
A Comparison of Techniques for Combining Specialized Problem
Solvers in a Spacecraft Operations Domain

Russell Knight and Ben Smith
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91 109-8099

{ firstname.lastname} @jpl.nasa.gov

Abstract

Space exploration demands planning and
scheduling systems that are expressive enough to
encode real-world problems, flexible enough to
keep up with shifting problem requirements, and
powerful enough to provide high quality
solutions within reasonable time bounds. These
competing demands are particularly difficult to
meet for the many NASA planning and
scheduling problems that contain interacting
combinatorial optimization sub-problems.

General purpose planners are expressive and
flexible, but perform poorly on these complex
problems. Combinatorial optimization solvers
have excellent performance, but are only
applicable to sub-problems. This paper describes
a simple method for integrating certain kinds of
combinatorial sub-problem solvers within a
general purpose planner/scheduler framework
that demonstrably increases solution speed and
quality.

Introduction

Many NASA observation-scheduling
problems are quite large, often containing
hundreds or even thousands of observations. It
is difficult to find high quality solutions to
these problems within reasonable time
bounds. The problems are often too large and
complex to make globally optimal solutions
practical, and even good locally optimal
solutions can be computationally expensive.
Problem-specific scheduling algorithms can
exploit the problem structure to find high
quality solutions more quickly, but they are
expensive to develop and must be redesigned
if the problem specification changes. This is a
real concern: the problem specification often

evolves throughout the mission life cycle as
the problem and mission trade space become
better understood.
General purpose scheduling algorithms can
accommodate evolving problem
specifications, but perform poorly on these
hard problems because they have little
knowledge of the problem structure.
This paper discusses a middle-ground
approach that improves the perfonnance of
flexible general purpose schedulers by
identifying the combinatorial optimization
sub-problems and coordinating specialized
solvers for these sub-problems.

For example, combinatorial sub-problems
that occur in NASA observation scheduling
problems include:

schedule a set of observations given
constraints when they are visible and
minimum slew intervals between adjacent
observations (traveling salesperson
problem with time windows)
Assigning observations to fixed downlink
opportunities (bin packing or k-knapsack)
Select minimum number of observations
that will cover of a region-of-interest (set
covering)

Several of these sub-problems may occur
within a single observation-scheduling
problem, along with other resource and
operations constraints. This paper refers to a
scheduling problem that contains interacting
combinatorial sub-problems as a “composite”

Page 1 of 8

mailto:jpl.nasa.gov

problem, and refers to the individual sub-
problems as “elemental” problems.
One straightforward method for incorporating
these sub-problem solvers is to simply join the
search control rules for each of the sub-
problems. This approach can be employed
when all of the problems can be expressed in a
single search formalism such as iterative
repair (IR) or integer programming (IF’).
In the remainder of this paper we define a
scheduling problem with interacting sub-
problems (TSP and bin-packing), encode it in
a general purpose scheduler, and discuss how
to incorporate specialized solvers for the two
sub-problems. The performance of this
method is then compared to two alternate
solution methods: integer programming and
iterative repair with domain-independent
heuristics.

The IR approach with integrated sub-problem
solvers yields superior anytime performance
over the ‘practical’ region of the performance
vs. time curve, and the IP solver dominates the
optimal region of the curve. The IR approach
has the added advantage that it integrates more
easily with general purpose planning &
scheduling systems than does IP.

An Observation Scheduling Problem

A common NASA scheduling problem is
observation scheduling. The objective is to
schedule as many observations as possible
from an oversubscribed list, subject to
constraints on target visibility and onboard
data storage capacity. The acquired data must
be downlinked during time intervals when a
ground receiving station is visible and
available. There may also be setup times and
mode constraints that depend on adjacent
observations.
For purposes of this paper we identify a
specific instance of the observation scheduling
problem derived from the Space
Interferometry Mission. This example will be

used throughout the paper to ground the
discussion and evaluate the methods
described here. We refer to this problem as
the tiling problem, for reasons that will
become clear below.

