedule an additional review if the required changes
are non-trivial. After authors make all the required changes, they distribute updated copies of the artifacts to the
reviewers so they can acknowledge that the authors performed the required action items.

2.2. Defect Estimation

Several defect detection techniques have been proposed and studied over the years [S, 18,26,27,30]. One technique
estimates defects of future projects based on past experience. The basic idea of this approach is that the detection of
too many defects indicates a poorly written artifact, whereas too few defects indicate a poorly reviewed artifact. This
approach assumes that the variation between reviewers is greater than the variation between artifacts. Unfortunately,
if this assumption is not valid, a high-quality document may be needlessly reinspected and a poor-quality artifact may
not be reinspected although the inspection was poorly performed. In addition, several other factors, such as changing
personnel and technology, affect how well past measures can predict future work. A second method, although rarely,
if ever, followed is based on the work of Halstead. It attempts to use the distinct and total number of data items and
operations to predict the effort to implement the system. This technique has been show to be accurate to within eight
percent [4]. Although extremely promising for estimating the number of defects in code, it is unclear how this tech-
nique can be used to estimate the number of defects in requirements. A third technique is known as the detection pro-
file method. This is a curve-fitting model that plots the detected defects versus the number of verification personnel
that identified each detected defect. The defects are sorted in decreasing order with respect to the number of person-
nel that identified the defect. Then either a linear or exponential regression line is plotted through the data and its
intercept estimates the number of remaining defects. The linear regression line is a lower-bound estimator and the
exponential one is an upper-bound estimator. Unfortunately, detection profile methods are not very effective for small
teams of four or less.

3

The remaining common technique is used by the proposed methodology. This class of estimators are known as cap-
ture-recapture techniques, and compute the number of the remaining defects of a module based on the defects found
by two distinct groups for a defined period. At the end of the defined period, each group would have found some
defects. Let us call the number of defects found by each group, " 1 and m2. Let us call the common defects that both
groups found mI2. Based on this information, the basic technique calculates the number of remaining defects.

The Chao (Chapman) estimator, which is shown in Equation 1, is one capture-recapture technique that has been
highly effective for estimating a lower bound on the number of defects remaining in software. It is based on the
assumptions that defect types are equally probable and inspector skills differ.

The Jackknife estimator, which is shown in Equation 2, is a capture-recapture method based on the assumptions that
defect types have different probabilities of being detected and that inspector skills are the same. In practice, it tends to
overestimate the number of defects and, therefore, is a good way to identify an upper-bound on the number of remain-
ing defects in software.

ml + m 2
2 + m12

Thus, these two estimators provide a reliable estimate of the remaining number of defects in an inspected artifact. For
example, suppose one group of inspectors found twenty defects in an artifact, another found thirty defects, and the
two groups found eight defects in common. For this situation, these two estimators indicate twenty-nine to thirty-
three defects remain in the artifact.

3. Testing

Testing cannot show that software is free of design or implementation defects, but it can identify their existence.
Thus, the purpose of testing is not to show that a program works, but to find defects. This section describes a struc-
tured testing methodology for software called basis path testing [31]. The test suites derived while using this tech-
nique are more thorough than testing techniques that perform statement or branch coverage testing because basis path
testing independently tests each conditional predicate of a module. In other words, the outcome of each condition that
can affect control flow is independently tested, which localizes defects to a single path of a module since there are no
interactions between decision outcomes. Thus, basis path testing is an effective, efficient, and rigorous technique for
testing software. A further benefit of this approach is that the size of the testing effort is predictable before testing
begins, whereas other techniques are predicated on testing progress. In sum, basis path testing is more thorough than
statement or branch coverage testing because each decision outcome is independently tested and the test effort can be
accurately estimated before testing begins.

Furthermore, basis path testing can be used to perform integration testing and is compatible with functional testing
efforts. This is especially important, since integration defects account for twelve to twenty-two percent of all defects
[l , 41. Similarly, sixteen percent of all software defects are functional defects of one kind or another [4]. Therefore,
test personnel should ensure that software does what it is suppose to do, and only what it is suppose to do, by using
scenarios - sequences of events designed to model field operation - of common actions to generate hnctional tests
[4]. These scenarios represent common transactions that reflect the tasks that the users will carry out. Once this is
done, these functional tests can serve as a starting point for developing unit test suites using basis path testing.

