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ABSTRACT 
The technique of projective measurements in linear optics can provide apparent, efficient nonlinear interaction 
between photons, which is technically problematic otherwise. We present an application of such a technique 
to prepare large photon-number path entanglement. Large photon-number path entanglement is an important 
resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be im- 
proved beyond the usual shot-noise limit. A similar technique can also be applied to signal the presence of a 
single photon without destroying it. We further show how to build a quantum repeater for long-distance quantum 
communication. 
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1. INTRODUCTION 
Quantum mechanics enables exponentially more efficient algorithms than can be performed on a classical com- 
puter. This discovery has led to the explosive growth of the field of quantum computation.' Many physical 
systems have been suggested for building a quantum computer. These include ion traps, cavity QED, optical sys- 
tems, quantum dots, nuclear magnetic resonance, and superconducting circuits. Building a quantum computer 
is a greatest challenge for a future quantum technology, requiring the ability to manipulate quantum-entangled 
states for millions of sub-components. The concept of a quantum computer is, essentially, the exploitation of 
quantum interference in obtaining the outcome of a computation. Putting it simply, a quantum computer is a 
complicated quantum interferometer, and a quantum interferometer is, therefore, a simple quantum computer. 

Looking back, quantum computation by linear optics was considered to be doomed by lack of efficient two- 
qubit logic gates, despite the ease of manipulation of one-qubit gates. Two-qubit gates then necessarily need 
a nonlinear interaction between the two photons, and the efficiency of this nonlinear interaction is typically 
very tiny. However, Knill, Laflamme, and Milburn recently showed that this barrier can be circumvented with 
effective nonlinearities produced by projective measurements12 and linear optical quantum computation (LOQC) 
becomes hopeful. It is fair to say that quantum computers capable of factoring large numbers is still a long shot. 
But the techniques developed on the road to this holy grail may find useful applications in other technologies 
such as quantum metrology and communication, which will, in turn, provide the hardware of quantum computing 
and ne t~ork ing .~  

We present our recent efforts in quantum state preparation and control by utilizing linear optics and projective 
measurement and their applications to metrology and communication. 
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Figure 1. A diagram for nonlinear sign gate. Conditioned upon a specific detector outcome, the desired output state can 
be obtained by choosing appropriate transmission coefficients of the beam splitters. The success probability of the gate 
operation is 1/4. But, the merit is that we know it was successful whenever it was successful. 

2. EFFECTIVE NONLINEARITIES BY PROJECTIVE MEASUREMENT 
Let us consider the Kerr nonlinearity, which can be described by a Hamiltonian4 

where n is a coupling constant depending on third-order nonlinear susceptibility, and l i t ,  6t and 6, 6 are the 
creation and annihilation operators for two optical modes. One convenient choice of the logical qubit can be 
then the two modes with a single photon, denoted as 

where I ,  k represent the relevant modes, and we have used the notation I ) L  for logical qubit, in order to distinguish 
it from the photon-number states. 

For a two-qubit gate, let us assign mode 1,2 for the control qubit, and 3,4 for the target qubit. Suppose 
now only the modes 2,4 are coupled under the interaction given by Eq.(l). For a given interaction time T, the 
transformation can be written as 

where cp E lcn,nbr and n, = ( i i t l i ) ,  ng = (bib).  This operation yields a conditional phase shift.5 When cp = A,  

we have the two two-qubit gate called conditional sign flip gate. A typical two-qubit gate, CNOT, is then simply 
constructed by using the conditional sign flip and two one-qubit gates (e.g., Hadamard on the target, followed by 
the conditional sign flip and another Hadamard on the target). In order to have cp - 7-r at the single-photon level, 
however, a huge third-order nonlinear coupling is required.6 In stead, Knill, Laflamme, and Milburn devised a 
nondeterministic conditional sign flip gate using nonlinear sign gate defined by 

