
- -  I 

0311 9/03 1 



I JavaOne2003 I BOF-1217 

I I 

Learn how Java and Design Patterns 
can be used to develop embedded, 
real-time software. 

Aim to pass along some of our experiences in applying Java to 
developing real-time software 
And we'll also discuss how we applied design patterns in this 
environment 

0311 9/03 2 



I JavaOne 2003 1 BOF-1217 

Ed Benowitz is an embedded, real-time 
developer at the Jet Propulsion Laboratory 
- Previous incarnations: 

Java sustaining engineer for Sun Microsystems 
Embedded developer for Raytheon 

- Over 6 years of Java development experience 
- MS from UCLA 

03/19/03 3 



I JavaOne2003 I BOF-1217 

AI Niessner is an embedded, real-time 
developer at the Jet Propulsion Laboratory 
- Previous Incarnations: 

Embedded real-time developer at A plied 
Research Laborato at the Pennsy P vania State 
University doing DS 7 work for torpedoes (Ada 

communications (Ada, C, and assemb B y) 

and C40 assembly) 
Real-time developer at Raytheon doin military 

- Total of 10 years experience of producing 
successful, embedded, real-time products 

- MS from Penn State 

03/19/03 4 



I JavaOne2003 I BOF-1217 

.. . ,. ". . ._. - ......__I._..--- 

Fly Java in space 

03/19/03 5 



I JavaOne 2003 1 BOF-1217 

Motivation 
Approach 
Real-time programming in Java 
Use of Design Patterns 
Demonstration 

..- _.. -. . I - _ _ _ _  --.- ---. ---- - - -  _. - 

Make sure to stay till the end. We'll be demonstrating our work, 
showing a simulated spacecraft moving in 3d. 100% of the 
simulated spacecraft's code is implemented in Java, including its 
real-time control loop. 

0311 9/03 6 



Ja .vaOn le 2003 I BOF-1217 

Problem: Lack of maintainability 
Weak checking 
Error-prone switch statements 
Low-level concurrency primitives 
Measurement units not explicit 
Can't express pluggable components 
Completely manual memory management 

e Difficult to maintain flight software written 

No strong type checking, pointer checking, array-bounds checking 
Long and error prone switch statements 

Traditionally in C 

Forget a break 
Adding a new case involves going through many functions 
Run-time assertion check in the default case 

Concurrency is not part of the language, concurrency issues is 
difficult to debug and reproduce 
Measurement unit errors resulted in the loss of the Mars Climate 
Orbiter mission 
C++ has multiple inheritance problems and the friends notion, 
along with the lack of interfaces, makes it difficult to express 
pluggable components. Pluggable components expose only their 
interface, not their implementation 
Memory management 

03/19/03 7 



I JavaOne 2003 I BOF-1217 

Create pure Java prototype 
NASA mission as a base 
Real-Time Specification for Java 
Focus on Attitude Control and Fault Protection 

To investigate Java's application for flight software, we've 
constructed pure Java prototypes. 
To ensure a realistic scenario, we've used a Deep Space 1 
mission design for our requirements which flew in 1998 
The real-time Java specification provides the necessary 
functionality. It is possible to implement a real-time system in pure 
Java without resorting to JNI. JNI can and should be avoided, 
whenever possible. 
We've focused on the attitude control subsystem, performing a 
detumble. The control system must stop a spacecraft from 
spinning. Thus, attitude control is a good example of a real-time 
control loop. 
Fault protection demonstrates some autonomous behavior as a 
way of responding to on-board faults. 

03/19/03 8 



1 JavaOne2003 I BOF-1217 

Exploit features of Java 
Design Patterns 
00 best practices 
Emphasize maintainability 
Profile and optimize methodically 

To improve the maintainability, we want to use Java in conjunction 
with best 00 practices, including Design patterns 
Specifically, the state, facade, and factory patterns make frequent 
appearances 
Use pluggable components 
Optimize according to profiling data, not assumptions 

Use memory profile data to select RTSJ memory 
management features 

0311 9/03 9 



I JavaOne 2003 1 BOF-1217 

Memory management 
Scheduling 
Timing 
Physical Memory 
Asynchrony 
Priority inversion avoidance 
http://www. rtj.org/ 

Ways to allocate memory outside of the garbage collector 
With certain coding restrictions can guarantee you will not be 
preempted by the garbage collector 
Scheduler can create periodic threads for example 

High resolution timing 
Access to physical memory, 

Handle asynchronous events 
Could potentially write Java device drivers 

Flexible scheduling parameters 

But can specify a restricted range 

0311 9/03 10 

http://www
http://rtj.org


I JavaOne 2003 I BOF-1217 

Abstraction over RTSJ 
Allows debugging on the desktop 
Provides 
- Scheduling 
- Timing 
- Memory access 

9 Current RTSJ tools do not support debugging or profiling 
Want to be able to use powerful Java IDES. . 

e. 