3.1. Basis Path Testing

In basis path testing, the number of test cases required for a module is exactly its cyclomatic complexity, which is the
number of conditional predicates that exist in a module plus one. As an example of how cyclomatic complexity can

4

be used to generate a basis set of test cases, let us examine the following function that computes the greatest common
denominator using Euclid’s algorithm. This function has a cyclomatic complexity of three. The corresponding flow
chart is a graphical illustration of this function and has several paths that are labeled a, b, c, and d. These labels are
used to identify the flow of control for the identified test cases.

a l N

/ / Return the greatest
/ / common denominator.
int euclid (int m, int n)
{

assert(n > 0);
assert(m > 0);

a N
int r;

c N

if (n > m)
{

r = m;
m = n;
n = r;

1

n > m

F

T

T

r = m % n ;

r!=O Test Case Path

F n = 3 , m = 9 ac

F n = 9 , m = 3 bc

T n = 8 , m = 3 bdddc

while (r ! = 0)
I

m = n;
n = r;
r = m % n ;

1

assert(n > 0);

return n;
1

1

0 retum n

For any such module, it may be possible to find numerous basis sets. For this function, two equally valid basis sets are
possible and can be used to test the function in the same manner. One of these basis sets is shown in Table 1. It iden-
tifies a collection of test cases for a test suite such that each test case assumes the identified truth values of the two
predicates given the specified input data. The path followed by each test case is also identified in the table.

Table 1: A basis set, associated test cases, and execution paths.

The practical baseline method for creating such a test suite for a module follows. First, pick the most important func-
tional path through the module to test, called the baseline path. This forms one test case. Then, change the outcome of
the first decision of the baseline path, while keeping as many of the other decision outcomes the same. Any decisions
that are not part of the baseline path can be taken arbitrarily, although it is preferable to select the most useful func-

5

tional path. Next, alter the baseline by changing the second decision. Similarly, continue this process until all decision
outcomes have been changed for the initial path. Then, select the second path as the baseline path and repeat this pro-
cess. Likewise, repeat this procedure for all other paths. At the conclusion of this process, a module test suite will
have been produced that tests all paths in a linearly independent manner.

3.2. Integration Testing

Basis path testing can be performed in a bottom-up fashion to achieve thorough integration testing. The basic process
is to test all leave modules using basis path testing, followed by all immediately higher level modules, repeatedly,
until all root modules have been tested. This basic process is shown in the following figure. The required number of
tests is equivalent to the sum of the cyclomatic complexity of modules A, B, and C.

Phase 1 I Phase 2

Altematively, one could test the interactions between modules, instead of all the details. This approach would require
that just the decision logic associated with calls to other modules be independently tested, which is a simplification of
the basis path testing scheme. The following figure shows how integration testing can be done without performing
fill basis path testing of all modules. In this scheme, testing ignores those paths that do not call a function. The nodes
that are colored yellow indicate the code that is tested. Those nodes colored black represent code that would not be
tested because they do not issue any function calls.

6

4. Defect Detection Processes

There are five situations characteristic of software development at PL. These situations are predicated on the size of
the development team and the criticality of the developed software. For example, a baseline approach for a personal
software development process follows. The software engineer should use a defect-based inspection technique for
reviewing requirements and design documents when they are created, have significantly changed, or a change affects
the next cycle of development or a pending development effort. Furthermore, the software engineer should test code
modules whenever a module is created or changed using basis path testing. If time does not permit the creation of
such exhaustive test suites, the software engineer should use the following heuristics to select test cases.

Test modules that have changed. Experience indicates that changing code is a more defect-prone process than
writing new code. In fact, programmers introduce about two-thirds of coding defects while changing software

Test modules that exhibit high cyclomatic complexity measures [22]. Functions whose cyclomatic complexity is
greater than ten have twenty-one percent more defects per source line of code than those with values at or below
ten. Furthermore, twenty-three percent of these functions account for fifty-three percent of the software defects

Test modules that have proven highly defective. The probability of detecting a defect in a module is proportional
to the number of defects already found in it, unless a thorough test suite has already been developed for it. In gen-
eral, twenty percent of the modules of a software system account for eighty percent of the defects [29].
Test modules called most frequently and where most of the computational time is spent. Since these modules
provide most of the system functionality, thoroughly testing them will yield the greatest true value to the user.

1221.

141.

A baseline approach that a small team should use for mission-critical software development follows. The chief archi-
tect and another person should use a defect-based inspection technique to review each requirement, design, and code
artifact. The chief architect must attend every inspection because he or she is the one person who has an intellectual
understanding of the entire software system. This person understands the interactions of the system components and
is responsible for maintaining the conceptual integrity of the entire system, which is vital to achieve product quality.
The lack of such a person or the unavailability of such a person for an inspection is an indication that the development
effort has problems. The inspection team should use the Chao and Jackknife estimators to determine whether a rein-
spection is necessary for a reviewed artifact. If so, they should inspect the document once more after its authors have
revised it using the feedback from the first inspection. If a requirement or design document significantly changes or a
change in the document affects the next work activity then it should be reinspected. Programmers should test each
code module when it is created or changed using basis path testing.

