
Probabilistic Risk Reduction

Martin S. Feather, Steven L. Cornford, Leila Meshkat James D. Kiper
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dry Pasadena CA 9 1 109-8099

{ MartinSFeather, Steven.L.Cornford,
Leila.Meshkat } @Jpl.Nasa.Gov

Abstract
We present an integrated approach to risk assessment

and risk mitigation that is well suited to planning the
development of complex software systems.

Our integrated approach is able to derive estimates of
the costs and benefits (in terms of qualities of the
developed product) at the time of planning a
development. It accommodates both process knowledge
(the efficacy of development practices) and product
knowledge (the logical structure of the system under
development). Functional and non-functional aspects of
sofiare can also be accommodated, and trades made
among them. Optimization - selecting the best suite of
process steps and design choices to maximize the
expectation of success while remaining within budget -
becomes possible.

The key to this is the integration of two complementary
methods for reasoning about risks. One set of methods is
that found in the area of Probabilistic Risk Assessment,
specifically its methods ,for reasoning over logical fault
trees. The other set of methods come from an early-
lifecycle risk assessment and risk mitigation planning
method that we have been developing and applying to
spacecraft technology.

The integration of the two methods we call
“Probabilistic Risk Reduction”, to draw attention to its

probabilistic treatment of risk and explicit consideration
of what can be done to reduce it.

1. Introduction
Risk is an important and recurring concern in system

development. The field of probabilistic risk analysis
(PRA) has developed methods to assess risks within
complex systems. The key idea of PRA is to deduce the
reliability of a system from knowledge of the system
structure and knowledge of the reliability of the individual
components from which the system is composed.
Application of PRA techniques yields an overall
assessment of a system’s reliability, confidence measures
of that assessment, and insight into the key vulnerabilities
of that system, thus indicating areas most in need of
improvement. PRA is especially useful when a system is
both expensive and safety-critical, rendering system
testing impractical as a means to gain sufficient

Dept. of Computer Science &
Systems Analysis
Miami University
Oxford, OH 45056

kiperjd@muohio.edu

confidence in its reliability. The origins of these
approaches lie in applications to assess risk in the nuclear
power industry [NRC, 19751, with its need to estimate the
probability of catastrophic failure (e.g., meltdown) from
knowledge of the power system’s design, and reliability
measures for the components used in that design. Fault
Tree Analysis [Vesely et al, 19811 is now applied to a
wide variety of systems, including some NASA missions
and their hardware and software components WASA

We have been developing a complementary approach
to risk based planning, the key to which is the explicit
representation and reasoning about the risk-reducing
actions taken during development.

We show how our risk based planning approach can be
combined with traditional PRA. This yields an integrated
approach we call “Probabilistic Risk Reduction” well
suited to planning the development of complex systems.
The planning stage of a software development is a
challenging time - information is sparse; few formal
artifacts exist yet (e.g., code is unavailable to analyze, test,
etc). Yet, the planning stage is the time of maximal
influence on the course of the development to follow.

Our integrated approach is able to derive estimates of
the costs and benefits (in terms of qualities of the
developed product) at the time of planning a development.
It accommodates both process knowledge (the efficacy of
development practices) and product knowledge (the
logical structure of the system under development).
Functional and non-functional aspects of software can also
be accommodated, and trades made among them.
Optimization - selecting the best suite of process steps
and design choices to maximize the expectation of success
while remaining within budget - becomes possible.

The remainder of the paper is organized as follows:
Section 2 summarizes the salient points of our risk

Section 3 motivates the need for a combination of

Section 4 gives details of our tight integration between

Section 5 provides a discussion, summary of related

PRA, 20021

assessment process.

approaches.

PRA and our risk assessment process.

work. status and future work.

mailto:Jpl.Nasa.Gov
mailto:kiperjd@muohio.edu

2.
based planning: Defect Detection and
Prevention

A complementary approach to risk-

At JPL and NASA we have been developing and
applying a risk-based approach to assist early-lifecycle
planning of complex system developments. The approach
is called “Defect Detection and Prevention” (DDP), the
name reflecting its origins as a method intended for
quality assurance planning of hardware systems [Cornford
19981.

Various aspects of DDP have been described in
previously published papers: overviews of its status and
application are in [Cornford et al, 20011, [Cornford et al,
20021; the look and feel of the tool support in [Feather et
al, 20001. Here we provide a summary of DDP’s risk-
based reasoning as a prelude to the main contribution of
the paper, the integration of PRA and DDP.
2.1. Risk calculation

Most risk assessment methods separate the expression
of a risk‘s impact (a.k.a. “severity” or “consequence”)
from its likelihood of occurrence. It is usual to calculate
the risk (a.k.a. risk “exposure”) by multiplying these two
values. Even when purely qualitative measures are given
(e.g., likelihood and impact values can be one of “low”,
“medium” or “high”) the painvise combinations of these
qualitative values are typically grouped into a qualitative
approximation of the product (e.g., the overall risk is
deemed to be “high” for likelihood & impact pairs
medium & high, high & high and high & medium).
Whether qualitative or quantitative, the separate
expression of those two kinds of values, followed by
calculation of their composite affect, is used in order to:

achieve a better risk assessment, by basing it on
simple information (separate expressions of
likelihoods and impacts) from which to calculate
the risk (as compared to attempting to directly
assess the composite risk exposure),
allow the distinction between different cases that
lead to the same exposure, e.g., low-probability
high-impact risks, and high-probability, low-
impact risks,
suggest ways to reduce risk, e.g., if the likelihood
is high and consequence low, then there may exist
quick and easy ways to decrease the likelihood.