One of SIM’s primary objectives is to acquire
interferometric measurements of the celestial
sphere. Each observation covers a very small
region of the sky, called a “tile”. To observe
the entire celestial sphere, each of over a
thousand overlapping tiles must be observed
for about half an hour in two different
orientations. Slewing the spacecraft between
adjacent tiles takes several minutes, and
proportionally longer between distant tiles.
The observation campaign must be
completed within as short a time as possible
to maximize science return.
This much of the problem is a traveling
salesperson problem (TSP) in which the tiles
are cities and the cities are uniformly
distributed over a sphere. However, there are
additional constraints that complicate the
problem. To avoid instrument damage the
instrument must not point within several
degrees of bright bodies such as the Sun,
Jupiter, Saturn, and the Earth. These move
over the course of the campaign, which
imposes several windows during which tile is
not observable. This makes it a TSP with
multiple time windows.
The spacecraft has limited onboard memory,
so the data must be downlinked, but only
during certain times when a ground receiving
station is visible. Allocating observations to
downlink windows can be expressed as a bin
packing problem.

Formal Specification of the Tiling Problem
An instance of a tiling problem describes the
observations to be made and the
opportunities for downlinking the
observation data. A solution to a specific
tiling problem consists of a start-time for

Page 2 of 8

each observation or an indication that the
observation is to be ignored.
What follows is a formal description of the
tiling problem, as well as a proof that the
tiling problem is NP-complete. The proof is
based on a reduction of the Hamiltonian cycle
problem to the tiling problem.
More formally, an instance of a tiling problem
TP is an 6-tuple <V, D, t , w, c, s> where Vis a
set representing observations, D is a set
representing downlinks, t is a function that
maps each v E V to a set of non-overlapping
intervals (the time-windows of an
observation), w is a function that maps each v
E V, each d E D, and each pair of
observations (VI, vz), VI and v2 E V to a
positive real value (duration: either duration of
a downlink, duration of an observation, or
duration to traverse from one observation to
another), c is a fiunction that maps each v E V,
and each d E D to an integer (capacity: either
the amount memory required to store an
observation or the capacity of a downlink),
and s is a h c t i o n that maps each d E D to the
positive real numbers (start time of a
downlink).
It is assumed that downlinks and their
associated durations do not overlap
temporally. Interesting aspects of the tiling
problem that set it apart fiom other problems
are 1) every downlink is used, 2) data cannot
be carried over a downlink (all data is
downlinked or erased), and 3) observations
can be skipped. Thus, we can reformulate an
TP T as an equivalent TP T where we need
not consider any w(d E D) or w(v E y) by
adjusting the associated time-windows t(v E

V) and adjusting the durations W(VI,V~ E V).
Therefore, we consider t(v E V) to be a set of
intervals that represent possible start-time
assignments for v.
A solution is a 2-tuple <I, st> where I is a
subset of V representing ignored observations
(ignore-list), and st is a function that maps

each v E V-I to the real numbers representing
the assignments of start-times for the
observations such that they can be
accommodated by the downlinks. A capacity-
optimal solution is a 2-tuple <I, st> that
maximizes the sum of data actually
downlinked. A cardinality-optimal solution is
a 2-tuple<I, st> that maximizes the number of
observations in V-I. The associated decision
problem would be a TP with a bound b,
where b is the minimum amount of data
downlinked for success of a summed-
capacity-decision problem (TPSD), or b is
the minimum number of observations
required for success of a cardinality-decision
problem (TPCD).

The Tiling Problem is NP complete
It is important to note that this problem has
been shown to be NP-Hard. Given that
guessing and verifying a solution is
straightforward, this problem is NP-
complete. This is important in that we know
that this is a hard (in the theoretical sense)
problem.

Integer Programming Formulation

We give a formulation of the TP as a mixed
integerhear program (MP) using the
standard notation of variables being a vector
x, and constraints being linear inequalities on
x. This formulation is based on the TSP
formulation of Grotschel & Holland (1988)
and the bin-backing formulation of Padberg
(1 979).
Variables:

For each observation v E V, x(stv) is the
assigned start-time for observation v. x(stv) is
a continuous, real-valued variable. These are
the start-time variables.

For each observation v E V, for each allowed
time interval (window) (z, y) of t(v), x(tvzy)
is an integer binary value that is 0 if x(stv)
should be contained in the interval (z, y), and

Page 3 of 8

1 if not. These are the time-window
assignment variables.
For each pair of observations (VI, v2) where VI

and v2 E V, x(wv1v2) is an integer binary value
that is 0 if x(stv1) > all other x(stv) I x(stv) <
x(stv2) and 1 otherwise (i.e., v1 immediately
precedes v2). These are the observation-
adjacency variables.

