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Abstract 
We present an integrated approach to risk assessment 

and risk mitigation that is well suited to planning the 
development of complex software systems. 

Our integrated approach is able to derive estimates of 
the costs and benefits (in terms of qualities of the 
developed product) at the time of planning a 
development. It accommodates both process knowledge 
(the efficacy of development practices) and product 
knowledge (the logical structure of the system under 
development). Functional and non-functional aspects of 
sofiare can also be accommodated, and trades made 
among them. Optimization - selecting the best suite of 
process steps and design choices to maximize the 
expectation of success while remaining within budget - 
becomes possible. 

The key to this is the integration of two complementary 
methods for reasoning about risks. One set of methods is 
that found in the area of Probabilistic Risk Assessment, 
specifically its methods ,for reasoning over logical fault 
trees. The other set of methods come from an early- 
lifecycle risk assessment and risk mitigation planning 
method that we have been developing and applying to 
spacecraft technology. 

The integration of the two methods we call 
“Probabilistic Risk Reduction”, to draw attention to its 

probabilistic treatment of risk and explicit consideration 
of what can be done to reduce it. 

1. Introduction 
Risk is an important and recurring concern in system 

development. The field of probabilistic risk analysis 
(PRA) has developed methods to assess risks within 
complex systems. The key idea of PRA is to deduce the 
reliability of a system from knowledge of the system 
structure and knowledge of the reliability of the individual 
components from which the system is composed. 
Application of PRA techniques yields an overall 
assessment of a system’s reliability, confidence measures 
of that assessment, and insight into the key vulnerabilities 
of that system, thus indicating areas most in need of 
improvement. PRA is especially useful when a system is 
both expensive and safety-critical, rendering system 
testing impractical as a means to gain sufficient 
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confidence in its reliability. The origins of these 
approaches lie in applications to assess risk in the nuclear 
power industry [NRC, 19751, with its need to estimate the 
probability of catastrophic failure (e.g., meltdown) from 
knowledge of the power system’s design, and reliability 
measures for the components used in that design. Fault 
Tree Analysis [Vesely et al, 19811 is now applied to a 
wide variety of systems, including some NASA missions 
and their hardware and software components WASA 

We have been developing a complementary approach 
to risk based planning, the key to which is the explicit 
representation and reasoning about the risk-reducing 
actions taken during development. 

We show how our risk based planning approach can be 
combined with traditional PRA. This yields an integrated 
approach we call “Probabilistic Risk Reduction” well 
suited to planning the development of complex systems. 
The planning stage of a software development is a 
challenging time - information is sparse; few formal 
artifacts exist yet (e.g., code is unavailable to analyze, test, 
etc). Yet, the planning stage is the time of maximal 
influence on the course of the development to follow. 

Our integrated approach is able to derive estimates of 
the costs and benefits (in terms of qualities of the 
developed product) at the time of planning a development. 
It accommodates both process knowledge (the efficacy of 
development practices) and product knowledge (the 
logical structure of the system under development). 
Functional and non-functional aspects of software can also 
be accommodated, and trades made among them. 
Optimization - selecting the best suite of process steps 
and design choices to maximize the expectation of success 
while remaining within budget - becomes possible. 

The remainder of the paper is organized as follows: 
Section 2 summarizes the salient points of our risk 

Section 3 motivates the need for a combination of 

Section 4 gives details of our tight integration between 

Section 5 provides a discussion, summary of related 

PRA, 20021 

assessment process. 

approaches. 

PRA and our risk assessment process. 

work. status and future work. 
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2. 
based planning: Defect Detection and 
Prevention 

A complementary approach to risk- 

At JPL and NASA we have been developing and 
applying a risk-based approach to assist early-lifecycle 
planning of complex system developments. The approach 
is called “Defect Detection and Prevention” (DDP), the 
name reflecting its origins as a method intended for 
quality assurance planning of hardware systems [Cornford 
19981. 

Various aspects of DDP have been described in 
previously published papers: overviews of its status and 
application are in [Cornford et al, 20011, [Cornford et al, 
20021; the look and feel of the tool support in [Feather et 
al, 20001. Here we provide a summary of DDP’s risk- 
based reasoning as a prelude to the main contribution of 
the paper, the integration of PRA and DDP. 
2.1. Risk calculation 

Most risk assessment methods separate the expression 
of a risk‘s impact (a.k.a. “severity” or “consequence”) 
from its likelihood of occurrence. It is usual to calculate 
the risk (a.k.a. risk “exposure”) by multiplying these two 
values. Even when purely qualitative measures are given 
(e.g., likelihood and impact values can be one of “low”, 
“medium” or “high”) the painvise combinations of these 
qualitative values are typically grouped into a qualitative 
approximation of the product (e.g., the overall risk is 
deemed to be “high” for likelihood & impact pairs 
medium & high, high & high and high & medium). 
Whether qualitative or quantitative, the separate 
expression of those two kinds of values, followed by 
calculation of their composite affect, is used in order to: 

achieve a better risk assessment, by basing it on 
simple information (separate expressions of 
likelihoods and impacts) from which to calculate 
the risk (as compared to attempting to directly 
assess the composite risk exposure), 
allow the distinction between different cases that 
lead to the same exposure, e.g., low-probability 
high-impact risks, and high-probability, low- 
impact risks, 
suggest ways to reduce risk, e.g., if the likelihood 
is high and consequence low, then there may exist 
quick and easy ways to decrease the likelihood. 