The hallmark of DDP is further separations, among the
risks themselves, the objectives that those risks threaten,
and the measures taken to reduce risk. The key aspects of
DDP are summarized in the subsections that follow.
2.2. DDP’s Objectives, Risks and Mitigations

The DDP process deals with three key sets of data:
Objectives, Risks and Mitigations.

Objectives (a.k.a. Requirements) are the things that the
system is to achieve, and the limitations within which it

must operate. Objectives are assigned different “weights”
to reflect their relative importance.

Risks are all the kinds of things that, should they occur,
would lead to failure to attain Objectives. In the software
realm, “defects” and “bugs” are analogous terms. Risks
are assigned an “a-priori” likelihood, namely the
likelihood of that Risk occurring if nothing is done to
prevent it. Risks are assigned a cost of “repair“ (a.k.a.
“correction”). This is the cost of repairing the problem -
for example, the cost of fixing a coding bug, or the cost of
adding a missed requirement. In the software engineering
community it is widely understood that these costs
escalate through the course of the software lifecycle (e.g.,
the cost of correcting a flawed requirement at
requirements time vs. at design time vs. at coding time vs.
at unit test time vs. at system test time vs. after release). In
the DDP model Risks are assigned time-specific repair
costs that capture this escalation.

Mitigations are the actions that could be applied to
reduce Risks. These could be preventative measures, tests,
analyses, inspections, reviews, redundant design elements,
etc. Each Mitigation is assigned a cost, namely the
resource costs of applying it. In our world of spacecraft
development, there are typically several kinds of critical
resources, e.g., budget ($), mass, volume, electrical
power. Each Mitigation is also assigned a time, typically
the “phase” in the development effort at which it is
applied (e.g., requirements time, design time, coding
time). It is possible to use other time scales (e.g., financial
quarters or, for long duration developments, years).
2.3. Risk Basis

Most risk assessment processes take as starting point a
design, and focus on the risks remaining in that design.
The (potentially many) steps of the design process that
assure that design’s quality are encoded within the high
reliabilities assigned to its components. For example,
under the assumption of programmers skilled in the
domain of the project under development, the number of
coding defects attributable to domain misunderstandings
will be small.

In contrast, DDP takes as starting point a design in
which the existence and benefits of its quality assuring
steps are made explicit. The risks remaining in the design
are calculated from the a-priori risks, and the risk
reductions effects of those steps. The potential advantages
that accrue from DDP’s approach are that it may:

achieve a better risk assessment, by basing it on
simple information (separate expressions of a-priori
risk likelihoods and risk reducing effects) from which
to calculate the residual risks (as compared to
attempting to directly assess the residual risk)
permit tradeoff decision making to help choose which
(out of potentially many) risk reducing actions to
employ

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 2 of 11

clarify the purpose of risk reducing actions (e.g.,
system tests may uncover a wide variety of defects;
however, if they are the primary means of validating
system requirements, then the crafting and execution
of those system tests should be approached with this
in mind)
allow the distinction between different cases that lead
to the same risk (e.g., risk reduction achieved by
prevention vs. risk reduction achieved by testing).

The primary utility of this in the software engineering
setting is to help (1) plan a software development effort,
and (2) assess the reliability of the software that results.

Advance planning is obviously necessary - budgets
must be allocated, teams formed, etc. Furthermore,
improved decision making at planning time has the most
scope to influence the entire development effort to follow.
However, the obvious challenge is the lack of information
available at planning time. For example, consider software
reliability engineering techniques based on measuring the
number of defects discovered during testing to indicate
when a product is ready to release. These are clearly
useful at testing time, but by then it is too late, for
example, to make a change to how much inspection of
requirements is done, because that development phase is
long passed,

Probabilistic Risk Assessment methods are not well
suited to software reliability assessment, since software
does not “fail” in the same way that hardware does.
Rather, it has latent defects that may surface during
operation. The DDP approach supports a focus on the
efficacy of the development steps taken to prevent,
remove and alleviate defects, i.e., into account process
knowledge for reliability assessment purposes.
2.4. Impacts and Effects

The DDP process deals with quantitative relationships
that link Objectives, Risks and Mitigations, as follows:

Impacts are the quantitative relationships between
Objectives and Risks, namely the proportion of the
objective attainment that would be lost should the Risk
occur. A risk can impact multiple requirements to
different extents, and similarly a requirement can be
impacted by multiple risks, again to different extents.

Efsects are the quantitative relationships between
Mitigations and Risks, namely the proportion by which a
Mitigation reduces a Risk should that Mitigation be
applied. A Mitigation can effect multiple Risks to
different extents, and similarly a Risk can be effected by
multiple Mitigations, again to different extents.
2.5. Categories of Mitigations

Mitigations are subdivided into three important
categories:

Preventions - these prevent Risks from arising in the
first place. In the DDP model, they act to decrease the

Risk likelihoods. Software examples are: training of
programmers, establishment of coding standards.

Alleviations - these decrease the severity of Risks
should they occur. In the DDP model, they decrease the
Impacts that Risks have on Objectives. A software
example would be to have a module check that its inputs
are indeed in the valid range expected - the check does
nothing to decrease the likelihood of invalid input, but it
allows the module to recognize the situation and respond
gracefully rather than fail catastrophically.

Detections - these prevent Risks from occurring (i.e.,
having their detrimental impact on Requirements). As the
name suggests, they work by detecting the presence of a
Risk, with the assumption that Risks so detected are then
“repaired”. In the DDP model, they decrease the
likelihood that the Risk will occur. A wide range of
software practices fall into this category, for example,
testing activities (e.g., unit testing, system testing, stress
testing), analyses (e.g., the many forms of static analysis,
model checking, theorem proving) and inspections (e.g.,
peer reviews, code walkthroughs, formal inspections
(Fagan, etc)).