Constraints:
For each v E V, the sum of all x(tvzy) = -1
(i.e., only one observation assignment to all of
its associated time-windows is allowed).
These are the time-window unit constraints.
We assume a value b that is greater than any
possible assignment to start-times including
the case if all start-times occur after the last
downlink. For each ~ (w v I v ~) , x(wvlv2)b -
x(stv1) + x(stv2) 2 w(v1, 172). These are the
observation adjacency constraints.

For each x(tvzy), x(t,zy)b + x(stv) 2 z, and -
x(t,zy)b + x(stv) 5 y (i.e., the start-time of an
observation must be contained by its chosen
time-window and be ignored by all other time-
windows). These are the start-time
containment constraints. Note that it is
perfectly feasible to ignore all time-windows;
it is the role of the objective function to
enforce that as many observations are
assigned (within its criterion) as possible.
We assume a mapping of time-windows of an
observation v to each downlink d E D. This
set of time windows is referred to as t(v, d).
For each downlink d, add the constraint

V E v

(i.e., the skipped capacity must be no less than
the total possible skipped capacity minus the
downlink capacity for any given downlink.)
These are the downlink capacity constraints.

Iterative Repair Formulation

For this solution approach the tiling problem
was encoded in the ASPEN planning and
scheduling framework (Chien et al., 2000).
The elements in the ASPEN domain
modeling language are activities, states,
resources, and constraints. An activity is an
action the spacecraft can perfonn, such as an
observation or downlink. Activities have a
start time and duration and may overlap each
other. A resource represents a physical or
logical resource of the spacecraft, such as the
onboard memory. A state represents a
physical or logical state of the spacecraft,
such as the spacecraft attitude or whether a
given ground station is visible. Each state and
resource is represented as a timeline that
shows how it evolves over time.
The activities, states, and resources are
related by constraints. Each activity instance
imposes constraints that must be met
whenever that instance is in the plan. These
can be temporal constraints among activities,
resource constraints (e.g., an observation uses
d seconds of onboard storage tape, where d is
the duration of the observation), and state
constraints (the ground station must be
visible during a downlink).
The tiling problem was encoded as follows.
The activities are observe(target), downlink,
and sZew(a,b); the state is attitude; and the
resource is onboard memory. An
observe(target) activity consumes onboard
memory and requires that the attitude state be
equal to target. The downlink activity
restores onboard memory and requires that
the attitude be GROUND-STATION. The
slew(A,B) activity requires that the attitude is
A just before the activity and B after the
activity. The duration of the slew activity is
the time it takes to slew the spacecraft
between attitudes A and B .

An instance <V, D, t, w, c, s> of the tiling
problem is expressed in ASPEN by one

Page 4 of 8

observe activity instance per observation in V,
one downlink activity per opportunity in D.
The duration and start time of the downlink
windows are specified by w and s
respectively, and the duration and start time of
the observation windows are similarly
specified by w and v. The duration of
slew(A,B) is specified by w: VxV+positive
integers. A solution consists of a subset of
observe activities that satisfies all of the
constraints. The objective function is a
weighted sum of the activity score (higher is
better) and the makespan (smaller is better).

Iterative Optimization Search Algorithm
The tiling problem is solved by an iterative
optimization algorithm (Rabideau et al.,
1999). At each step in the search we have a
schedule that might violate some or all of the
constraints. Iterative repair analyzes each of
these violations, selects one, and perfoms
operations on the schedule to remove the
violation. Repair operations include
reassigning an observation’s start time and
moving it to the ignore-list. A given repair
may lead to more violations, which are
handled similarly.
Once a valid schedule is found, iterative
optimization performs operations on the
schedule that improve one of the preferences.
A preference is an element of the objective
function, such as “minimize the number of
ignored observations”, “maximizing the
amount of downlinked data”, and “minimize
makespan”. The objective function is a
weighted sum of these preferences.
Optimization operations include removing
observations from the ignore-list and selecting
an earlier start time for an observation.

