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ABSTRACT 
Over the past several years, we have been developing 

methods of measuring the change characteristics of evolv- 
ing software systems. Not all changes to software systems 
are equal. Some changes to these systems are very small 
and have low impact on the system as a whole. Other 
changes are substantial and have a very large impact of the 
fault proneness of the complete system. In this study we 
will identifi the sources of variation in the set of software 
metrics used to measure the system. We will then study the 
change characteristics to the system over a large number of 
builds. 

We have begun a new investigation in these areas in 
collaboration with a fright software technology development 
effort at the Jet Propulsion Laboratory (JFL) and have pro- 
gressed in resolving the limitations of the earlier work in 
two distinct steps. First, we have developed a standard for 
the enumeration of faults. This new standard permits sop- 
ware faults to be measured precisely and accurately. Sec- 
ond, we have developed a practical framework for automat- 
ing the measurement of these faults. This new standard and 
fault measurement process was then applied to a software 
system 's structural evolution during its development. Every 
change to the software system was measured and every fault 
was identified and tracked to a specific code module. The 
measurement process was implemented in a network appli- 
ance, minimizing the impact of measurement activities on 
development efforts and enabling the comparison of meas- 
urements across multiple development efforts. 

In this paper, we analyze the measurements of struc- 
tural evolution and fault counts obtained from the JFL flight 
software technology development effort. Our results indi- 
cate that the measures of structural attributes of the evolv- 
ing software system are suitable for forming predictors of 
the number of faults inserted into software modules during 
their development, and that some types of change are more 
likely to result in the insertion of faults than others, The 
new fault standard also insures that the model so developed 
has greater predictive valid@. 
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1. Introduction 
Over the past several years, we have been investigating 

relationships between measurements of a software system's 
structural evolution and the rate at which faults are inserted 
into that system [Muns98]. Measuring the structural evolu- 
tion of a software system has proven to be a straightforward 
effort that can easily be automated. Unfortunately, it has not 
been as easy to measure the number of faults inserted into the 
system - there has been no particular definition of just pre- 
cisely what a software fault is. In the face of this difficulty it 
is rather hard to develop meaningful associative models be- 
tween faults and code attributes. In calibrating a model, we 
would like to know how to count faults in an accurate and 
repeatable manner just we would expect to enumerate state- 
ments, lines of code, and so forth. In measuring the evolu- 
tion of a system to talk about rates of fault introduction and 
removal, we measure in units proportional to the way that the 
system changes over time. Changes to the system are visible 
at the module level (by module we mean procedures and 
functions), and we attempt to measure at that level of granu- 
larity. Since the measurements of system structure are col- 
lected at the module level, we also strive to collect informa- 
tion about faults at the same granularity. 

As software systems change over time, it is very difficult 
to understand and measure the effect of the changes. We 
would like to be able to describe, numerically, the way that 
each system increment, or build, is different from its succes- 
sor and its predecessor. This is a very complex problem in 
that most modem software systems consist of thousands of 
program modules on each of which there may be as many as 
20-30 distinct metrics collected. For any one build, there 
may be tens of thousands of metrics collected on a typical 
large system. Knowing what to measure, how to measure, 
and when to measure will be a key step in understanding the 
software evolution process. 

As programs have increased in length several orders of 
magnitude in the last three decades, the problems associated 
with measuring these programs have also increased several 
orders of magnitude. Furthermore, these systems experience 
a very large number of changes during their development and 
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early deployment. Not all changes will have the same rela- 
tive impact on the code in terms of its overall complexity. 
Some changes by their very nature will be innocuous, such 
as the introduction of comment statements. Other changes 
will make substantial changes to the basic architecture of a 
program module. Even the simplest measurements taken on 
each program module have a way of creating an enormous 
data management problem in the measurement of evolving 
systems. The key to the success of the measurement prob- 
lem is to reduce the size of the problem with which we are 
working. 

In this paper we will examine the measurement of the 
software from the standpoint of the measurement of soft- 
ware physical attributes and software quality attributes. We 
will then discuss the most critical issue of all in this meas- 
urement process. That is, how do we compare different 
versions of an evolving system in a meaningful way? We 
will also examine methods for reducing the huge volume of 
measurement data to information that can be used in the 
management of the software development and test activities. 