The DDP model also captures the phenomenon of a
Mitigation that can make some things worse. For example,
using an elaborate algorithm in order to achieve a
performance speedup may increase the risk of coding
errors. Adding code to measure timing might inadvertently
change the behavior. Correcting one problem may
introduce others. In DDP, such situations are represented
by assigning a negative value to the Effect link between a
Mitigation and a Risk. This is further subdivided into one
of two kinds - effects that “induce” a Risk (increase the
likelihood of that Risk) and effects that “aggravate” a Risk
(increase the impact of the Risk).
2.6. DDP’s quantitative calculations

The “topology” of a DDP model is shown in Figure 1.
Benefits are the sum of attainment of objectives, and
Costs are the sum of mitigations and risk (defect) repairs.

Benefit = C clttninment of Objectives

Cost = C cost of Mitigations & Repairs

Figure 1. Topology of DDP model
Mitigations reduce Risk likelihoods andor impacts, and
thereby lead to increased attainment of Objectives. In the
limited space available in this paper we have room only to

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 3 of 11

convey a feel for these quantitative calculations. by
describing one of them:

Multiple Mitigations’ effects on the same Risk
combine essentially like filters arranged in series, so that
their combined effectiveness is the complement of the
product of the complements of their individual
effectivness. For example, if two Mitigations have effects
on the same Risk of 0.1 and 0.2, then their combined
effect is (1 - (1 - 0.1)*(1 - 0.2)) = 0.28. In other words, if
the first one removes 10% of its incoming risks (leaving
go”/), and the second 20% of those 90%, what remains is
72% - a net combined effectiveness of 28%.

A thorough discussion of DDP’s quantitative nature
may be found in [Feather & Comford, 20031.
2.7.

DDP has been used to assess risks and plan their
mitigation for a variety of spacecraft-related technology
developments, software, hardware and combinations of
both. The key steps of the DDP process are:

Gather the DDP information (Objectives, Risks
and Mitigations, and the Impacts and Effects that
link them). Information may come from previously
assembled knowledge bases [Kurtz & Feather,
20001, and/or on-the-fly elicitation from experts.
Perform the quantitative calculations, and present
the information to the experts for scrutiny and
revision. The DDP software automates the
calculations, and offers a variety of cogent
visualizations of the results.
Select mitigations that cost-effectively reduce risk.
The quantitative representation makes possible the
treatment of risk mitigation as an optimization
problem (e.g., select the mitigations that lead to
maximal attainment of requirements while costing
no more than some given limit) [Comford et al,
20031. Another outcome of the DDP process may
be the revision of the Objectives when they prove
overly costly to attain [Feather et al, 20021.

The amount of information taken into account in these
DDP-based risk studies is typically detailed and highly
coupled. This accounts for the need for an appropriate

Use of DDP in practice

1.

2.

3.

process and accompanying tool support. A sense of the
detail can be seen from Figure 2, which shows the
topology of the data in an actual DDP application.

3. Combining PRA and DDP
Over the past year we separately applied PRA and

DDP to the same spacecraft design. This gave us insights
into the relative strengths and weaknesses of each
approach and motivated us to seek their combination
[Comford et ai, 20031.
3.1.

In brief, the comparison showed DDP’s relative
strengths to be the ability to capture the wide range of
risks that threaten a development, and to plan risk
mitigation accordingly, and showed PRA’s relative
strengths to be the ability to faithhlly represent the
interplay of faults in combination, and to pinpoint areas of
vulnerability in such combinations.

From that study we identified a loosely coupled way to
integrate PRA and DDP. The essence of our vision was
iteration between the two techniques. We could see that
starting with DDP would allow the rapid pinpointing of
the riskier areas of the project plan. This would suggest
the areas to which PRA could then be applied to study in
more detail. The improved likelihood and consequence
estimates would be fed back into DDP, and the risks re-
ranked. Continuing this iteration would hrther refine the
accuracy of the risk assessment in the areas that mattered
the most.

Such a loosely coupled integration would do better
than either technique alone, but would fall short of a true
combination of the strengths of each technique. It is the
goal for such a combination through the tight integration
of the two techniques that is the focus of this paper. From
the topology of an actual DDP project shown in Figure 2
it is obvious that DDP differs from the event diagrams and
fault trees common to PRA approaches in two key ways:

DDP, by explicitly representing objectives, has a
finer-grained notion of success, and by explicitly
representing mitigations allows for reasoning to
encompass choice from among those mitigations.

Comparison of PRA and DDP

Figure 2. Topology of the data in a DDP application

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 4 of 11

Conversely, PRA, by explicitly representing the
logical structure of faults, has a more faithful
representation of how faults combine. DDP can
only approximate this, or rely on users to manually
encode different combinations of faults as distinct
“Risks”, and manually score each of them. (While
possible, this is prohibitively tedious in all but the
simplest of cases).

A tight integration of the two would combine (1) the
strengths of DDP at representing multiple criteria
(Objectives) and at facilitating codbenefit reasoning to
guide selection of Mitigations, and (2) the strengths of
PRA at representing the influence of the design on the
structure of the possible failures of that design.
3.2. Approach to tightly integrating PRA and

DDP
Our approach to the tight integration of PRA and DDP

is to embed PRA fault trees, and all the PRA reasoning
that goes with them, into the center of the DDP topology.
This is sketched in Figure 3. The fault tree structures of
PRA replace the simple list of risks in DDP (the standard
DDP program does use a tree hierarchy to organize risks,
but it is merely a taxonomy), To make the sketch simple,
the fault trees are drawn as if there are no shared events
(“common cause” events of fault trees) within a tree or
between trees. In practice, there may be, and the combined
approach must be able to accommodate them.