A baseline approach that a small team should use for non-mission-critical software development follows. The chief
architect and a programmer (who is not the chief architect) should use a defect-based inspection technique to review
each requirement and design document. They should use the Chao and Jackknife estimators to determine whether a
reinspection is necessary for a document. If so, they should inspect the document once more after its authors have
revised it using the feedback from the first inspection. If a requirement or design document significantly changes or a
change in the document affects the next work activity then it should be reinspected. Programmers should test a code
module whenever it is created or changed using basis path testing. If time does not permit this, the project should use
the test heuristics mentioned earlier to select those modules that will be tested. In addition, the project team should
consider using defect-based inspections for identifying defects in code modules.

A baseline approach that a large team should use for mission-critical software development follows. The chief archi-
tect, a representative from the software quality assurance team, a senior tester, and another person should use a
defect-based and perspective-based inspection techniques to review each requirement and design document. The use
of external reviewers provide a project with an independent, unbiased assessment of the reviewed artifact. In addi-
tion, a software quality assurance organization can provide personnel that bring special skills to the task. Inspection
teams should use the Chao and Jackknife estimators to determine whether a reinspection is necessary for a document.
If so, they should inspect the document once more after its authors have revised it using the feedback from the first
inspection. If a requirement or design document significantly changes or a change in the document affects the next

7

work activity then it should be reinspected. Programmers should test each code module when it is created or changed
using basis path testing. If time does not permit this, the project should use the heuristics mentioned earlier to select
modules for testing. Under these circumstances, the project team should consider using defect-based inspections to
identify defects in code.

A baseline approach that a large team should use for non-mission-critical software development follows. The chief
architect and another person should use a defect-based inspection technique to review each requirement and design
document. They should use the Chao and Jackknife estimators to determine whether a reinspection is necessary for a
document. If so, they should inspect the document once more after its authors have revised it using the feedback from
the first inspection. If a requirement or design document significantly changes or a change in the document affects the
next work activity then it should be reinspected. In addition, programmers should test or inspect code when it is cre-
ated or changed. The criteria that a project may use to determine whether an artifact is inspected or tested should be
identified based on available resources and the previously mentioned heuristics.

5. Summary

This paper motivates the development of a defect detection methodology by showing that there are several common
types of defects that are responsible for most observed defects found in software. Further, the paper shows that such
rates can be significantly lowered by the introduction of formal inspection and test methods for estimating and detect-
ing the number of defects in an artifact. Lastly, it identified five baseline procedures for verifying software, along
with heuristics for tailoring these baselines. The benefits of this methodology is that it permits software engineers to
quantify the effectiveness of their verification efforts and the efficiency with which they perform them. If an organi-
zation follows such procedures, it should significantly reduce the number of defects in delivered software. This meth-
odology is currently being deployed at JPL.

References

An Overview of the Software Engineering Laboratory, National Aeronautics and Space Administration,
GSFC, Software Engineering Laboratory, SEL-94-005, December 1994.
Aurum, A., Petersson, H., and Wohlin, C., “State-of-the-art: software inspections after 25 years,” Software
Testing, Verzfzcation andReliability, vol. 12, no. 3,2002, pp. 133-154.
Basili, V. R. and Selby, R. W., “Comparing the effectiveness of software testing techniques,” IEEE
Transactions on Software Engineering, vol. 13, no. 12, December 1987, pp. 1278-1296.
Beizer, B., Sofiware Testing Techniques, Van Nostrand Reinhold, 1990.
Biffl, S., Freimut, B., and Laitenberger, O., “Investigating the Cost-Effectiveness of Reinspections in Software
Development,” Proceedings of the International Conference on Software Engineering, 2001, pp. 155-164.
Bisant, D. and Lyle, J., “A Two-Person Inspection Method to Improve Programming Productivity,” IEEE
Transactions on Software Engineering, vol. 15, no. 10, 1989, pp. 1294-1304.
Eick, S. G. et al., “Estimating software fault content before coding,” Proceedings of the International
Conference on Software Engineering, 1992, pp. 59-65.
El Emam, K. and Laitenberger, O., “Evaluating Capture-Recapture Models with Two Inspectors,” IEEE
Transactions on Software Engineering, vol. 27, no. 9, September 2001, pp. 851-864.
Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Development,” IBM Systems
Journal, vol. 15, no. 3, 1976, pp. 182-21 1 .
Fusaro, P., Lanubile, F., and Visaggio, G., “A replicated experiment to assess requirements inspection
techniques,” Empirical Software Engineering, vol. 2, no. 1 , 1997, pp. 39-57.
Hetzel, W. C., An Experimental Analysis of Program Verification Methods, Ph.D. dissertation, University of
North Carolina at Chapel Hill, 1976.
Johnson, P. and Tjahjono, D., “Does Every Inspection Really Need a Meeting?’ Empirical Software
Engineering, vol. 3, 1998, pp. 9-35.
Kamsties, E. and Loa, C. M., “An empirical evaluation of three defect detection techniques,” Proceedings of
the European Software Engineering Conference, 1995, pp. 362-383.