2. Related Work 
Over the past several years, a great deal of work has 

been done in the area of using measurements of software 
systems to identify fault-prone components and predict their 
fault content. Examples of this work include the classifica- 
tion methods proposed by Khoshgoftaar and Allen 
[KhosOla] and by Ghokale and Lyu [Ghok97], Schneide- 
wind’s work on Boolean Discriminant Functions [Schn97], 
Khoshgoftaar’s application of zero-inflated Poisson regres- 
sion to predicting software fault content [KhosOI], and 
Schneidewind’s investigation of logistic regression as a dis- 
criminant of software quality [SchnOl]. Each of these ef- 
forts has provided useful insights into the problem of identi- 
fying fault-prone software components prior to test. The 
one thing that these efforts have in common is that each of 
them analyzed a snapshot of the subject system, rather than 
examining its evolution during development. This may 
limit the validity of those efforts’ conclusions to the point in 
the development life cycle when the measurements were 
made. If, however, the entire evolution of a software sys- 
tem is analyzed, any conclusions that are reached should be 
applicable to any point in the development cycle of the arti- 
fact being studied. With this goal in mind, we conducted a 
small study on a JPL flight system several years ago 
[Niko98]. We found strong indications that measurements 
of a system’s structural evolution could serve as predictors 
of the fault insertion rate. However, this study had two 
limitations: 

The study was relatively small - fewer than 50 observa- 
tions were used in the regression analysis relating the 
number of faults inserted to the amount of structural 
change. 
The definition of faults that was used was not quantita- 
tive. The ad-hoc taxonomy, first described in [Niko97], 

was an attempt to provide an unambiguous set of rules 
for identifying and counting faults. The rules were based 
on the types of changes made to source code in response 
to failures reported in the system. Although the rules 
provided a way of classifying the faults by type, and at- 
tempted to address faults at the level of individual mod- 
ules, they were not sufficient to enable repeatable and 
consistent fault counts by different observers to be made. 
The rules in and of themselves were unreliable. 
Before recommending the use of measurements of struc- 

tural evolution as a fault predictor, we needed to address the 
limitations of the earlier study. Our main concern was de- 
veloping a quantitative definition of faults, so that we could 
automate what had been a time-consuming manual activity in 
the earlier study, the identification and counting of repaired 
faults at the module level. Our hope was that this would pro- 
vide us with unambiguous, consistent, and repeatable fault 
counts, as well as a substantially larger number of observa- 
tions than the earlier study. 

To develop fault predictors for evolving systems, two 
types of measurements must be made: 

The structural evolution of a system as it changes over a 
series of builds 
The number of faults discovered during the system’s 
development. 

Measuring a system’s structural evolution is a straightfor- 
ward activity - the DARWINTM network appliance can 
automatically make these measurements if it has access to a 
software development effort’s source code repository. 
DARWINTM will then take structural measurements of each 
version of each module (i.e., function or method) in the sys- 
tem and use those measurements to produce quantitative re- 
ports of the system’s evolutionary history according to the 
techniques described in Sections 6 and 7. 

Measuring faults is not quite as straightforward an activ- 
ity. The structure of a software component can easily be 
made because there are standard, quantitative definitions of 
structural attributes (e.g., number of physical lines of code, 
number of operators) that can be used to develop measure- 
ment tools. The following definition of what constitutes a 
fault is typical of that provided by current standards: “A 
manifestation of an error in software. A fault, if encountered, 
may cause a failure” [IEEE88, IEEE831. This establishes a 
fault as a structural defect in a software system that underlies 
the failure of that system to operate as expected, but does not 
help in determining the type of failure that was observed, or 
establish how individual faults may identified or measured. 
Some standards address the issue of the type of failure ob- 
served by describing schemes for classifying anomalies re- 
corded during software development and operation. For in- 
stance, [IEEE93] provides details of an anomaly classifica- 
tion process, as well as criteria for classifying the type of 
anomaly observed, at what point in the development process 
the anomaly was observed, and the action taken in response 
to the anomaly. For example, Table 3c in this standard al- 