Benefit = Z a+tainment of Objectives Impdcts

Risk
fault
trees

Effects

Mitigations

Cost = C cost o f Mitigations & Repairs

Figure 3. Topology of combined PRA and DDP
Within our integrated approach, the usual gamut of

PRA techniques are available for calculating likelihoods
of faults trees, identifying cut sets, performing sensitivity
analysis, etc. DDP relationships are used to capture how
those fault trees are related to Objectives, and on how the
Mitigation actions effect the likelihoods of the leaf nodes
of those fault trees, allowing the cost-benefit based
reasoning of DDP to apply to the whole. The next section
presents this in more detail.

4.
4.1. Objectives and Fault Trees

Standard DDP “Impact” links connect Risks to the
Objectives they threaten, using each link’s quantitative
measure to represent how much of the Objective would be
lost were the Risk to occur. In the tight integration of PRA
and DDP these same Impact links now connect the root
nodes (“top events” in PRA terminology) of logical fault
trees to Objectives. The probabilities of occurrence of
these root nodes are calculated by means of the PRA
techniques from the logical structure of the fault trees and
the likelihoods of the leaf nodes of those fault trees. As we
shall see in the next subsection, DDP’s “Effect” links
come into play to determine the likelihoods of those leaf
nodes.

On occasion it is also necessary to relate Objectives to
inferior root nodes of fault trees. For example, a space
mission could have multiple science Objectives, one being
a science experiment that needs battery power, another
being the demonstration of a novel battery technology.
The interesting case is when there is a standard battery to
support the experiment, but the spacecraft design allows
for the experiment to make use of the novel battery
technology in the event that the standard battery fails.
Thus the fault tree of risks to the science experiment
would contain within it the subtree of risks to the novel
battery. The root node of the no-power-available fault tree
would be linked to the science experiment Objective, and
the interior subtree of risks to the novel battery would be
linked to the novel battery demonstration Objective.
4.2. Fault Trees and Mitigations

Standard DDP “Effect” links connect Mitigations to
the nodes within the fault trees that they reduce (by
decreasing the likelihood or decreasing the impact) or
increase (for Mitigations that make some risks worse).
The kind of Mitigation - prevention, alleviation or
detection - determines the nature of the reduction, and the
way the reduction combines with the fault tree, as
discussed in the subsections that follow:
4.2.1 Prevention Mitigations and Fault Trees

“Prevention” type Mitigations can only be connected to
leaf nodes (“basic events” in PRA terminology) of fault
trees. Intuitively, this is because a non-leaf node of a fault
tree correspond to logical combinations of that node’s
children. Hence the only way to effect its occurrence is to
effect the occurrence of those children; applying this line
of reasoning recursively, we see that this leads to affecting
the occurrence of the leaf nodes (basic events) of the fault
trees. Prevention mitigations serve to reduce the
likelihoods, i.e., in PRA terminology, they decrease the
“likelihood” half of the equation: risk = likelihood x
severity. See Figure 4 for a sketch of where they fit in to
the picture of DDP with fault trees.

Tight integration of PRA and DDP

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 5 of 11

I

Reduces
-. ..._... these

“*‘.events*
a,.. I?.. J MZ Prevention likelihoods

Figure 4. Prevention Mitigation’s effects on fault trees

As a simple example of this in the realm of software,
consider the development of a large system for which
security is one of the concerns. Security analysis might
employ a fault tree to study vulnerabilities (e.g., [Helmer
et al, 20021). At the time of planning the development of
the system, the project leads need to decide which, if any,
training courses they should schedule their development
team to take. A course on nework security could serve as a
preventative measure - decreasing the likelihood that the
programmers will make coding errors that contribute to
security vulnerabilities (e.g ., fail to check for buffer
overflow).
4.2.2 Alleviation Mitigations and Fault Trees

“Alleviation” type Mitigations are generally connected
to the root nodes of fault trees, because it is the
occurrence of these faults that detract from objectives
attainment via the “Impact” links. Alleviation mitigations
serve to reduce the impacts, i.e., in PRA terminology, they
decrease the “severity” half of the equation: risk =

Reduces these impacts

@ Alleviation

Figure 5. Alleviation Mitigation’s effects
on fault trees

likelihood x severity. See Figure 5 for a sketch of where
they fit in to the picture of DDP with fault trees.

The case of a non-root node of a fault tree linking to an
Objective (recall “novel battery technology” example)
would be an exception to this rule - it would make sense
to link an Alleviation-type Mitigation to that non-leaf
node. (Note: in an even more elaborate model, we might
link Alleviations to individual Impact links, allowing for

the possibility that an Alleviation’s Effectiveness differs
from Impact to Impact).
4.2.3 Detection Mitigations and Fault Trees

“Detection” type mitigations (e.g., tests, analyses,
inspections) detect the presence of faults. They can thus
apply to any of the nodes in a fault tree: root node (top
event), leaf node (basic event) or interior node! However,
detection type mitigations achieve their risk-reducing
benefits by leading to the repair of the faults they detect.

In the case of detection of a leaf node fault, the
situation is straightforward - repair decreases the
likelihood of that leaf node. When the standard PRA
techniques are used to calculate fault tree likelihoods, they
base their calculations on the decreased likelihoods that
result from such repairs. A simple example is shown in
Fig. 6, where a “Detection” type Mitigation MI is applied
to the left leaf node of a fault tree with a single “And”
gate. If the mitigation is not applied, the likelihood of the
root node of the fault tree is calculated as shown in the left
side of the figure; since it is an “And” gate, the likelihood
of the root node is the product of the likelihoods of its
children, i.e., 0.8 x 0.6 = 0.48. If the mitigation is applied,
its effect is to reduce by half the likelihood of the left
child, from 0.8 to 0.4. Hence, the likelihood of the root
node now becomes 0.4 x 0.6 = 0.24.