The hallmark of DDP is further separations, among the 
risks themselves, the objectives that those risks threaten, 
and the measures taken to reduce risk. The key aspects of 
DDP are summarized in the subsections that follow. 
2.2. DDP’s Objectives, Risks and Mitigations 

The DDP process deals with three key sets of data: 
Objectives, Risks and Mitigations. 

Objectives (a.k.a. Requirements) are the things that the 
system is to achieve, and the limitations within which it 

must operate. Objectives are assigned different “weights” 
to reflect their relative importance. 

Risks are all the kinds of things that, should they occur, 
would lead to failure to attain Objectives. In the software 
realm, “defects” and “bugs” are analogous terms. Risks 
are assigned an “a-priori” likelihood, namely the 
likelihood of that Risk occurring if nothing is done to 
prevent it. Risks are assigned a cost of “repair“ (a.k.a. 
“correction”). This is the cost of repairing the problem - 
for example, the cost of fixing a coding bug, or the cost of 
adding a missed requirement. In the software engineering 
community it is widely understood that these costs 
escalate through the course of the software lifecycle (e.g., 
the cost of correcting a flawed requirement at 
requirements time vs. at design time vs. at coding time vs. 
at unit test time vs. at system test time vs. after release). In 
the DDP model Risks are assigned time-specific repair 
costs that capture this escalation. 

Mitigations are the actions that could be applied to 
reduce Risks. These could be preventative measures, tests, 
analyses, inspections, reviews, redundant design elements, 
etc. Each Mitigation is assigned a cost, namely the 
resource costs of applying it. In our world of spacecraft 
development, there are typically several kinds of critical 
resources, e.g., budget ($), mass, volume, electrical 
power. Each Mitigation is also assigned a time, typically 
the “phase” in the development effort at which it is 
applied (e.g., requirements time, design time, coding 
time). It is possible to use other time scales (e.g., financial 
quarters or, for long duration developments, years). 
2.3. Risk Basis 

Most risk assessment processes take as starting point a 
design, and focus on the risks remaining in that design. 
The (potentially many) steps of the design process that 
assure that design’s quality are encoded within the high 
reliabilities assigned to its components. For example, 
under the assumption of programmers skilled in the 
domain of the project under development, the number of 
coding defects attributable to domain misunderstandings 
will be small. 

In contrast, DDP takes as starting point a design in 
which the existence and benefits of its quality assuring 
steps are made explicit. The risks remaining in the design 
are calculated from the a-priori risks, and the risk 
reductions effects of those steps. The potential advantages 
that accrue from DDP’s approach are that it may: 

achieve a better risk assessment, by basing it on 
simple information (separate expressions of a-priori 
risk likelihoods and risk reducing effects) from which 
to calculate the residual risks (as compared to 
attempting to directly assess the residual risk) 
permit tradeoff decision making to help choose which 
(out of potentially many) risk reducing actions to 
employ 

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 2 of 11 



clarify the purpose of risk reducing actions (e.g., 
system tests may uncover a wide variety of defects; 
however, if they are the primary means of validating 
system requirements, then the crafting and execution 
of those system tests should be approached with this 
in mind) 
allow the distinction between different cases that lead 
to the same risk (e.g., risk reduction achieved by 
prevention vs. risk reduction achieved by testing). 

The primary utility of this in the software engineering 
setting is to help (1) plan a software development effort, 
and (2) assess the reliability of the software that results. 

Advance planning is obviously necessary - budgets 
must be allocated, teams formed, etc. Furthermore, 
improved decision making at planning time has the most 
scope to influence the entire development effort to follow. 
However, the obvious challenge is the lack of information 
available at planning time. For example, consider software 
reliability engineering techniques based on measuring the 
number of defects discovered during testing to indicate 
when a product is ready to release. These are clearly 
useful at testing time, but by then it is too late, for 
example, to make a change to how much inspection of 
requirements is done, because that development phase is 
long passed, 

Probabilistic Risk Assessment methods are not well 
suited to software reliability assessment, since software 
does not “fail” in the same way that hardware does. 
Rather, it has latent defects that may surface during 
operation. The DDP approach supports a focus on the 
efficacy of the development steps taken to prevent, 
remove and alleviate defects, i.e., into account process 
knowledge for reliability assessment purposes. 
2.4. Impacts and Effects 

The DDP process deals with quantitative relationships 
that link Objectives, Risks and Mitigations, as follows: 

Impacts are the quantitative relationships between 
Objectives and Risks, namely the proportion of the 
objective attainment that would be lost should the Risk 
occur. A risk can impact multiple requirements to 
different extents, and similarly a requirement can be 
impacted by multiple risks, again to different extents. 