lows classification of the type of behavior exhibited by the 
anomaly ( e g ,  “precision loss”) or the type of defect that led 
to the anomaly (e.g., “referenced wrong data variable”). 
This type of scheme is helpful in determining the underlying 
causes of faults and failures, so that the development proc- 
ess may be modified to 1) identify the types of faults on 
which fault detection and removal resources should be fo- 
cused for the current development effort, and 2) minimize 
the introduction of the most common types of faults in fu- 
ture development tasks. However, classification standards 
do not provide enough information to help count the number 
of faults in the system. Returning to Table 3c of [IEEE93], 
we see that some of the anomaly types can readily be traced 
to a single fault (e.g., “Operator in equation incorrect”). 
However, the response an “I/O Timing” anomaly may in- 
volve changes to many lines of source code spread across 
multiple source code files. In this case, the standard does 
not provide enough information to allow counting the num- 
ber of faults at the module level. 

Orthogonal Defect Classification (ODC), initially re- 
ported in 1992 [Chi192], provides a framework for 1) identi- 
fying defect types and the sources of error in a software 
development effort, 2) determining the effectiveness of the 
different defect detection techniques and strategies used by 
the organization, and 3) using the feedback provided by 
analysis of the defects to help the organization reduce the 
number of defects it inserts into its systems. Like [IEEE93], 
ODC provides a scheme for classifying defects, which is 
useful in identifying sources of error at different points in 
the development process. However, it does not seem to 
possible to use the classification scheme to consistently 
count faults at the module level. The recognition process 
for defects is not sufficiently well defined to permit the 
automatic recognition of these defects. 

3. Problem Statement 
The objective of our current work is to develop practi- 

cal methods of measuring software evolution. This will 
involve the establishment of a baseline reference artifact or 
system against which all system builds will be calibrated. 
Although other types of artifacts could have been analyzed, 
working with source code has two advantages: 

Measuring structural attributes of source code can be 
easily automated. 
Since the source code is controlled by a configuration 
management system, different versions of the system 
can be easily and unambiguously identified. In particu- 
lar, a baseline against which all other versions are to be 
measured can be easily established. 

Through the analysis of the structural evolution of a soft- 
ware system, we overcome the limitations of the related 
work identified in Section 2 - that is, any predictors of fault 
content we develop should have predictive validity at any 
point during the development of the artifact being studied. 
This is in contrast to models developed from single and iso- 

lated system builds. In a more general sense, we wish to 
understand the complete system from its first build until the 
most recent build. 

We worked in collaboration with the Mission Data Sys- 
tem (MDS), a mission software technology development 
effort in progress at JPL. We were able to measure the struc- 
tural evolution of the MDS during the development of a spe- 
cific release. We also were able to measure the fault discov- 
ery process by our new fault measurement methodology 
[MunsO2]. For every failure reported against the MDS, we 
were also able to identify the changes made to each module 
in response to that failure, and thereby count the number of 
faults that had been repaired. 

4. A Description of the Mission Data System 
The brief description of the MDS provided here is 

summarized from Dvorak, et al. [Dvo99]. Until recently, 
planetary exploration missions were spaced years apart, with 
little attention to software reuse, given the rapid pace of 
computer technology and computer science. Also, since 
radiation-hardened flight computers remain years behind 
their commercial counterparts in speed and memory, flight 
software has typically been highly customized and tuned for 
each mission. In order to use software engineering resources 
more effectively and to sustain a quickened pace of missions, 
JPL initiated the MDS project in April 1998 to define and 
develop an advanced multi-mission architecture for an end- 
to-end information system for deep-space missions. MDS is 
aimed at several institutional objectives: earlier collaboration 
of mission, system and software design; simpler, lower cost 
design, test, and operation; customer-controlled complexity; 
and evolvability to in situ exploration and other autonomous 
applications. 