The nonlinear sign gate can be implemented non-deterministically by three beam splitters, two photo-detectors, 
and one ancilla photon7 (see Fig. 1). The implementation of conditional sign flip gate is then made by the 
combination of the nonlinear sign gate and the physics of Hong-Ou-Mandel (HOM) interferometer.' For arbitrary 
two qubits 
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Figure 2. Nondeterministic conditional sign flip gate. The relevant optical modes are assigned as {2,1,3,4} from the 
top. When the modes 1, and 3 contain one photon each, (1,1)1,3 (Il)LJl)L), it becomes 12,0)1,3 - 10,2)1,3 after the beam 
splitter 1. Passing through the nonlinear sign gates, it becomes -12,0)1,3 + (0,2)1,3. Beam splitter 2 (conjugate to beam 
splitter 1) then put this into -I1,1)1,3. Obviously, all other input states l O ) t l l ) ~ ,  l O ) L l l ) L ,  Il)LIO}L, are not changed. 

the transformation by applying a condition sign flip gate, can be written as 

where the modes 1,2 are designated for the control qubit, and 3,4 are for the target qubit. A sign change happens 
only when there is one photon in mode 1 and one photon in mode 3. The implementation of the desired operation 
is achieve by two 50/50 beam splitters and two nonlinear sign gates (see Fig. 2), with probability of success 1/16. 
Effectively, Kerr nonlinearity can be generated by linear optics and projective measurements. The probability 
of success then can be boosted by using teleportation technique and sufficient number of ancilla photons. It 
has been also demonstrated that such a nondeterministic two-qubit gate can be made for qubits defined by the 
polarization degree of which we will discuss in a later section. lo 

3. OPTICAL LITHOGRAPHY BEYOND DIFFRACTION LIMIT 
Since the projective measurement can produce an effective photon-photon interaction, it can be a useful tool to 
manipulate quantum correlation between photons. A particularly interesting type of quantum state of light is 
the maximally entangled photon-number state. In recent work, it has been shown that the Rayleigh diffraction 
limit in optical lithography can be overcome” by using a quantum state of light of the following form: 

where a, b denote two different paths. It is well known that the two-photon path-entangled state of Eq. (7) can be 
generated using a Hong-Ou-Mandel interferometer and two single-photon input states. A 50/50 beam splitter, 
however, is not sufficient for producing path-entangled states with a photon number larger than two.12 On the 
other hand, the generation of these states with N > 2 seems to involve a large Kerr nonlinearity, which makes 
their physical implementation very diffic~1t.l~ 

Using the technique of projective measurement, we have shown that by conditioning on single-photon- 
detection, generation of path-entangled photon-number states is possible for more than two photons.14 Figure 
3 depicts a simple Mach-Zehnder type interferometric scheme for producing such a state with N = 4, using dual 
Fock-state inputs. Suppose that we have the 13,3) state as the input entering into the modes a and b. Then, 
the first beam splitter transforms 13,3) into a linear superposition of 16,0), (4 ,2) ,  (2 ,4) ,  and l0,6). After passing 
through the two intermediate beam splitters, and if one and only one photon is counted at each detector, the 
state is then projected onto an equal superposition of 13,l) and 11,3). Simply, the states I6,O) or 10,s) axe 
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Figure 3. Mach-Zehnder interferometer with two additional beam splitters, which direct the reflected beams to photode- 
tectors. Conditioned on a specific outcome of photodetection, a desired output state can be prepared in the mode a' and 
b' . 

discarded by this feedback from the photodetectors, since they cannot yield a click at both detectors. The (4,2) 
and 12,4) states, on the other hand, lose one photon in each arm of the interferometer and are projected to  13,l) 
and I1,3), respectively. Thus, just before the last beam splitter, we have a superposition of ( 3 , l )  and (1 ,3)  with 
a known phase. We use an appropriate phase shifter in one of the two arms of interferometer so that the state 
after the projective measurement is reduced to ( 3 , l )  - /1,3). Consequently after the last beam splitter, we get 
the desired state )4,0) - )0,4). It has been further shown that it is possible to produce any two-mode, entangled, 
photon-number state with only linear optical devices conditioned on phot~detection.'~ Normally, the probability 
of success decreases exponentially as N  increase^.'^-^' For some applications, however, it can be already useful 
with four-photon entanglement. Quantum interferometric lithography is such an example. It was also proposed 
in a recent work that the scaling can be sub-exponential in N by using quantum memory.18 It has been shown 
that an optimal frequency measurement is achieved by using maximally entangled states of the same form.lg 
All the interferometric schemes using entangled or dual-Fock input states show a sensitivity approaching 1/N 
only asymptotically. However, using the maximally entangled states of Eq. (7), the phase sensitivity is equal to 
1/N, even for a small N .  