0.8 x 0.6 = 0.4 x 0.6 =
0.48 0.24
0 0

0.8 e k 0.6 J d e k 0.6

Effect = 0.5
-0.4 I

Detection

Figure 6 . Detection Mitigation effect on a
leaf node of a fault tree

In the case of detection of a non-leaf-node fault (e.g.,
system test applied to a system composed of several units)
the situation is more interesting - repair equates to tracing
to the cause(s) of that fault, namely the leaf nodes of the
subtree, and repairing them (Le., decreasing their
likelihoods of occurrence). However, the allocation of
causes to leaf nodes, and hence the repairs, is not uniquely
determined. For example, suppose a detection mitigation
with effectiveness of 0.5 applies to the root node of Figure
6. One solution would be to halve the likelihood of the left
of the leaf nodes; another would be to halve the likelihood
of the right of the leaf nodes; others would be to apportion
the likelihood reductions between the two. To handle this
case, we make the key assumption that:

The effect of a detection type mitigation on a fault
tree’s parent node has the effect of decreasing in the

same DroDortion the likelihoods of its children.

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 6 of 1 I

,

For example, suppose the mitigation is a system test,
and the system is composed of two components, both of
which must function correctly if the system is to function
correctly - i.e., its fault tree would use an “or” node (a
fault in of either component would produce a fault in the
system). Faults discovered by a system test must result
from faults in one or both of its units. If one of the units is
more error prone than the other, then presumably the
system test will reveal more errors attributable to that unit.
Our assumption of proportionality captures this
phenomenon - the proportion of errors of a more error
prone unit will be a larger number of errors than the same
proportion but of a less error prone unit. In the extreme
case of one of the two units being perfect (error free), then
any proportion of its errors will be zero errors.

Several ramifications stem from this key assumption,
considered in the subsections that follow.
4.2.4 Detection Mitigations and “And” gates

If a Detection Mitigation with effect E is applied to an
“And” gate consisting of m children, then by our key
assumption, each of the gates’ children’s likelihoods are
decreased in the same proportion. In fact, their likelihoods
become multiplied by the same factor k, such that k = the
m’th root of (1-E), Le., k = (1-E)””’.

P i x P2
0.8 x 0.6 = 0.5 x 0.48

= 0.48 = 0 24
Effect = 0.5

0.8 A 0 . 6
P i -p2 Detection

’ Suppose: p i = 0.8 x k;
Then: (k x 0.8) x (k x 0.6) = 0.24
SO: k x k = 0.24 / 0.48
Hence: k = 40.5, p i = 0.8 x 40.5, p2 = 0.6 x 40.5

p2 = 0.6 x k

Figure 7. Detection Mitigation effect on a root
node of a fault tree, percolating to its leaf nodes

Figure 7 shows a simple example. The left of the figure
shows the likelihood calculation for a simple “And” gate.
Now suppose that a Detection Mitigation with effect 0.5 is
applied to the root node. In order to achieve a 50%
reduction in the root node likelihood (from 0.48 to 0.24),
we can compute that k = 0.5’”. Thus the likelihood of the
left leaf node drops to 0.8 x and of the right leaf
node to 0.6 x so that the likelihood of the root node
drops to 0.8 x 0.51/2x 0.6 x
4.2.5 Detection Mitigations and “Or” gates

The likelihood of an “or” gate with children whose
likelihoods are L1, Lp, ... L, is (1 - (I-Ll) x (I-L2) x ... x
(1 -L,)). If a Detection Mitigation with effect E is applied
to such an “Or” gate, then by our key assumption, each of
the gate’s children’s likelihoods are decreased in the same

= 0.8 x 0.6 x 0.5 = 0.24.

proportion. Let k be the factor by which each likelihood is
multiplied. We can derive k from the following equation:

(1-E) x (1 - (1 - Ll) x (1 - L2) x ... x (1 - L,)) =
(I - (l - k x L l) ~ (l - k ~ L 2) ~ ... x(I-kxL,))
Figure 8 shows a simple example. The left of the figure

shows the likelihood calculation for a simple “Or” gate.
Now suppose that a Detection Mitigation with effect 0.5 is
applied to the root node. In order to achieve a 50%
reduction in the root node likelihood (from 0.48 to 0.24),
we can compute that k = 0.38 (approximately).

(1 - (1 - 0.8) x (1 - 0.6))
= 1 - 0.08 = 0.92

(1 - (1 - 0.8k) X (1 - 0.6k))
= 0.92 x (I - 0.5) = 0.46

0.8 A o.6 w&-33°.5 Detection

0.8k 0.6k
= 0.3 ~ 0 . 2 3

Solve for k s.t. 0.48F - 1 . 4 + 0.46 = 0:

Figure 8. Detection Mitigation effect on an “Ar” node
of a fault tree, percolating to its leaf nodes

A surprise - structure does matter

k = 0.38

4.2.6
A surprising consequence of our scheme to handle

detection mitigations is that difference in structure among
logically equivalent fault trees does matter.

For example, consider the system structure shown in
Figure 9, consisting of an “ A n d of two units, with fault
likelihoods of 0.8 and 0.64 respectively.