-> 
0. 

-> 
*> 
0. 

e. 

Java VM 
*> 

0. 

Provides real-time services as pluggable components 

Allows debugging using the power of 
Emulation of real-time features provided on a desktop platform 

COTS Integrated Development Environments (IDE’s) 
COTS graphical debuggers 

Examine logical errors in a modern debugger 
Deal with real-time issues in isolation on the real-time 

After logical errors are debugged on a standard Java 
On a real-time VM, a debugger would interfere, so 

nothing is lost 

0311 9/03 11 



I JavaOne2003 I BOF-1217 

. .. 

Periodic 
One-shot 
Dead I i ne 

. .. " 

Periodic threads to deal with Runnables needed to execute within 
the RTI, plus an offset 
One shot timers are typically used for timeouts, ensuring progress 
even if a device does not respond within the timeout, for example 
Deadlines can be specified. 
Fair performing, but adequate desktop implementation used for 
debugging. 
Real-time version delegates to RTSJ 

03/19/03 12 



I JavaOne2003 I BOF-1217 

Heap Allocation 
- Standard in Java 
- Automatic management 
- Unpredictable garbage collector 

__._ - - __ .. -. . - - . . . - __ . 

Standard Java features fully automatic memory management 
Every object is heap-allocated 
Unpredictable garbage collection pauses 
Garbage collector may have higher priority than a critical thread 
with real-time requirements 

03/19/03 13 



1 JavaOne2003 I BOF-1217 

Immortal Memory 
Allocate, but never free 
No GC problems 
Leaky 
Patterns for usage 
- Static initializers 
- Allocate in constructors 

- - - -- -- - _.. - .- - - _. - 

Immortal memory is a new allocation scheme in the RTSJ 
Allows you to allocate object permanently 
Avoid interaction with GC, because there's no need to GC memory 
which cannot be freed 
To avoid leaks we propose 

Doing immortal allocations at application initialization time, 

Objects running in immortal memory should only allocate 
perhaps within static initializers 

within their constructors. 
Thanks to Peter Dibble's Real Time Java Platform Programming 

03/19/03 14 



JavaOne 2003 I BOF-1217 

Scoped Memory 
Allocate a block of scoped memory 
Free entire scope at once 
Generalization of a C stack 
Restrictions 

Immortal only allows permanent allocation; scope is a memory 
area which allows dynamic memory allocation without the garbage 
collector. 
A scope of a given size is first allocated 
When a thread “enters” a scope, its allocations take place within 
that scope. 
When all threads have exited a scope, all the memory within the 
scope is reclaimed. 
Similar to a C stack or using alloca, which is cleared at the end of 
a function call 
Restrictive rules on who may use 
Only local variables and certain available scopes can reference 
memory allocated on the scope 
May be necessary to copy data from scoped to another memory 
area, before the scope is exited 

03/19/03 15 



I JavaOne2003 I BOF-1217 

e Where to allocated the scoped memory itself? 
For the case where threads are not dynamically created during the 
application run 

Can profile each thread to see how much memory it will use 

Allocate a scope of the appropriate size for each thread 
Create the scope in immortal memory 
Enter and leave the scope per RTI 
All objects allocated on a per-RTI basis can be scope 

per RTI 

allocated, without creating additional work for the garbage 
collector 

thread leaves the scope 
These objects are freed automatically each RTI as the 

For threads which are dynamically created, may need to allocate 
scope within the heap 

0311 9/03 16 



I JavaOne 2003 I BOF-1217 

Entering a scope multiple times 
/ /  enter scope 

for(i=O; i < 1000; i++) 

/ /  allocate 

/ /  enter scope 

for(i=O; i < 1000; i++) 

/ /  enter scope 

/ /  allocate 

RTSJ also provides the ability to nest scopes. We now show an 
example of when to use this feature 
Assume nobody else is using the scope. Evey time we enter, 
allocate, and then exit from the scope, the memory allocated is 
freed 
In the first example, we must allocate a scoped memory area to be 
big enough to accommodate all 1000 elements. Then, after the 
for loop has completed, all can be freed at once. 
However in the second example, a nested scope is entered. The 
nested scope is entered and exited once per iteration of the loop 
This means that memory is freed after each loop iteration 
So the size of the scope can be reduced to the amount of memory 
allocated in one iteration 

-- 

03/19/03 17 



I JavaOne 2003 I BOF-1217 

03/19/03 

States are Objects 
Eliminate long, unreadable switch statements 
Stronger type checking 
Reduce code complexity 