4. PHASE NOISE REDUCTION BEYOND SHOT-NOISE LIMIT 
In a typical optical interferometer in which ordinary coherent laser light enters via one input port, the phase 
sensitivity in the shot-noise limit scales as A 9  = l / f l  where N is the mean number of photons. Over the 
last two decades a lot of effort was devoted to overcome this limit, with obvious practical applications. In the 
early 1980's, Caves first demonstrated that squeezing the vacuum in the unused input port of the interferometer 
causes the phase sensitivity to beat the standard shot-noise limit.20 In 1986, it was shown that phase noise 
reduction can be achieved using input light with photon-number eigenstates, incident upon both input ports 
of a Mach-Zehnder interferometer. In particular, Yurke and collaborators showed that if the photons entered 
into each input port of the interferometer in nearly equal numbers with certain type of correlation, then, it was 
possible to obtain an asymptotic phase sensitivity of 1/N, the Heisenberg limit.21t22 The so-called Yurke state 
is of the form: 

where a ,b  denote the two input modes. Then, in the early 199O's, Holland and Burnett proposed Heisenberg- 
limited interferometry by the use of so-called dual Fock states of the form23: 

I")D = IN, N)ab- (9) 

Such a state can be generated, for example, by degenerate parametric down conversion, or by optical parametric 
oscillation. In a conventional Mach-Zehnder interferometer only the difference of the number of photons at 
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Figure 4. A simple path-entanglement generator. Yurke-type quantum correlation between the two modes can be 
produced with a dual Fock-state. Suppose we post-select the outcome, conditioned upon only one photon detection by 
either one of the two detectors. Due to the 50/50 beam splitter in the midway, it is not possible to tell whether mode a 
or b lost one photon. The fundamental lack of which-path information provides the entanglement between the two output 
modes. For two-fold coincidence detection, the two detected photons are from either mode a or mode b, which eliminates 
the possibility of peeling off one photon from each mode. 

the output is measured. However, to obtain increased sensitivity with dual Fock states, some special detection 
scheme is required.24 A combination of a direct measurement of the variance of the difference current as well 
as a data-processing method based on Bayesian analysis, was proposed by Kim and  collaborator^.^^ Berry and 
Wiseman have proposed an adaptive measurement scheme with an optimal input state.26 

The Yurke state approach has the same measurement scheme as the conventional Mach-Zehnder interferom- 
eter; a direct detection of the difference current. It is, however, not easy to generate the desired correlation in 
the input state. On the other hand, the dual Fock-state approach finds a rather simple input state, but requires 
a complicated data processing methods. However, by a simple utilization of the projective measurements with 
linear optical devices, it is possible to generate a desired correlation in the Yurke state directly from the dual Fock 
state.3 A similar method has been proposed for matter-wave interferometers using Bose-Einstein  condensate^.^^ 
Consider a linear optical setup depicted in Fig. 4. For a given dual Fock-state input IN, N)ab, the output state 
conditioned on, for example, a two-fold coincident count is given by 

1 - [IN, N - 2) + IN - 2, N ) ]  . Jz 
Here the maximum probability success of this event can be optimized by choosing the reflection coefficient 
IrJ2 = 1 / N ,  and its asymptotic value can be found as 1/(2e2), independent of N .  Furthermore, using a stack of 
such devices with appropriate phase shifters, generation of maximally path-entangled states of the form Eq. (7) 
with an arbitrary number of photons has been deve10ped.l~ 

5. SINGLE-PHOTON QND MEASUREMENT DEVICES 
In a quantum nondemolition (QND) measurement an observable is measured and the back-action noise is coupled 
only to the conjugate of the measured quantity. The system is projected to a corresponding eigenstate and 
repeated QND measurements then yield the same result as the initial measurement. This can provide a sensitive 
probe of the perturbation causing any difference between results of two consecutive measurements. 