0.8 x 0.64 = 0.512

0.8 A 0.64
0.8k x 0.64k = 0.512 x 0.5 = 0.256

MI betection
40.5 k = p’d mff f l ~ c t = 0.5

0.57 0.45

Figure 9. Risk Mitigation through one layer
The lower half of the figure shows the risk reductions

following application of a detection type Mitigation that
cuts the system fault likelihood by half. Following our
scheme, this is achieved by the same proportional
reduction of the likelihoods of its two children. The left
one’s likelihood decreases from 0.8 to 0.57, the right one
from 0.64 to 0.45.

Suppose that the right hand unit (the one with initial
fault likelihood of 0.64) is in fact composed of two units
of its own, each with initial fault likelihood 0.8. (Figure
10, top half) Then, the reduction of the fault likelihood of
that unit, from 0.64 to 0.54, is in turn achieved by

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 7 of 11

proportionally reducing the fault likelihoods of its
children. (Figure 10, bottom half).

0.8 x 0.64 = 0.512
0 O18$0,; 0.8 = 0.64

w
0.256

Effect = 0.5

Figure 10. Risk Mitigation through a two-layer tree
Now consider a logically equivalent, but structurally

distinct, configuration of the same three leaf nodes, as
three children of a single “and” node. (Figure 11, top
half). In this situation, the effect of a detection Mitigation
propagates evenly among the three children. (Figure 1 1 ,
bottom half). Observe that all three leaf nodes began with
likelihoods of 0.8, and end with likelihoods of 0.63. In
contrast, in the structure shown in Figure 10, while all
three leaf nodes began there with likelihoods of 0.8, they
end with likelihoods of 0.57.0.67 and 0.67.

0.8 x 0 .8 x 0.8 = 0.512
?

0.8 ek 0 .8
4

0.8

0.8k x 0.8k x 0.8k = 0.512 x 0.5 = 0.256

ctcction
Effect = 0.5 p’b

0.63

9’6
0.63

Figure 1 1. Risk Mitigation among three children
The intuition we attach to this phenomenon is that the

system structure influences how the testing of that system
is likely to reveal faults in its units. For example, a system
level test is more likely to reveal faults in units that are
close to that system level than units that are many levels
deep. In Figure 10, the one unit closer to the top has more
of its faults detected than either of the two units deeper
within the subsidiary “And” gate.

It follows that it is important that the fault tree
structure reflect the architecture of the application. By
contrast, traditional analyses of fault trees are insensitive
to logically equivalent reorganizations.

4.3. Repair costs of “Detection” Mitigations
applied to fault trees

In the DDP model, detection type mitigations incur
both a cost of performing the mitigation (e.g., running the
test) and a cost of repairing the flaws they detect (e.g.,
correcting the bugs). This carries over smoothly into the
integration with P M ’ s fault trees. As discussed in the
previous subsections, the risk-reducing effect of applying
a detection type mitigation is percolated down to the leaf
nodes of the fault tree, where reductions take place on the
basic event likelihoods. These reductions are, in fact, the
results of repairs, and so the cost incurred in performing
them is the product of the unit repair cost and the number
of repairs made (note that the number of repairs is
proportional to the drop in likelihood - e.g., if as a result
of detection and repair the individual fault likelihood
dropped from 0.7 to 0.3, then the number of repairs must
be proportional to that drop of 0.4).
4.4. Common cause failures (shared nodes)

Common causes of failure - shared events in fault trees
- significantly complicate the standard calculation of fault
tree likelihoods. In interests of efficiency, many PRA
tools perform approximate calculations that ignore second
order effects from these - such approximations are often
acceptable because the high reliability systems they study
are built from high reliability components, so products of
their tiny likelihoods are extremely small. For our
purposes of calculating likelihoods from first principles
(i.e., from a-priori risk likelihoods, then reduced by
Mitigations), the likelihood numbers we deal with need
not be tiny, so the same kind of approximations are
inappropriate, and the more computationally complex, but
more accurate, likelihood calculation is required.
Recently, some PRA tools have started to make use of
Binary Decision Diagram (BDD) representations to
perform the calculations in an efficient (or in most cases
efficient) manner without resorting to approximations,
e.g., the Galileo tool of [Manian et al, 19981.

For fault trees with common cause failures, we are
currently experimenting with an approach in which the
reductions are percolated down using the same algorithm
as described earlier. The calculations may yield differing
likelihood reductions for the multiple instances of the
shared event, in which case we choose the greatest of
these reductions as the one that applies to all its instances.
Our reasoning is that this is the greatest likelihood
reduction corresponds to having identified the most faults
in that unit, so, on the assumption that we repair all those
faults, the benefit of the repair (Le., the decreased fault
likelihood) is available wherever it occurs in the fault tree.

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 8 of 1 1

5. Discussion
5.1. Significance

Our work represents a fimdamental first step towards
the merging of elements drawn from two (currently
somewhat disparate) themes of software engineering: (1)
process centric approaches (e.g., CMM, ISO, TSP), and
(2) artifact centric approaches.

In the former, the emphasis is on populating and
organizing the development effort so as to promote the
attainment of a quality result in a predictable and timely
fashion. In the latter, the emphasis is on means to assess
the quality of the software artifacts themselves, regardless
of the process by which they were produced. Our in-house
DDP approach falls into the former theme, with its
explicit treatment of the effect of quality steps on
preventing, removing and alleviating defects. PRA
techniques fall into the latter theme, with their emphasis
on deriving reliabilities and insights into system
vulnerabilities through calculation based on the structure
of the artifact under consideration.