8

Knight, J. C. and Myers, A. E., “An improved inspection technique,” Communications of the ACM, vol. 36,
no. 1 1 , 1993,pp. 50-69.
Kusomoto, S., Chimura, A., Kikuno, T., Matsumoto, K. I., and Mohri, Y., “A Promising Approach to TWO-
Person Software Review in an Educational Environment,” Journal of Systems and Software, vol. 40, 1998, pp.

Laitenberger, O., El Emam, K., and Harbich T. G., “An Internally Replicated Quasi-Experimental Comparison
of Checklist and Perspective-Based Reading of Code Documents,” IEEE Transactions on Software
Engineering, vol. 27, no. 5, May 2001, pp. 387-421.
Martin, J. and Tsai, W. T., “N-fold inspection: A requirements analysis technique,” Communications of the

Miller, J., “Estimating the number of remaining defects after inspection,” Sofiare Testing, Yerification and
Reliability, vol. 9, no. 3, 1999, pp. 167-189.
Myers, G. J., SoJware Reliability: Principles and Practices, John Wiley and Sons, 1976.
Myers, G. J., “A controlled experiment in program testing and code walkthroughs/inspections,”
Communications of the ACM, vol. 21, no. 9, September 1978, pp. 760-768.
Neu, H., et al., “Simulation-Based Risk Reduction for Planning Inspections,” Proceedings of the Fourth
International Conference on Product Focused Software Process Improvement, (Lecture Notes in Computer
Science 2559, Springer), 2002, pp. 78-93.
Nikora, A. P,, Software System Defect Content Prediction from Development Process and Product
Characteristics, Ph.D. dissertation, Computer Science Department, University of Southern California, 1998.
Porter, A., Votta, L., and Basili, V., “Comparing Detection Methods for Software Requirements Inspections: A
Replicated Experiment,” ZEEE Transactions on Sofiare Engineering, vol. 21, no. 6, June 1995, pp. 563-575.
So, S. S., Cha, S. D., Shimeall, T. J., and Kwon, Y. R., “An empirical evaluation of six methods to detect faults
in software,” Software Testing, VeriJcution and Reliability, vol. 12, no. 3,2002, pp.155-171.
Software Engineering Program: Software Process Improvement Guidebook, National Aeronautics and Space
Administration, NASA-GB-00 1-95, January 1996.
Stringfellow, C., Andrews, A., Wohlin, C., and Petersson, H., “Estimating the number of components with
defects post-release that showed no defects in testing,” Software Testing, Verification and Reliability, vol. 12,
no. 2,2002, pp. 93-122.
Thelin, T. and Runeson, P., “Robustness estimations of fault content with capture-recapture and detection
profile estimators,” Journal of Systems andSoftware, vol. 52, no. 2-3, 2000, pp. 139-148.
Vermunt, A., Smits, M., and Van der Pijl, G, “Using GSS to support error detection in software
specifications,” Proceedings of the Hawaii International Conference on System Sciences, 1988, pp. 566-574.
Weinberg, G. M., Quality Software Management: Systems Thinking, Dorset House, 1992.
Wohlin, C. and Runeson, P., “Defect content estimations from review data,” Proceedings of the International
Conference on Software Engineering, 1998, pp. 400-409.
Watson, A. H. and McCabe, T. J., “Structured Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric,” National Institute of Standards and Technology, NIST Special Publication 500-235,
September 1996.
Wood, M., Roper, M., Brooks, A, and Miller, J., “Comparing and Combining Software Defect Detection
Techniques: A Replicated Empirical Study,” Proceedings of the European Software Engineering Conference,

1 15- 123.

ACM, VOI. 33, 1990, pp. 225-232.

1997, pp. 262-277.

9