In quantum optics QND devices are usually considered in the context of photon-number measurements. 
Common photodetection is based on destroying photons that they detect. Hence, the basic idea of QND in 
quantum optics is to  couple the signal beam to the ‘meter’ beam in a nonlinear medium, and the detection of the 
phase shift of the meter beam measures the number of photons in the signal beam.28 QND schemes of this type 
include an optical Kerr medium, a parametric amplifier, and cold atoms in a magneto-optical trap. The readouts 
of the number of photons in the signal beam are performed by phase-sensitive homodyne detection of the meter 
beam in interferometer arrangements. In a recent experiment, a single-photon QND has been demonstrated by 
using a resonant coupling between the cavity field and the meter atoms.29 
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Figure 5. QND measurement device for single-photon detection. The input state, of an arbitrary superposition of IO), 
11), and 12), enters into mode a, and an auxiliary single photon is prepared for both modes c and d. Conditioned upon a 
detector Coincidence in modes c' and d', and no count in mode a', the outgoing mode b' is a single-photon state. 

Such a QND device at the single photon level can provide a key tool for optical quantum information 
processing, perhaps most importantly in quantum error correction. However, as we discussed in section 2, 
the required nonlinearities become too large for single-photon level. Instead, using the technique of projective 
measurement, we have proposed a probabilistic device that signals the presence of a single photon without 
destroying it.30 

A simple way to perform a single-photon QND measurement is to use quantum teleportation. For example, a 
maximally polarization-entangled photon pair produced by a parametric down-converter can serve as a quantum 
channel. If the input state is in a arbitrary superposition of zero and one photon with a fixed polarization, 
the detector coincidence in Bell state measurement, signals the present of a single photon in the input and also 
the output states. Simply, a vacuum input can never yield a two-fold detector coincidence. This teleportation 
scheme, however, breaks down in the case where the input state is of the form: 

The two-photon term will contribute to the two-fold coincidence even when the output of the down-converter 
is vacuum, yielding a false identification of a single photon in the output state, conditioned on a detector 
coincidence. 

We can eliminate such a false identification by using an interferometric setup depicted in Fig.5. It is not a 
full QND measurement of the photon-number observable since it works for only zero, one and two photons. It 
can, however, still play an important role in linear optical quantum computation, where up to only two photons 
are used in each logic gate. In Fig. 5, we assume that the input state of the for Eq.(ll) enters into in mode a, 
and further prepare single photons for mode c and d. The transformation of the probe photons in the mode c 
and d can then be written as 

Then we post select photodetection outcome its one and only one photon counted at each detector. This condition 
requires either two photons in mode c or two photons in mode d, which eliminate the contribution from ~ ( 0 )  of 
the input state. For one-photon and two-photon input states, we have 
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Figure 6. A probabilistic CNOT gate using two polarization beam splitters and n/4rotated polarization beam splitters. 
Conditioned on specific photo-detection outcome, CNOT can be perform with probability 1/4.1° 

Now the only two-fold coincidence in the mode c' and d' by a two-photon input is possible when the 2&'t&t form 
Eq.(12) and 22t2't from Eq.(14), yielding h't&'tt't&t. However, further postselecting on vacuum in the mode a' 
eliminate this two-photon contribution to the two-fold coincidence in c' and d'. Finally, for a single photon in 
mode a yields a contribution &'t~?t&, saying that there is a two-fold coincidence in mode c' and d', and a single 
photon in the output mode b'. As can be seen if Eqs.(12,13), the efficiency of this interferometric device with 
50:50 beam splitters is 1/8. By choosing the transmission coefficients of the beam splitters in modes c and d, the 
probability of success becomes 4/27. Obviously, this scheme does not work down when the incoming state with 
a unknown polarization. However, it turns out that a more sophisticated interferometric setup with polarization 
beam splitters can do the job with preserving the unknown polar i~a t ion .~~ 