The integration of PRA and DDP that we have
described, while still in its infancy, indicates that there is a
rich area of study in seeking a blend of strengths drawn
from both the process-centric and artifact-centric
endeavors.
5.2. Summary and Status

We have described an integration of the logical fault
trees of traditional Probabilistic Risk Assessment methods
and the explicit treatment of Objectives and Mitigations of
our own risk assessment method. The combination
achieves the strengths of both approaches, namely that it
(1) permits the simultaneous consideration of a wide
variety of risks and objectives, (2) enables knowledge of
the system development steps effects on risk to be taken
into account, and (3) allows for costhenefit based
reasoning about risk reduction.

The status of our work is that all of the probabilistic
risk reduction calculations described in this paper have
been incorporated within the DDP software. Requests for
DDP may be made via the site http://ddptool.jpl.nasa.gov
5.3. Related work

The work that comes closest in spirit is that of Fenton
et al. We share the motivation that they express in [Fenton
& Neil, 19991 for improved techniques that are able to
take into consideration defect prevention, detection and
correction. The have made use of Bayesian Belief
Networks to combine knowledge of causal structure with
evidence (expert judgments and/or historical records) of
the error rates and efficacy of testing, etc. [Fenton et al,
20031. Our approach differs from theirs in adding the
explicit treatment of multiple Objectives, and in
representing the logical fault structures common to PRA
techniques (whereas Fenton et a1 appear to focus
exclusively on the structure of the development process).

There are other approaches that decompose Objectives
(a.k.a. “Requirements” or “Goals”) so as to assess and
plan suitable developments. Notable among these is the
goal-tree based “KAOS” work of van Lamsweerde, in
which goals are refined towards specifications of
component behaviors that together achieve those goals.
He has investigated “Obstacles”, the ways in which his
goals can fail to be achieved [van Lamsweerde, 19981.
Obstacles have a close parallel with what we would term
risks. Key differences are that we emphasize a quantitative
treatment, while van Lamsweerde’s emphasis is primarily
logical, and the focus is primarily on the artifact, not the
process by which it is to be developed and its quality
assured.

A somewhat similar treatment of goals is to be found in
the Non Functional Requirements work of Mylopoulos et
a1 [Chung et al, 20001. This has been used to qualitatively
compare the relative strengths and weaknesses of
altemative designs [Mylopoulos et a, 20011. Like van
Lamsweerde’s approach, goal decompositions and
refinements are captured in tree structures. Impediments
are linked to those goals and their refinements,
reminiscent of our “Impact” and “Effect” links. However,
we do not see a corresponding emphasis on the efficacy of
process steps, notably of the kind we would term
“Detection type Mitigations” within their treatment. Also,
to date their approach has been primarily qualitative in
nature.
5.4. Future Work

DDP without logical fault trees has seen extensive
usage. Now that we have built the logical fault tree
capability into DDP, we are ready to seek applications
that make use of it. We feel that a software development,
where there is at least a preliminary notion of the design
or architecture (thus allowing for a fault tree like
treatment) is a promising area for application. We see
software fault tree analysis [Leveson, 19951 being applied
to a wider variety of software problems (e.g., intrusion
detection [Helmer et al, 2002]), so opportunities abound.

We built into DDP a simple logical fault tree capability
(“And” and “Or” gates) to allow us to explore the
ramifications of combining DDP-like mitigations with
PRA-like logical fault trees. However, we have not built
in the other capabilities of PRA tools, e.g., distributions.
The obvious next step is to link DDP directly with an
existing PRA tool. In this direction we have performed
some very preliminary experiments at passing a DDP-
generated fault tree to the PRA tool Galileo and having it
compute the likelihood.

PRA approaches use more complex gates than simply
“And” and “Or” (e.g., ordered “And” gates, where there is
importance to the order in which its constituent events
occur). In order to extend our integration to encompass
these additional kind of gates, we will need to study and

.

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 9 of 11

http://ddptool.jpl.nasa.gov

extend as appropriate the way in which mitigations’
effectiveness distributes over those gates, in a similar
manner to our treatment of detection type mitigations with
logical fault trees.

6. Acknowledgements
The research described in this paper was carried out at

the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration. Reference herein
to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by the United
States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

Numerous individuals have helped with the
development and application of DDP. The blending of
DDP with elements of traditional PRA techniques, and its
application to software development, have benefited from
discussions with John Kelly (JPL), Tim Kurtz (NASA
Glenn), Tim Menzies (WVU & NASA IV&V), Todd
Paulos (JPL) and Burton Sigal (JPL).

7. References
[Chung et al, 20001 L. Chung, B.A. Nixon, E. Yu, & J.
Mylopoulos. “Non-Functional Requirements in Software
Engineering” Kluwer Academic Publishers, 2000.
[Comford, 19981 S.L. Cornford: “Managing Risk as a
Resource using the Defect Detection and Prevention
process” 4th International Conference on Probabilistic
Safety Assessment and Management, 13-1 8 September
1998, New York City, NY, International Association for
Probabilistic Safety Assessment and Management.
[Cornford et al, 20011 S.L. Cornford, M.S. Feather &
K.A. Hicks. “DDP - A tool for life-cycle risk
management”, IEEE Aerospace Conference, Big Sky,
Montana, Mar 2001, pp. 441-451.
[Comford et al, 20021 S.L. Comford, J. Dunphy and M.S.
Feather, 2002, “Optimizing the Design of end-to-end
Spacecraft Systems using Risk as a Currency”, IEEE
Aerospace Conference, Big Sky, Montana, Mar 2002.
[Comford et al, 20031 S.L. Cornford, T. Paulos, L.
Meshkat & M.S. Feather. “Towards More Accurate Life
Cycle Risk Management Through Integration of DDP and
PRA”. To appear in the IEEE Aerospace Conference, Big
Sky MT, Mar 2003.
[Feather et al, 20001 M.S. Feather, S.L. Cornford & M.
Gibbel. “Scalable Mechanisms for Goals Interaction
Management”, 4th IEEE International Conference on