Efsects are the quantitative relationships between 
Mitigations and Risks, namely the proportion by which a 
Mitigation reduces a Risk should that Mitigation be 
applied. A Mitigation can effect multiple Risks to 
different extents, and similarly a Risk can be effected by 
multiple Mitigations, again to different extents. 
2.5. Categories of Mitigations 

Mitigations are subdivided into three important 
categories: 

Preventions - these prevent Risks from arising in the 
first place. In the DDP model, they act to decrease the 

Risk likelihoods. Software examples are: training of 
programmers, establishment of coding standards. 

Alleviations - these decrease the severity of Risks 
should they occur. In the DDP model, they decrease the 
Impacts that Risks have on Objectives. A software 
example would be to have a module check that its inputs 
are indeed in the valid range expected - the check does 
nothing to decrease the likelihood of invalid input, but it 
allows the module to recognize the situation and respond 
gracefully rather than fail catastrophically. 

Detections - these prevent Risks from occurring (i.e., 
having their detrimental impact on Requirements). As the 
name suggests, they work by detecting the presence of a 
Risk, with the assumption that Risks so detected are then 
“repaired”. In the DDP model, they decrease the 
likelihood that the Risk will occur. A wide range of 
software practices fall into this category, for example, 
testing activities (e.g., unit testing, system testing, stress 
testing), analyses (e.g., the many forms of static analysis, 
model checking, theorem proving) and inspections (e.g., 
peer reviews, code walkthroughs, formal inspections 
(Fagan, etc)). 

The DDP model also captures the phenomenon of a 
Mitigation that can make some things worse. For example, 
using an elaborate algorithm in order to achieve a 
performance speedup may increase the risk of coding 
errors. Adding code to measure timing might inadvertently 
change the behavior. Correcting one problem may 
introduce others. In DDP, such situations are represented 
by assigning a negative value to the Effect link between a 
Mitigation and a Risk. This is further subdivided into one 
of two kinds - effects that “induce” a Risk (increase the 
likelihood of that Risk) and effects that “aggravate” a Risk 
(increase the impact of the Risk). 
2.6. DDP’s quantitative calculations 

The “topology” of a DDP model is shown in Figure 1. 
Benefits are the sum of attainment of objectives, and 
Costs are the sum of mitigations and risk (defect) repairs. 

Benefit = C clttninment of  Objectives 

Cost = C cost of Mitigations & Repairs 

Figure 1. Topology of DDP model 
Mitigations reduce Risk likelihoods andor impacts, and 
thereby lead to increased attainment of Objectives. In the 
limited space available in this paper we have room only to 
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convey a feel for these quantitative calculations. by 
describing one of them: 

Multiple Mitigations’ effects on the same Risk 
combine essentially like filters arranged in series, so that 
their combined effectiveness is the complement of the 
product of the complements of their individual 
effectivness. For example, if two Mitigations have effects 
on the same Risk of 0.1 and 0.2, then their combined 
effect is (1 - (1 - 0.1)*(1 - 0.2)) = 0.28. In other words, if 
the first one removes 10% of its incoming risks (leaving 
go”/), and the second 20% of those 90%, what remains is 
72% - a net combined effectiveness of 28%. 

A thorough discussion of DDP’s quantitative nature 
may be found in [Feather & Comford, 20031. 
2.7. 

DDP has been used to assess risks and plan their 
mitigation for a variety of spacecraft-related technology 
developments, software, hardware and combinations of 
both. The key steps of the DDP process are: 

Gather the DDP information (Objectives, Risks 
and Mitigations, and the Impacts and Effects that 
link them). Information may come from previously 
assembled knowledge bases [Kurtz & Feather, 
20001, and/or on-the-fly elicitation from experts. 
Perform the quantitative calculations, and present 
the information to the experts for scrutiny and 
revision. The DDP software automates the 
calculations, and offers a variety of cogent 
visualizations of the results. 
Select mitigations that cost-effectively reduce risk. 
The quantitative representation makes possible the 
treatment of risk mitigation as an optimization 
problem (e.g., select the mitigations that lead to 
maximal attainment of requirements while costing 
no more than some given limit) [Comford et al, 
20031. Another outcome of the DDP process may 
be the revision of the Objectives when they prove 
overly costly to attain [Feather et al, 20021. 

The amount of information taken into account in these 
DDP-based risk studies is typically detailed and highly 
coupled. This accounts for the need for an appropriate 

Use of DDP in practice 

1. 

2. 

3. 

process and accompanying tool support. A sense of the 
detail can be seen from Figure 2, which shows the 
topology of the data in an actual DDP application. 

3. Combining PRA and DDP 
Over the past year we separately applied PRA and 

DDP to the same spacecraft design. This gave us insights 
into the relative strengths and weaknesses of each 
approach and motivated us to seek their combination 
[Comford et ai, 20031. 
3.1. 