6. NONDETERMINISTIC CNOT AND QUANTUM REPEATERS 
The concept of quantum repeaters has been proposed for single-photon optical quantum communication over 
distances longer than the attenuation length of the channels used.31 Quantum repeaters employ a combination 
of entanglement p~r i f i ca t ion~~  and swapping. Many pairs of degraded entangled states are purified to fewer 
maximally entangled states, after which swapping is used to extend the, now maximal, entanglement over longer 
distances. 

For entanglement purification, both Alice and Bob apply a CNOT, where the halves of the first entangled 
state pair serve as the control qubit, and the halves of the second as the target. The target qubits are then 
measured in the computational basis ( ( H )  and IV)), and conditioned on a parallel coincidence (JH)AIH)B or 
]V)AIV)B), Alice and Bob now share a maximally entangled state in the remaining two qubits. The probability 
of purification depends on the fidelity of the incoming entangled states, and therefore on the channel noise factor 
y. The entanglement swapping component is essentially a Bell detector. It is well known that it is impossible 
to make a deterministic, complete, Bell measurement with linear but one can distinguish two out 
of four two-qubit Bell states with a simple beam splitter c~nfigurat ion.~~ Recently, Franson and co-workers 
have shown that a CNOT (and hence a Bell measurement) is possible nondeterministically with only projective 
measurements and entangled input states."? 35 The probability of success for this CNOT is not large enough to  
make the Bell measurement more efficient, but it will be an essential component of our purifier. Based on linear 
optics and an entangled-photon source we have developed a protocol for optical quantum repeaters.36 
. The source for polarization-entangled photon pairs has mostly consisted of parametric down-converters, where 
a strong pump laser is sent through a nonlinear crystal. However, the output of these devices are not clean, 
maximally entangled, twc-photon states, but rather a coherent superposition of multiple pairs. For large-scale 
applications, one needs many entangled photon pairs, which would require, say, N down-converters to fire in 
unison. This happens with probability where is the probability of creating a maximally entangled 
state. However, with approximately the same probability the first down-converter produces N photon pairs, 
while the others produce nothing. Any distribution of N photon pairs scales proportional to ( C E ( ~ ~ .  Therefore, 
an array of N parametric down-converters hardly meets the desired properties as push-button production of a 
polarization-entangled photon-pair and high fidelity of the output. One entanglement source that very nearly 
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Figure 7. The schematic of a quantum repeater. E, P, and S denote the entangled-photon sources, the purifier and 
the swapping element, respectively. The solid lines represent quantum channels and the dotted lines are for classical 
channels. 
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Figure 8. The components of the quantum repeater. The purifier element contains a QND device, an optical CNOT 
gate, and a detector on one output mode. The swapper implements a partial Bell me~uremen t .~~  

meets our requirements has been proposed by Yamamoto and c o - ~ o r k e r s ~ ~  using a quantum dot separating 
p-type and n-type GaAs is sandwiched between two Bragg mirrors. In particular, the probability of creating a 
pair can be as high as p ,  = 0.9. 

Figure 7 shows the schematic of a quantum repeater, where the shaded region represents the decoherence 
during transmission. The separate components of a quantum repeater are depicted in Fig. 8. Additionally, we 
need to  check if the modes of the control qubit might be empty, since the entanglement source failed to create 
a photon. In order to rule out these events, we can employ the single-photon QND measurement device, which 
signals a single photon in an optical mode without destroying its polarization as discussed in the previous section. 