Requirements Engineering, Schaumburg, Illinois, 19-23
Jun 2000, IEEE Computer Society, pp 1 19-1 29
[Feather et al, 20021 M.S. Feather, S.L. Comford & K.A.
Hicks. “Descoping”. 2Th NASA IEEE Software
Engineering Workshop, Greenbelt Maryland, Dec.2002

[Feather & Cornford, 20031 M.S. Feather & S.L.
Comford. “Quantitative risk-based requirements
reasoning”, accepted to appear in Requirements
Engineering. Available from:
http://eis.jpl.nasa.gov/-mfeather/AvailablePublications/
[Fenton & Neil, 19991 N. Fenton & M. Neil. “A Critique
of Software Defect Prediction Research”, IEEE
Transactions on Sofmare Engineering 25(5), 1999.
[Fenton et al, 20031 N. Fenton, P. Krause & M. Neil “A
Probabilistic Model for Software Defect Prediction”, To
appear in IEEE Transactions on Software Engineering -
contact Fenton at: norman@dcs.qmw.ac.uk
[Helmer et al, 20021 G. Helmer, J. Wong, M. Slagell, V.
Honavar, L. Miller & R. Lutz. “A Software Fault Tree
Approach to Requirements Analysis of an Intrusion
Detection System”, Requirements Engineering 7(4), pp.

[Kurtz & Feather, 20001 T. Kurtz & M.S. Feather.
“Putting it All Together: Software Planning, Estimating
and Assessment for a Successhl Project”, in Proceedings
of 4th International Sofmare & Internet Quality Week
Conference, Brussels, Belgium, 2000.
[Leveson, 19951 N.G. Leveson. “Safmare: system safety
and computers”. Addison Wesley, Reading, MA, 1995.
[Manian et al, 19981 R. Manian, J.B. Dugan, D. Coppit &
K.J. Sullivan. “Combining various solution techniques for
dynamic fault tree analysis of computer systems”. 3rd
IEEE International High-Assurance Systems Engineering
Symposium, pp. 21-28, 1998.
[NASA PRA, 20021 Probabilistic Risk Assessment
Procedures Guide for NASA Managers and Practitioners,
version I . I, prepared for the Office of Safety and Mission
Assurance, NASA HQ, Washington, DC, August 2002.
[NRC, 19751 Reactor Safety Study, Report WASH-1400,
Nuclear Regulatory Commission, 1975.
[Mylopoulos et a, 20011 J. Mylopoulos, L. Chung, S.
Liao, H. Wang and E. Yu. “Exploring Alternatives during
Requirements Analysis”, IEEE Software 18(I) , pp. 92-96,
2001.
[Vesely et al, 19811 Vesely, W.E., Goldberg, F.F.,
Roberts, N.H. & Haasl, D.F., “Fault Tree Handbook”,
US. Nuclear Regulatory Commission NUREG-0492,
1981.
[van Lamsweerde, 20011 A. van Lamsweerde. “Goal-
Oriented Requirements Engineering: A Guided Tour”, 5th
IEEE International Symposium on Requirements
Engineering, Toronto, Canada, August, pp. 249-263,
2001.
[van Lamsweerde, 19981 A. van Lamsweerde & E. Letier.
“Integrating Obstacles in Goal-Driven Requirements
Engineering”, ICSE98 - 20‘h International Conference on

Software Engineering, IEEE-ACM, Kyoto, April 1998.

207-220,2002.

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 10 of 11

http://eis.jpl.nasa.gov/-mfeather/AvailablePublications
mailto:norman@dcs.qmw.ac.uk

This page provides screenshots taken from our DDP implementation shown operating on a
small hypothetical example. This information is provided as a courtesy to reviewers to

indicate that we do indeed have a working implementation of these ideas.

Risks

2:Performs the wrong response 0 2:Build a table mapping faults to responses (prevention)
3:FP itself gets into an infinite loop 0 3:Model check the FP design (detection)

L- 4:Fails to respond to a fault

-, ma 6:lnternal queues get full
5:Lacking a response for a given fault

7:Flooded with duplicate fault reports
8:Can’t remgnize duplicate fault reports

I

Calculated risk likelihoods when
the “Model check the FP design”
mitigation is applied.

1 Likelihoods

1 :Fault protectioi
2:Performs tt
3:FP itself g E

r-1 Da 4:Fails to res
5:Lackini

R ma 6:lnterna
7:Flo
8:Cat

Calculated risk
likelihoods when
the “Model check
the FP design”and
“System testing”
mitigations are
both applied.

~

Calculated risk likelihoods when
the “Build a table mapping faults”
mitigation is applied.

1 I 1 Likelihoods ;f

1 3:FP itself gets
d ma 4:Fails to respo

5:Lacking a
3 oa 6:lnternal qi

7:Flood
8:Can’t I

f Likelihoods

m a 1 :Fault protection s)
2:Performs the v
3:FP itself gets I

E m a 4:Fails to respo
5:Lacking a

.-” ma 6:lnternal q i
7:Floodi
8:Can’t I

the “System testing” mitigation is

pizzF=A
m a 1:Fault protection sy:

2:Performs the w
3:FP itself gets ir

A 4:Fails to respon
5:Lacking a r

i-, E)a 6:lnternal qui
7:Floode
8:Can’t rt

risk
likelihoods
when all
three
mitigations
are applied.

I-: m a 1 :Fault protection sb
2:Performs the Y
3:FP itself gets i

t’ ma 4:Fails to respoi
%Lacking a

E aa 6:lnternal qu
7:Floodi
8:Can’t r

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 11 of 11