In brief, the comparison showed DDP’s relative 
strengths to be the ability to capture the wide range of 
risks that threaten a development, and to plan risk 
mitigation accordingly, and showed PRA’s relative 
strengths to be the ability to faithhlly represent the 
interplay of faults in combination, and to pinpoint areas of 
vulnerability in such combinations. 

From that study we identified a loosely coupled way to 
integrate PRA and DDP. The essence of our vision was 
iteration between the two techniques. We could see that 
starting with DDP would allow the rapid pinpointing of 
the riskier areas of the project plan. This would suggest 
the areas to which PRA could then be applied to study in 
more detail. The improved likelihood and consequence 
estimates would be fed back into DDP, and the risks re- 
ranked. Continuing this iteration would hrther refine the 
accuracy of the risk assessment in the areas that mattered 
the most. 

Such a loosely coupled integration would do better 
than either technique alone, but would fall short of a true 
combination of the strengths of each technique. It is the 
goal for such a combination through the tight integration 
of the two techniques that is the focus of this paper. From 
the topology of an actual DDP project shown in Figure 2 
it is obvious that DDP differs from the event diagrams and 
fault trees common to PRA approaches in two key ways: 

DDP, by explicitly representing objectives, has a 
finer-grained notion of success, and by explicitly 
representing mitigations allows for reasoning to 
encompass choice from among those mitigations. 

Comparison of PRA and DDP 

Figure 2. Topology of the data in a DDP application 
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Conversely, PRA, by explicitly representing the 
logical structure of faults, has a more faithful 
representation of how faults combine. DDP can 
only approximate this, or rely on users to manually 
encode different combinations of faults as distinct 
“Risks”, and manually score each of them. (While 
possible, this is prohibitively tedious in all but the 
simplest of cases). 

A tight integration of the two would combine ( 1 )  the 
strengths of DDP at representing multiple criteria 
(Objectives) and at facilitating codbenefit reasoning to 
guide selection of Mitigations, and (2) the strengths of 
PRA at representing the influence of the design on the 
structure of the possible failures of that design. 
3.2. Approach to tightly integrating PRA and 

DDP 
Our approach to the tight integration of PRA and DDP 

is to embed PRA fault trees, and all the PRA reasoning 
that goes with them, into the center of the DDP topology. 
This is sketched in Figure 3. The fault tree structures of 
PRA replace the simple list of risks in DDP (the standard 
DDP program does use a tree hierarchy to organize risks, 
but it is merely a taxonomy), To make the sketch simple, 
the fault trees are drawn as if there are no shared events 
(“common cause” events of fault trees) within a tree or 
between trees. In practice, there may be, and the combined 
approach must be able to accommodate them. 

Benefit = Z a+tainment of Objectives Impdcts 

Risk 
fault 
trees 

Effects 

Mitigations 

Cost = C cost o f  Mitigations & Repairs 

Figure 3. Topology of combined PRA and DDP 
Within our integrated approach, the usual gamut of 

PRA techniques are available for calculating likelihoods 
of faults trees, identifying cut sets, performing sensitivity 
analysis, etc. DDP relationships are used to capture how 
those fault trees are related to Objectives, and on how the 
Mitigation actions effect the likelihoods of the leaf nodes 
of those fault trees, allowing the cost-benefit based 
reasoning of DDP to apply to the whole. The next section 
presents this in more detail. 

4. 
4.1. Objectives and Fault Trees 

Standard DDP “Impact” links connect Risks to the 
Objectives they threaten, using each link’s quantitative 
measure to represent how much of the Objective would be 
lost were the Risk to occur. In the tight integration of PRA 
and DDP these same Impact links now connect the root 
nodes (“top events” in PRA terminology) of logical fault 
trees to Objectives. The probabilities of occurrence of 
these root nodes are calculated by means of the PRA 
techniques from the logical structure of the fault trees and 
the likelihoods of the leaf nodes of those fault trees. As we 
shall see in the next subsection, DDP’s “Effect” links 
come into play to determine the likelihoods of those leaf 
nodes. 

On occasion it is also necessary to relate Objectives to 
inferior root nodes of fault trees. For example, a space 
mission could have multiple science Objectives, one being 
a science experiment that needs battery power, another 
being the demonstration of a novel battery technology. 
The interesting case is when there is a standard battery to 
support the experiment, but the spacecraft design allows 
for the experiment to make use of the novel battery 
technology in the event that the standard battery fails. 
Thus the fault tree of risks to the science experiment 
would contain within it the subtree of risks to the novel 
battery. The root node of the no-power-available fault tree 
would be linked to the science experiment Objective, and 
the interior subtree of risks to the novel battery would be 
linked to the novel battery demonstration Objective. 
4.2. Fault Trees and Mitigations 