Some important ways in which MDS differs from earlier 
systems are as follows: 

When appropriate, capabilities can be migrated from 
ground-based systems to flight systems to simplify 
operations. 
MDS is founded upon a state-based architecture, where 
state is a representation of the momentary condition of an 
evolving system. 
Domain knowledge is expressed explicitly in models 
rather than implicitly in program logic. 
Missions are to be operated via specifications of the 
desired state rather than sequences of actions. 
For our study, the structural evolution of the MDS was 

measured over a period from October 20, 2000, through 
April 26, 2002. The first date corresponds to the date on 
which the first source files for the most recent increment 
were checked into the CM library. The system contains over 
15000 distinct modules; over the time interval analyzed 
studied, there were over 1500 builds of the MDS. The total 
number of distinct versions of all modules was greater than 
65,000. Over 1400 problem reports were included in the 



Metric 
Exec 

NonExec 
N, 
V I  
N2 

bo1 flow graph 
Cycles kotal number of cycles in the module control flow 

Definition 
Number of executable statements 
Number of non-executable statements 
Total operator count 
Unique operator count 
Total operand count 

1 baph  
This metric set represents the essential characteristics of 

both the size of a program module and its control flow char- 
acteristics. All measurements were taken at the module 
level. For C program elements, a module is a function. For 
C++ a module is a h c t i o n  or an object. 

5.1. Derived Metrics 
As has been clearly established from our previous work, 

these metrics are highly correlated [Muns90, Ha11001. There 
are twelve metrics. There are not twelve distinct sources of 
variation. We would like to be able to identify the distinct 
orthogonal sources of variation and map these twelve raw 
metrics onto a set of uncorrelated metrics that represent es- 
sentially the same information contained in the original 
twelve metrics. 

First we will need to identify the distinct sources of vari- 
ance. We will use principal components analysis to identify 
these new measurement domains. The results of this analysis 
are shown in Table 2. 

There are three distinct sources of variation in the twelve 
original raw metrics. We have labeled these as Domain 1,2, 
and 3 in this table. Domain 1 is most closely associated with 
the control flow attributes that relate to the complexity of the 
control flow graph structure of the measured program mod- 
ules as is shown by the relatively high values (>OM) of the 
Nodes and Edges metrics in this table. The raw metrics that 
are most closely associated with each the underlying or- 
thogonal domains have been shown in boldface type in this 
table. 

is 

The eigenvalues, in the last row of Table 2 show the 
relative proportion of variation accounted for by each of 
these new orthogonal domains. For this particular problem 
space, the sum of the eigenvalues for the twelve original met- 
rics will be 12.0. Thus, the relative proportion of variation 
accounted for by Domain 1 will be 4.7942 = 0.40 or 40% of 
the variation in the original 12 metrics. All three domains 
together account for approximately 85% of the total variation 
observed in the original 12 metrics. 

For measurement purposes, it will be necessary to stan- 
dardize all original or raw metrics so that they are on the 
same relative scale. For the i" module m/on thefh build of 
the system there will be a data vector .( =< .;,.I,,...,.A, > of 



12 raw complexity metrics for that module. We can stan- 
dardize each of the raw metrics by subtracting the mean $ 
of the metric #1 over all modules in thefh build and divid- 
ing by its standard deviation S: such that , - x i  -2 repre- 

sents the standardized value of the first raw metric for the th 
module on thefh build. 

A by-product of the original PCA of the 12 metric 
primitives is a transformation matrix, T, that will map the z- 
scores of the raw metrics into the reduced space represented 
by the three principal components. Let 2 represent the ma- 
trix of z-scores shown in the table above for the original 
problem. We can obtain new domain metrics, D, using the 
transformation matrix T as follows: D = ZT where Z is a n 
by 12 matrix of z-scores, T is a 12 by 3 matrix of transfor- 
mation coefficients, and D is a n by 3 matrix of domain 
scores where n is the number of modules being measured in 
a particular build. The matrix, T, for this solution given in 
columns 2 through 4 of Table 3. The means and standard 
deviations that are used to compute the z-scores are also 
shown in columns 5 and 6 of this table. 

For each module, there are now three new metrics, each 
representing one the three orthogonal principal components. 
For our subsequent investigations into modeling the rela- 
tionship between code evolution and software faults, these 
domain scores have the very valuable property that they are 
uncorrelated. Each of the new metrics represents a distinct 
source of variation. This will completely eliminate the 
problem of multicollinearity from the linear regression 
models that we wish to develop. 

In order to simplify the structure of software complex- 
ity even further than the orthogonal domains produced by 
the principal components analysis it would be useful if each 
of the program modules in a software system could be char- 
acterized by a single value representing some cumulative 
measure of complexity. Previous research has established 
that the fault index, FI, has properties that might be useful in 
this regard. The FI metric is a weighted sum of a set of 
uncorrelated attribute domain metrics[Muns03]. This metric 
represents each raw metric in proportion to the amount of 
unique variation contributed by that metric. 