18 



I JavaOne 2003 I BOF-1217 

enum colorstate{ red, green); 

void doAction(co1orstate current-color){ 

switch(current-color){ 

case red: break; 

case green:break; 

default: assert(false1; 

1 
? 
colorstate current-color = red; 

doAction(current-color); 

current-color = green; 

doAction(current-color); 

- _. - - - - - - __ _ _  - 

This shows the pitfalls of representing state in the traditional C 
state paradigm 
Error prone switch statement 

Runtime assertion check 
If we had to add a yellow state, would have to hunt for all 

No guarantee that all enumerated choices were presented in 
uses of colorstate 

the switch 

0311 9/03 19 



I JavaOne2003 I BOF-1217 

ColorSfate 

Colorstate current-color = 

current-color.doAction(); 
green; 

. - ___ - _______. . ___ __ __ - __ 

This shows the improved Java version of the same Colorstate, 
implemented using the states design pattern 
By using dynamic dispatch, we've eliminated the need for switch 
statements 
Runtime checking isn't needed, since each state is forced to 
provide the required interface . Easy to add a new state 
All the code for a particular state is together in an implementation 
class 
States are objects 

0311 9/03 20 



I JavaOne 2003 I BOF-1217 

Usage in Attitude Control 

In legacy code, a check against an idle flag was used to guard 
function calls. 
Instead, we have an idle state, eliminate the need for manual 
checking 
A spacecraft will typically proceed to detumble to stop spinning, 
which we will demonstrate today. At some point after a detumble 
the spacecraft would then acquire the sun, using a different control 
loop. This is represented by a different attitude control state 

03/19/03 21 



1 JavaOne 2003 1 BOF-1217 

Use to hide inter-thread communication 

I I 

Implementation1 

Hide inter-thread communication behind a facade 
Two classes derive from the same interface 
The adapter class implements the message packaging if 
necessary 
Use message passing if the implementation class is not properly 
synchronized 
Or can bypass the adapter if the class is thread safe, passing an 
instance of the implementation 

0311 9/03 22 



I JavaOne 2003 I BOF-1217 

Pluggable Components 
- Show the interface 
- Hide the implementation 
How to instantiate different implementations? 

, 
8 

______ . - -- 

Pluggable components 
Only the interface is exposed, not the implementation 
This allows one implementation to be substituted for one another 
In Java we have the interface concept to help express pluggable 
components. 
But we must make sure to hide the implementation class, even 
during construction time 
This can be accomplished by having a factory class, which is 
responsible for returning an instance of an interface. 
Factories are used throughout the Java API 

For example, JAXP 
But how can we use factories to create different implementations 
of the same interface? 

0311 9/03 23 



I JavaOne2003 I BOF-1217 

Abstract Factory 

of the interface 
- Each factory creates a different implementation 

- Factories implement a common interface 

- Allow AbstractFactories to be chosen at run- 
Our extension 

time 

Abstract factories 
Implement a common interface typically 
Each factory provides a different way of creating an instance 
of an interface 

We would like to allow the particular interface implementation to 
' be chosen at run-time 

Increased flexibility 
No need to recompile between configuration changes 
Use as a replacement for the C preprocessor 

03/19/03 24 



1 JavaOne2003 I BOF-1217 

We use dynamic class loading, to choose abstract factory 
implementations are runtime, thus allowing the components which 
implement a particular interface to be chosen at runtime . This enables two separate implementations of the scheduler, 
desktop and real-time. We can switch between the two 
implementations at run-time without the need for a recompile. 
Call static method getlnstance on the AbstractFactory. Name is 
resovled via ResourceNames, which queries run-time properties 
for the abstractfactory class to instantiate. Resource names then 
dynamically loads a concrete factory. AbstractSensorFactory then 
returns the ConcreteFactory to a client who may then create 
sensor objects using the factory. 

0311 9/03 25 



I JavaOne2003 1 BOF-1217 

Checking measurement units at compile-time 
Logging and Telemetry 

- .-. . _  - - .  - - 

To improve maintainability, measurement units are checked at 
compile time, 

Ensure meters / second gives a velocity. 
Wraps around JCP's units framework, java3d for vecmath 
Syntax becomes difficult, need operator overloading 

9 An extension of JDKl.4, apache logging 
Can be used for telemetry as well 

Logging 

03/19/03 26 



03/19/03 27 



I JavaOne2003 1 BOF-1217 

NASA is creating flight-like Java software 

Apply Design Patterns and 00 techniques to 
prototypes today 

improve maintainability 

0311 9/03 28 



L 

I JavaOne2003 1 BOF-1217 

RTSJ is propelling Java into space 

0311 9/03 29 



03/19/03 30 



snapshot2.png (PNG Image, 1024x768 pixels) file:///C:/snapshot2.png 

3/19/2003 1:24 PM 

file:///C:/snapshot2.png