Standard DDP “Effect” links connect Mitigations to 
the nodes within the fault trees that they reduce (by 
decreasing the likelihood or decreasing the impact) or 
increase (for Mitigations that make some risks worse). 
The kind of Mitigation - prevention, alleviation or 
detection - determines the nature of the reduction, and the 
way the reduction combines with the fault tree, as 
discussed in the subsections that follow: 
4.2.1 Prevention Mitigations and Fault Trees 

“Prevention” type Mitigations can only be connected to 
leaf nodes (“basic events” in PRA terminology) of fault 
trees. Intuitively, this is because a non-leaf node of a fault 
tree correspond to logical combinations of that node’s 
children. Hence the only way to effect its occurrence is to 
effect the occurrence of those children; applying this line 
of reasoning recursively, we see that this leads to affecting 
the occurrence of the leaf nodes (basic events) of the fault 
trees. Prevention mitigations serve to reduce the 
likelihoods, i.e., in PRA terminology, they decrease the 
“likelihood” half of the equation: risk = likelihood x 
severity. See Figure 4 for a sketch of where they fit in to 
the picture of DDP with fault trees. 

Tight integration of PRA and DDP 
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Reduces 
-. ..._... these 

“*‘.events* 
a,.. I?.. J MZ Prevention likelihoods 

Figure 4. Prevention Mitigation’s effects on fault trees 

As a simple example of this in the realm of software, 
consider the development of a large system for which 
security is one of the concerns. Security analysis might 
employ a fault tree to study vulnerabilities (e.g., [Helmer 
et al, 20021). At the time of planning the development of 
the system, the project leads need to decide which, if any, 
training courses they should schedule their development 
team to take. A course on nework security could serve as a 
preventative measure - decreasing the likelihood that the 
programmers will make coding errors that contribute to 
security vulnerabilities (e.g ., fail to check for buffer 
overflow). 
4.2.2 Alleviation Mitigations and Fault Trees 

“Alleviation” type Mitigations are generally connected 
to the root nodes of fault trees, because it is the 
occurrence of these faults that detract from objectives 
attainment via the “Impact” links. Alleviation mitigations 
serve to reduce the impacts, i.e., in PRA terminology, they 
decrease the “severity” half of the equation: risk = 

Reduces these impacts 

@ Alleviation 

Figure 5. Alleviation Mitigation’s effects 
on fault trees 

likelihood x severity. See Figure 5 for a sketch of where 
they fit in to the picture of DDP with fault trees. 

The case of a non-root node of a fault tree linking to an 
Objective (recall “novel battery technology” example) 
would be an exception to this rule - it would make sense 
to link an Alleviation-type Mitigation to that non-leaf 
node. (Note: in an even more elaborate model, we might 
link Alleviations to individual Impact links, allowing for 

the possibility that an Alleviation’s Effectiveness differs 
from Impact to Impact). 
4.2.3 Detection Mitigations and Fault Trees 

“Detection” type mitigations (e.g., tests, analyses, 
inspections) detect the presence of faults. They can thus 
apply to any of the nodes in a fault tree: root node (top 
event), leaf node (basic event) or interior node! However, 
detection type mitigations achieve their risk-reducing 
benefits by leading to the repair of the faults they detect. 

In the case of detection of a leaf node fault, the 
situation is straightforward - repair decreases the 
likelihood of that leaf node. When the standard PRA 
techniques are used to calculate fault tree likelihoods, they 
base their calculations on the decreased likelihoods that 
result from such repairs. A simple example is shown in 
Fig. 6, where a “Detection” type Mitigation MI is applied 
to the left leaf node of a fault tree with a single “And” 
gate. If the mitigation is not applied, the likelihood of the 
root node of the fault tree is calculated as shown in the left 
side of the figure; since it is an “And” gate, the likelihood 
of the root node is the product of the likelihoods of its 
children, i.e., 0.8 x 0.6 = 0.48. If the mitigation is applied, 
its effect is to reduce by half the likelihood of the left 
child, from 0.8 to 0.4. Hence, the likelihood of the root 
node now becomes 0.4 x 0.6 = 0.24. 

0.8 x 0.6 = 0.4 x 0.6 = 
0.48 0.24 
0 0 

0.8 e k  0.6 J d  e k  0.6 

Effect = 0.5 
-0.4 I 

Detection 

Figure 6 .  Detection Mitigation effect on a 
leaf node of a fault tree 

In the case of detection of a non-leaf-node fault (e.g., 
system test applied to a system composed of several units) 
the situation is more interesting - repair equates to tracing 
to the cause(s) of that fault, namely the leaf nodes of the 
subtree, and repairing them (Le., decreasing their 
likelihoods of occurrence). However, the allocation of 
causes to leaf nodes, and hence the repairs, is not uniquely 
determined. For example, suppose a detection mitigation 
with effectiveness of 0.5 applies to the root node of Figure 
6. One solution would be to halve the likelihood of the left 
of the leaf nodes; another would be to halve the likelihood 
of the right of the leaf nodes; others would be to apportion 
the likelihood reductions between the two. To handle this 
case, we make the key assumption that: 

The effect of a detection type mitigation on a fault 
tree’s parent node has the effect of decreasing in the 

same DroDortion the likelihoods of its children. 