Integrated Solvers Formulation

The iterative optimization method can be
improved by exploiting some knowledge of
the problem structure. The tiling problem
contains two interacting combinatorial

optimization sub-problems: TSP with time
windows (for finding a minimum-makespan
tour through the celestial sphere) and bin
packing (for assigning observations to
downlink opportunities).
One way to provide this knowledge is to
analyze the problem and develop a
specialized search algorithm or problem-
specific heuristics. However, these can be
expensive to develop and are brittle to
changes in the problem formulation. An
alternate approach that we explore here is to
identify the combinatorial optimization sub-
problems and employ control knowledge
from existing solution algorithms that have
been developed over decades of study in the
research community.

A key question is how to coordinate the two
solvers. Because the TSP and bin-packing
problems interact, a high quality solution to
one problem may be incompatible with high
quality solutions to the other; and both sub-
problems may interact with additional
constraints in the overall problem.
We identified local-search versions of the bin
packing and TSP algorithms, and added their
control rules into the iterative repair
scheduler for the overall problem. The
iterative repair framework then decides
which rules to apply in any given step by
choosing the rule that leads to the largest
local gain in feasibility or quality. The sub-
problem heuristics guide the overall problem
toward high quality solutions to the sub-
problems, and conflicts between the sub-
problems solutions are arbitrated by
evaluating their impact on the overall
problem.
This is an admittedly unsophisticated
method, yet it performs quite well. It is also
flexible to changes, in that the heuristics can
be easily modified as new sub-problems are
added, removed, or changed. Future work
will investigate more sophisticated

Page 5 of 8

algorithms and compare them to this baseline
performance.
The TSP heuristic makes use of insertion
algorithms (choosing randomly among either
random insertion, insert furthest, or greedy
insertion). These techniques give good TSP
performance with light computation. The TSP
heuristics also make use of 2-opt swaps
(Hochbaum 1997)
The bin packing solver utilizes the "biggest-
first" algorithm, which first orders the items
from largest to smallest, then places them
sequentially in the first bin in which they fit.
This strategy is always within approximately
22% of optimal, and no strategy can guarantee
performance better than 22% of optimal
unless P=Np (Hoffman 1998).

Performance Results

Empirical performance results are shown in
Table 1. Each of the three solution methods
(uninformed iterative repair, uninformed
integer programming, and informed iterative

repair) solved the same 100 random instances
of the tiling problem. Each problem instance
had a pool of 50 observations to be
scheduled, an average of 25 windows of
availability per observation, and 16
downlinks. The actual number, start time, and
duration of the visibility windows and
downlink windows for the 100 instances
were randomly generated according to a
normal distribution about these mean values.
The reported value for the schedule quality
(score) is normalized against the maximum
possible score if all observations were
scheduled. This ensures, for example, that
perfect schedules for problem instances with
different global maxima would be reported as
being of equal quality.
The running times reported are for a Sun
Ultra 2 computer. The base for the temporal
log scale is 1.5.

Discussion
Integer programming produces the highest
quality results, but only for running times

Table 1: Performance of Three Tiling Problem Solvers

Comparative Performance

160

140

120

100

a 80

60

40

20

0

.- b

3
-

I .- -- -

Time in seconds (log base 1.5)

[- Inf. It. Rep.

over 15 hours. For running times between 10
seconds and 15 hours the dominant method is
iterative repair with incorporated bin-pack and
TSP solvers. For running times under 10
seconds iterative repair produces the best
solutions, though informed iterative repair is a
close second.
Uninformed iterative repair does not require
knowledge of the problem structure, and
utilizes only problem-independent heuristics.
It performs what is essentially a randomized
local search, where the neighborhood
operators improve either feasibility or quality.
This means that it does not need to be “tuned”
if the problem changes, but that same lack of
knowledge negatively impacts performance.
For the tiling problem, uninformed iterative
optimization quickly finds a feasible solution
and improves it to a local optima. However
even with very long running times the local
repair moves cannot improve much on that
local optima. Performance quickly asymptotes
to a middling quality solution.
Iterative repair informed by sub-problem
heuristics performs much better. The sub-
problem heuristics guide the overall problem
out of local minima and towards high quality
solutions to the sub-problems. However, the
best overall solution may require sub-optimal
solution to the sub-problems. Conflicts
between the sub-problems solutions are
arbitrated by evaluating their impact on the
overall problem. Although this is admittedly
unsophisticated, it performs well. In fact, it
dominates the optimal IP solver for running
times under 15 hours.
The performance results are for problem size
of fifty observations. The full tiling problem
can have over a thousand observations. To
obtain high quality solutions to these large
problems within reasonable time bounds,
methods that dominate at smaller run times are
clearly preferable. Of the three, iterative repair
with sub-problem heuristics performs best

over this ‘practical’ region of the time vs.
performance curve.