Let us consider the probability of success for the individual components, as well as the losses in the system. 
For purification, we need two CNOT and a QND device, and at least two double-photon guns. Each CNOT need 
one double-photon gun and two more guns are needed for the QND. Hence total of six double-photon guns are 
required. Also, ten photodetectors are needed (three per CNOT and four in the QND device). We assume that 
all the detectors have the same quantum efficiency 7. The noise parameters due to the attenuation are given by 
y for the dephasing, and C for the photon loss over the channel. The probability for purifying a single pair of 
entangled photons is then given by 

where p, is the probability of success of the double-photon gun. Furthermore, a complete Bell detection occurs 
only 50% of the time. The probability of success for entanglement swapping is therefore given by 

v2 
Pswap = - 2 '  

Since a repeater needs two purifiers and one swapper, the total number of components Ntotal is given by 
Ntotal = 2NpurNswap. Let us take typical values of the parameters, for example, p ,  = 0.9, y = 0.5, C = 1/a, 
p & ~  = 1/4, and PQND = 1/8. Then, for q = 0.3, we have Ntotal M 10'. Choosing r ]  = 0.8, we obtain 
Ntotal x lo4. It is immediately clear that an improvement in the detector efficiency yields a substantial gain in 
the efficiency of the protocol, due to the factor v10 in Eq.(15). Therefore, in order to operate the repeater more 
efficiently, better detectors are needed. 



7. SUMMARY 
Linear optics with measurements of some part of the system, Le., projective measurements, can sometimes 
replace the use of Kerr nonlinearities, but with much higher efficiency. Using this technique we have studied 
generation of useful photonic quantum correlations. The maximally path-entangled photon-number states provide 
an essential way for optical lithography to proceed beyond the Rayleigh diffraction limit. The Yurke-type path- 
entanglement is of particular importance in Heisenberg-limited interferometry. Projective measurements also 
enable us to construct a device that signals the presence of a single photon without destroying it. Single-photon 
non-demolition measurement bears a great importance in optical quantum computing, since most error-correction 
codes in presence of qubit loss requires QND measurements. Finally, using only LOQC elements and our QND 
scheme, we showed how to build a quantum repeater that faithfully transmits flying qubits between distant 
locations. Since all of the devices mentioned here heavily rely on the feedback from the detectors, the quantum 
efficiency and multi-photon resolution of a photodetector plays the key role in their practical implementation. 

ACKNOWLEDGMENTS 
This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract 
with the National Aeronautics and Space Administration. The authors wish to thank C. Adami, N.J. Cerf, 
J.D. Franson, G.J. Milburn, W.J. Munro, and T.B. Pittman for helpful discussions. P.K. and H.L. acknowledge 
the National Research Council. We would like to acknowledge support from the National Security Agency, the 
Advanced Research and Development Activity, the Defense Advanced Research Projects Agency, the National 
Reconnaissance Office, and the Office of Naval Research. 

REFERENCES 
1. J.P. Dowling and G.J. Milburn, “Quantum Technology: The second Revolution,” (in press) Phil. Trans. Roy. 

2. E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics,” 

3. H. Lee, P. Kok, and J.P. Dowling, “A quantum Rosetta stone for interferometry,” J .  Mod. Opt. 49, 2325 

4. M.O. Scully and M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997). 
5. &.A. Turchette et al., “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 

6.  G.J. Milburn, “Quantum Optical Fredkin Gate,” Phys. Rev. Lett. 62, 2124 (1989). 
7. T.C. Ralph, A.G. White, W.J. Munro, and G.J. Milburn, “Simple scheme for efficient linear optics quantum 

8. C.K. Hong, Z.Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by 

9. M. Koashi, T. Yamamoto, and N. Imoto, “Probabilistic manipulation of entangled photons,” Phys. Rev. A 

10. T.B. Pittman, B.C. Jacobs, and J.D. Franson, “Probabilistic quantum logic operations using polarizing beam 

11. A.N. Bot0 et al., “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffrac- 

12. R.A. Campos, B.E.A. Saleh, and M.C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry 

13. C.C. Gerry and R.A. Campos, “Generation of maximally entangled photonic states with a quantum-optical 

14. H. Lee, P. Kok, N.J. Cerf, and J.P. Dowling, “Linear optics and projective measurements alone suffice to 

15. P. Kok, H. Lee, and J.P. Dowling, “The creation of large photon-number path entanglement conditioned on 

SOC. (London, 2003), quant-ph/0206091. 