Probabilistic Risk Reduction Feather, Cornford, Meshkat & Kiper Page 6 of 1 I 



, 

For example, suppose the mitigation is a system test, 
and the system is composed of two components, both of 
which must function correctly if the system is to function 
correctly - i.e., its fault tree would use an “or” node (a 
fault in of either component would produce a fault in the 
system). Faults discovered by a system test must result 
from faults in one or both of its units. If one of the units is 
more error prone than the other, then presumably the 
system test will reveal more errors attributable to that unit. 
Our assumption of proportionality captures this 
phenomenon - the proportion of errors of a more error 
prone unit will be a larger number of errors than the same 
proportion but of a less error prone unit. In the extreme 
case of one of the two units being perfect (error free), then 
any proportion of its errors will be zero errors. 

Several ramifications stem from this key assumption, 
considered in the subsections that follow. 
4.2.4 Detection Mitigations and “And” gates 

If a Detection Mitigation with effect E is applied to an 
“And” gate consisting of m children, then by our key 
assumption, each of the gates’ children’s likelihoods are 
decreased in the same proportion. In fact, their likelihoods 
become multiplied by the same factor k, such that k = the 
m’th root of (1-E), Le., k = (1-E)””’. 

P i  x P2 
0.8 x 0.6 = 0.5 x 0.48 

= 0.48 = 0 24 
Effect = 0.5 

0.8 A 0 . 6  
P i  -p2  Detection 

’ Suppose: p i  = 0.8 x k; 
Then: (k x 0.8) x (k x 0.6) = 0.24 
SO: k x k = 0.24 / 0.48 
Hence: k = 40.5, p i  = 0.8 x 40.5, p2 = 0.6 x 40.5 

p2 = 0.6 x k 

Figure 7. Detection Mitigation effect on a root 
node of a fault tree, percolating to its leaf nodes 

Figure 7 shows a simple example. The left of the figure 
shows the likelihood calculation for a simple “And” gate. 
Now suppose that a Detection Mitigation with effect 0.5 is 
applied to the root node. In order to achieve a 50% 
reduction in the root node likelihood (from 0.48 to 0.24), 
we can compute that k = 0.5’”. Thus the likelihood of the 
left leaf node drops to 0.8 x and of the right leaf 
node to 0.6 x so that the likelihood of the root node 
drops to 0.8 x 0.51/2x 0.6 x 
4.2.5 Detection Mitigations and “Or” gates 

The likelihood of an “or” gate with children whose 
likelihoods are L1, Lp, ... L, is (1 - (I-Ll) x (I-L2) x ... x 
( 1  -L,)). If a Detection Mitigation with effect E is applied 
to such an “Or” gate, then by our key assumption, each of 
the gate’s children’s likelihoods are decreased in the same 

= 0.8 x 0.6 x 0.5 = 0.24. 

proportion. Let k be the factor by which each likelihood is 
multiplied. We can derive k from the following equation: 

(1-E) x (1 - (1 - Ll) x (1 - L2) x ... x ( 1  - L,)) = 
( I - ( l - k x L l ) ~ ( l - k ~ L 2 ) ~  ... x(I-kxL,))  
Figure 8 shows a simple example. The left of the figure 

shows the likelihood calculation for a simple “Or” gate. 
Now suppose that a Detection Mitigation with effect 0.5 is 
applied to the root node. In order to achieve a 50% 
reduction in the root node likelihood (from 0.48 to 0.24), 
we can compute that k = 0.38 (approximately). 

(1 - (1 - 0.8) x (1 - 0.6)) 
= 1 - 0.08 = 0.92 

(1 - (1 - 0.8k) X (1 - 0.6k)) 
= 0.92 x (I - 0.5) = 0.46 

0.8 A o.6 w&-33°.5 Detection 

0.8k 0.6k 
= 0.3 ~ 0 . 2 3  

Solve for k s.t. 0.48F - 1 . 4  + 0.46 = 0: 

Figure 8. Detection Mitigation effect on an “Ar” node 
of a fault tree, percolating to its leaf nodes 

A surprise - structure does matter 

k = 0.38 

4.2.6 
A surprising consequence of our scheme to handle 

detection mitigations is that difference in structure among 
logically equivalent fault trees does matter. 

For example, consider the system structure shown in 
Figure 9, consisting of an “ A n d  of two units, with fault 
likelihoods of 0.8 and 0.64 respectively. 

0.8 x 0.64 = 0.512 

0.8 A 0.64 
0.8k x 0.64k = 0.512 x 0.5 = 0.256 

MI betection 
40.5 k =  p’d mff f l  ~ c t  = 0.5 

0.57 0.45 

Figure 9. Risk Mitigation through one layer 
The lower half of the figure shows the risk reductions 

following application of a detection type Mitigation that 
cuts the system fault likelihood by half. Following our 
scheme, this is achieved by the same proportional 
reduction of the likelihoods of its two children. The left 
one’s likelihood decreases from 0.8 to 0.57, the right one 
from 0.64 to 0.45. 