Conclusions

Many real-world NASA scheduling problems
require good “practical” performance-that
is, high quality but not necessarily optimal
solutions that can be obtained within
reasonable computational resources. The
solution algorithms must also be flexible to
changes in the problem formulation. That is,
incremental changes to the problem should
require small inexpensive changes to the
encoding and result in similar performance
without costly redesign of the solution
algorithm .
Monolithic IP solvers are one common
approach for solving these kinds of
scheduling problems. Although they provide
high quality or even optimal solutions, they
have several limitations: they are inflexible to
changes in the problem specification, and
good performance requires heuristics derived
from deep analysis of the problem
structure-often a significant undertaking.
Iterative repair appears to provide better
practical performance and greater flexibility.
Uninformed iterative repair outperforms
uninformed integer programming over the
practical region of the performance curve.
However, neither uninformed approach is
fast enough for large problems such as the
tiling problem.
Local search sub-problem solvers can be
integrated within an iterative-repair
planner/scheduler by simply taking the union
of the local search rules. Exploiting this sub-
problem knowledge improves performance
considerably for the iterative repair solver,
enabling it to break out of local minima. This
approach also preserves flexibility: when the
problem changes, it is relatively easy to
identify sub-problems and introduce control

Page 7 of 8

knowledge as compared to doing a full-up
analysis of the problem structure.
Overall this work indicates that high quality
solutions to large scheduling problems can be
obtained within reasonable computational
resources if (a) the problem contains
combinatorial optimization sub-problems and
(b) good local-search solution algorithms exist
that make few if any assumptions about the
global problem structure.

Future Work

The solver integration methods discussed in
this paper are limited: the solvers must rely on
local assumptions about the problem structure,
and it is susceptible to getting trapped in local
minima because negative interactions among
solvers are resolved locally (biggest gain to
the objective function wins). More
sophisticated methods are needed to overcome
these limitations. Our fiture work will
investigate such methods in order to improve
on the performance results reported here.

Acknowledgements

This paper describes work performed at the Jet
Propulsion Laboratory, Califomia Institute of
Technology, under contract from the National
Aeronautics and Space Administration.

References

Chien, S.; Rabideau, G.; Knight, R.;
Shenvood, R.; Engelhardt, B.; Mutz, D.;
Estlin, T.; Smith, B.; Fisher, F.; Barrett, T.;
Stebbins, G.; and Tran, D. (2000).
ASPEN-Automating Space Mission
Operations using Automated Planning and
Scheduling. In SpaceOps 2000. Toulouse,
France.

Crowder, H. & Padberg, M. (1980) . Solving
large-scale symmetric traveling salesman

problems to optimality, Management Sci.
26: 495-509.

Du, D.-Z. and Pardalos, P.M. (Eds.)
Handbook of Combinatorial Optimization.
(1998) Kluwer Academic Publishers.

Solution of large-scale symmetric
travelling salesman problems, Technical
Report 73, Institut fiir Mathematik,
Universitat Augsburg.

NP-Hard Problems. Boston: PWS
Publishing, 1997

Numbers: The Story of Paul Erdos and the
Search for Mathematical Truth. p. 172,
New York: Hyperion, 1998.

Padberg, M. (1 979). "Covering, packing and
knapsack problems," Mathematical
Programming 47, 19-46.

Miller, C. E., Tucker, A. W. & Zemlin, R. A.
(1960) . Integer programming
formulations and the traveling salesman
problem, J. Assoc. Comput. Mach. 7: 326-

Grotschel, M. & Holland, 0. (1988) .

Hochbaum, D. Approximation Algorithms for

Hoffman, P. The Man Who Loved Only

-329.
Nemhauser, G. L. & Wolsey, L. A. (1988) .

Integer and Combinatorial Optimization,
John Wiley, Chichester, UK

Page 8 of 8