Nature 409, 46 (2001). 

(2002). 

4710 (1995). 

gates,” Phys. Rev. A 65, 012314 (2001). 

interference,” Phys. Rev. Lett. 59, 2044 (1987). 

63, 030301(R) (2001). 

splitters,” Phys. Rev. A 64, 062311 (2001). 

tion limit,” Phys. Rev. Lett. 85, 2733 (2000). 

and photon statistics,” Phys. Rev. A 40, 1371 (1989). 

Fredkin gate,” Phys. Rev. A 64 063814 (2001). 

create large-photon-number path entanglement,” Phys. Rev. A 65, 030101 (R) (2002). 

photodetection,” Phys. Rev. A 65, 052104 (2002). 



16. J.  Fiurasek, “Conditional generation of N-photon entangled state of light,” Phys. Rev. A 65, 053818 (2002). 
17. X.B. Zou, K. Pahlke, and W. Mathis, “Generation of entangles photon states by using linear optical ele- 

18. N.J. Cerf, J. Fiurasek, S. Iblisdir, and S. Massar, “Generation of large photon-number cat states using linear 

19. J.J. Bollinger W.M. Itano, and D.J. Wineland, and D.J. Heinzen, “Optimal frequency measurements with 

20. C.M. Caves, “Quantum mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981). 
21. B. Yurke, “Input state for enhancement of fermion interferometer sensitivity,” Phys. Rev. Lett. 56, 1515 

22. B. Yurke, S.L. McCall, and J.R. Klauder, “SU(2) and SU(1,l)  interferometers,” Phys. Rev. A 33, 4033 

23. M.J. Holland and K. Burnett, “Interferometric detection of optical phase shifts at the Heisenberg limit,” 

24. B.C. Sanders and G.J. Milburn, “Optimal quantum measurements for phase estimation,” Phys. Rev. Lett. 

25. T. Kim et al., “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated 

26. D.W. Berry and H.M. Wiseman, “Optimal states and almost optimal adaptive measurements for quantum 

27. J.P. Dowling, “Correlated input, matter-wave interferometer: Quantum-noise limits to the atom-laser gyro- 

28. P. Grangier, J.A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics,” Nature 

29. G. Nogues et al., “Seeing a single photon without destroying it,” Nature 400, 239 (1999). 
30. P. Kok, H. Lee, and J.P. Dowling, “Single-photon quantum nondemolition detectors constructed with linear 

31. H.-J. Briegel, W. Diir, J.I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations 

32. C.H. Bennett et al., “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. 

33. N. Liitkenhaus, J. Calsamiglia and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 

34. S.L. Braunstein and A. Mann, “Measurement of the Bell operator and quantum teleportation,” Phys. Rev. 

35. T.B. Pittman, B.C. Jacobs, and J.D. Franson, “Demonstration of nondeterministic quantum logic operations 

36. P. Kok, C.P. Williams, and J.P. Dowling, “Practical quantum repeaters with linear optics and double-photon 

37. 0. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single 

ments,’, Phys. Rev. A 66, 014102 (2002). 

optics and quantum memory,” quant-ph/0210059 (2002). 

maximally correlated states,” Phys. Rev. A 54, R4649 (1996). 

(1986). 

(1986). 

Phys. Rev. Lett. 71, 1355 (1993). 

75, 2944 (1995). 

photons,” Phys. Rev. A 57, 4004 (1998). 

interferometry,” Phys. Rev. Lett. 85, 5098 (2000). 

scope,” Phys. Rev. A 57, 4736 (1998). 

396, 537 (1998). 

optics and projective measurements,” Phys. Rev. A 66, 063814 (2002). 

in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998). 

Rev. Lett. 76, 722 (1996). 

59, 3295 (1999). 

A 51, R1727 (1995). 

using linear optical elements,” Phys. Rev. Lett. 88, 257902 (2002). 

guns,” (in press) Phys. Rev. A, quant-ph/0203134 (2002). 

quantum dot,” Phys. Rev. Lett. 84, 2513 (2000). 