Suppose that the right hand unit (the one with initial 
fault likelihood of 0.64) is in fact composed of two units 
of its own, each with initial fault likelihood 0.8. (Figure 
10, top half) Then, the reduction of the fault likelihood of 
that unit, from 0.64 to 0.54, is in turn achieved by 
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proportionally reducing the fault likelihoods of its 
children. (Figure 10, bottom half). 

0.8 x 0.64 = 0.512 
0 O18$0,; 0.8 = 0.64 

w 
0.256 

Effect = 0.5 

Figure 10. Risk Mitigation through a two-layer tree 
Now consider a logically equivalent, but structurally 

distinct, configuration of the same three leaf nodes, as 
three children of a single “and” node. (Figure 11, top 
half). In this situation, the effect of a detection Mitigation 
propagates evenly among the three children. (Figure 1 1 ,  
bottom half). Observe that all three leaf nodes began with 
likelihoods of 0.8, and end with likelihoods of 0.63. In 
contrast, in the structure shown in Figure 10, while all 
three leaf nodes began there with likelihoods of 0.8, they 
end with likelihoods of 0.57.0.67 and 0.67. 

0.8 x 0 .8  x 0.8 = 0.512 
? 

0.8 ek 0 .8  
4 

0.8 

0.8k x 0.8k x 0.8k = 0.512 x 0.5 = 0.256 

ctcction 
Effect = 0.5 p’b 

0.63 

9’6 
0.63 

Figure 1 1. Risk Mitigation among three children 
The intuition we attach to this phenomenon is that the 

system structure influences how the testing of that system 
is likely to reveal faults in its units. For example, a system 
level test is more likely to reveal faults in units that are 
close to that system level than units that are many levels 
deep. In Figure 10, the one unit closer to the top has more 
of its faults detected than either of the two units deeper 
within the subsidiary “And” gate. 

It follows that it is important that the fault tree 
structure reflect the architecture of the application. By 
contrast, traditional analyses of fault trees are insensitive 
to logically equivalent reorganizations. 

4.3. Repair costs of “Detection” Mitigations 
applied to fault trees 

In the DDP model, detection type mitigations incur 
both a cost of performing the mitigation (e.g., running the 
test) and a cost of repairing the flaws they detect (e.g., 
correcting the bugs). This carries over smoothly into the 
integration with P M ’ s  fault trees. As discussed in the 
previous subsections, the risk-reducing effect of applying 
a detection type mitigation is percolated down to the leaf 
nodes of the fault tree, where reductions take place on the 
basic event likelihoods. These reductions are, in fact, the 
results of repairs, and so the cost incurred in performing 
them is the product of the unit repair cost and the number 
of repairs made (note that the number of repairs is 
proportional to the drop in likelihood - e.g., if as a result 
of detection and repair the individual fault likelihood 
dropped from 0.7 to 0.3, then the number of repairs must 
be proportional to that drop of 0.4). 
4.4. Common cause failures (shared nodes) 

Common causes of failure - shared events in fault trees 
- significantly complicate the standard calculation of fault 
tree likelihoods. In interests of efficiency, many PRA 
tools perform approximate calculations that ignore second 
order effects from these - such approximations are often 
acceptable because the high reliability systems they study 
are built from high reliability components, so products of 
their tiny likelihoods are extremely small. For our 
purposes of calculating likelihoods from first principles 
(i.e., from a-priori risk likelihoods, then reduced by 
Mitigations), the likelihood numbers we deal with need 
not be tiny, so the same kind of approximations are 
inappropriate, and the more computationally complex, but 
more accurate, likelihood calculation is required. 
Recently, some PRA tools have started to make use of 
Binary Decision Diagram (BDD) representations to 
perform the calculations in an efficient (or in most cases 
efficient) manner without resorting to approximations, 
e.g., the Galileo tool of [Manian et al, 19981. 

For fault trees with common cause failures, we are 
currently experimenting with an approach in which the 
reductions are percolated down using the same algorithm 
as described earlier. The calculations may yield differing 
likelihood reductions for the multiple instances of the 
shared event, in which case we choose the greatest of 
these reductions as the one that applies to all its instances. 
Our reasoning is that this is the greatest likelihood 
reduction corresponds to having identified the most faults 
in that unit, so, on the assumption that we repair all those 
faults, the benefit of the repair (Le., the decreased fault 
likelihood) is available wherever it occurs in the fault tree. 
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5. Discussion 
5.1. Significance 

Our work represents a fimdamental first step towards 
the merging of elements drawn from two (currently 
somewhat disparate) themes of software engineering: (1) 
process centric approaches (e.g., CMM, ISO, TSP), and 
(2) artifact centric approaches. 

In the former, the emphasis is on populating and 
organizing the development effort so as to promote the 
attainment of a quality result in a predictable and timely 
fashion. In the latter, the emphasis is on means to assess 
the quality of the software artifacts themselves, regardless 
of the process by which they were produced. Our in-house 
DDP approach falls into the former theme, with its 
explicit treatment of the effect of quality steps on 
preventing, removing and alleviating defects. PRA 
techniques fall into the latter theme, with their emphasis 
on deriving reliabilities and insights into system 
vulnerabilities through calculation based on the structure 
of the artifact under consideration. 

The integration of PRA and DDP that we have 
described, while still in its infancy, indicates that there is a 
rich area of study in seeking a blend of strengths drawn 
from both the process-centric and artifact-centric 
endeavors. 
5.2. Summary and Status 

We have described an integration of the logical fault 
trees of traditional Probabilistic Risk Assessment methods 
and the explicit treatment of Objectives and Mitigations of 
our own risk assessment method. The combination 
achieves the strengths of both approaches, namely that it 
(1) permits the simultaneous consideration of a wide 
variety of risks and objectives, (2) enables knowledge of 
the system development steps effects on risk to be taken 
into account, and (3) allows for costhenefit based 
reasoning about risk reduction. 

The status of our work is that all of the probabilistic 
risk reduction calculations described in this paper have 
been incorporated within the DDP software. Requests for 
DDP may be made via the site http://ddptool.jpl.nasa.gov 
5.3. Related work 

The work that comes closest in spirit is that of Fenton 
et al. We share the motivation that they express in [Fenton 
& Neil, 19991 for improved techniques that are able to 
take into consideration defect prevention, detection and 
correction. The have made use of Bayesian Belief 
Networks to combine knowledge of causal structure with 
evidence (expert judgments and/or historical records) of 
the error rates and efficacy of testing, etc. [Fenton et al, 
20031. Our approach differs from theirs in adding the 
explicit treatment of multiple Objectives, and in 
representing the logical fault structures common to PRA 
techniques (whereas Fenton et a1 appear to focus 
exclusively on the structure of the development process). 

There are other approaches that decompose Objectives 
(a.k.a. “Requirements” or “Goals”) so as to assess and 
plan suitable developments. Notable among these is the 
goal-tree based “KAOS” work of van Lamsweerde, in 
which goals are refined towards specifications of 
component behaviors that together achieve those goals. 
He has investigated “Obstacles”, the ways in which his 
goals can fail to be achieved [van Lamsweerde, 19981. 
Obstacles have a close parallel with what we would term 
risks. Key differences are that we emphasize a quantitative 
treatment, while van Lamsweerde’s emphasis is primarily 
logical, and the focus is primarily on the artifact, not the 
process by which it is to be developed and its quality 
assured. 

A somewhat similar treatment of goals is to be found in 
the Non Functional Requirements work of Mylopoulos et 
a1 [Chung et al, 20001. This has been used to qualitatively 
compare the relative strengths and weaknesses of 
altemative designs [Mylopoulos et a, 20011. Like van 
Lamsweerde’s approach, goal decompositions and 
refinements are captured in tree structures. Impediments 
are linked to those goals and their refinements, 
reminiscent of our “Impact” and “Effect” links. However, 
we do not see a corresponding emphasis on the efficacy of 
process steps, notably of the kind we would term 
“Detection type Mitigations” within their treatment. Also, 
to date their approach has been primarily qualitative in 
nature. 
5.4. Future Work 

DDP without logical fault trees has seen extensive 
usage. Now that we have built the logical fault tree 
capability into DDP, we are ready to seek applications 
that make use of it. We feel that a software development, 
where there is at least a preliminary notion of the design 
or architecture (thus allowing for a fault tree like 
treatment) is a promising area for application. We see 
software fault tree analysis [Leveson, 19951 being applied 
to a wider variety of software problems (e.g., intrusion 
detection [Helmer et al, 2002]), so opportunities abound. 

We built into DDP a simple logical fault tree capability 
(“And” and “Or” gates) to allow us to explore the 
ramifications of combining DDP-like mitigations with 
PRA-like logical fault trees. However, we have not built 
in the other capabilities of PRA tools, e.g., distributions. 
The obvious next step is to link DDP directly with an 
existing PRA tool. In this direction we have performed 
some very preliminary experiments at passing a DDP- 
generated fault tree to the PRA tool Galileo and having it 
compute the likelihood. 

PRA approaches use more complex gates than simply 
“And” and “Or” (e.g., ordered “And” gates, where there is 
importance to the order in which its constituent events 
occur). In order to extend our integration to encompass 
these additional kind of gates, we will need to study and 

. 
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extend as appropriate the way in which mitigations’ 
effectiveness distributes over those gates, in a similar 
manner to our treatment of detection type mitigations with 
logical fault trees. 
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This page provides screenshots taken from our DDP implementation shown operating on a 
small hypothetical example. This information is provided as a courtesy to reviewers to 

indicate that we do indeed have a working implementation of these ideas. 
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