The FI of the factored program modules may be repre- 
sented as follows: 

z,, -- 
6: 

FI = c j l j d j i  

where is the eigenvalue associated with thefh factor and 
c+ is the f h  factor score of the ifh program module on the f h  
domain. Each of the eigenvalues represents the relative 
contribution of its associated domain to the total variance 
explained by all of the domains. In essence, then, the FI 
metric is a weighted sum of the individual domain metrics. 
In this context, the FI metric represents each raw complexity 
metric in proportion to the amount of unique variation con- 
tributed by that complexity metric. 

The FI metric has a mean of zero and a variance propor- 
tional to the variance of the eigenvalues. To make it more 
meaningful, we have employed a simple transformation on FI 
to adjust it so that it has a mean of 100 and a standard devia- 
tion of 10. Let FI' represent this transformed measure. Then 
FI' = FIxlO + 100. 
6. The Measurement Baseline 

The first step in the measuring the evolutionary devel- 
opment of a software system will be to establish a baseline 
reference point in the build process. When a number of suc- 
cessive system builds are to be measured, we will choose one 
of the systems as a baseline system. All others will be meas- 
ured in relation to the chosen system. Sometimes it will be 
useful to select the initial system build for this baseline. If 
we select this system, then the measurements on all other 
systems will be taken in relation to the initial system configu- 
ration. 

As a software system changes over time, it is very diffi- 
cult to understand and measure the effect of the changes. We 
would like to be able to describe, numerically, the way that 
each system increment, or build, is different from its succes- 
sor and its predecessor. This is a very complex problem in 
that we are obtaining twelve measures on each program 
module. For any one build, there are tens of thousands of 
metrics collected on our target system. 

Software systems grow and mature just as do biological 
organisms. We would not think to measure a child at birth 
and think that we know all there is to know about that child. 
Measurement is an on-going process. We must, therefore, 
come to understand that our software systems change rapidly 
over time. Whenever they are changed, them must be re- 
measured. To understand what a software system is today, 
we must have current measurement data on the system to- 
gether with data on its evolution. We know that faults are 
removed over time. Modules that have not changed very 
much are likely to have had most of their faults removed. 
Modules that have changed a lot are very likely to have had 
new faults introduced into them. Hence, understanding 
change activity is vital to our understanding where the prob- 
lems in the system might be. 

From the first build of each such system to the last build 
the differences may be so great as to obscure the fact that it is 
still the same system. We would like to be able to quantify 
the differences in the system from its first build, through all 
builds to the current one. Then and only then will it be pos- 
sible to know how these systems have changed. 

A complete software system generally consists of a large 
number of program modules. Each of these modules is a 
potential candidate for modification as the system evolves 
during development and maintenance. As each program 
module is changed, the total system must be reconfigured to 
incorporate the changed module. We will refer to this recon- 
figuration as a build. For the effect of any change to be felt it 
must physically be incorporated in a build. 



As program modules change from one build to another, 
the attributes of the modified program modules change. 
This means that there are measurable changes in modules 
from one build to the next. Each build is numerically and 
measurably different from its predecessor with respect to a 
particular set of metrics. Thus, there is no such thing as 
measuring a software system but once. Many software de- 
velopers who profess to be deeply committed to measure- 
ment are still tempted to represent a system by a set of 
measurements taken at one point in a system's evolution. 
The truth is, measurement is a process. Whenever changes 
are made to a system, those system elements that have 
changed must be re-measured. 

In order to describe the complexity of a system at each 
build, it will be necessary to know the version of each of the 
modules that was in the program that failed. Each of the 
program modules is a separate entity. It will evolve at its 
own rate. Each build of the system will unify a set of pro- 
gram modules. Not all of the builds will contain precisely 
the same modules. Clearly there will be different versions 
of some of the modules in successive system builds. This 
complex process is described in detail in [Muns03]. 

Table 3 - The Measurement Baseline 

We must be careful to standardize the metric scores in a 
way that will not erase the effect of trends in the data. For 
example, let us assume that we were takiig measurements 
on LOC and that the system we were measuring grew in this 
measure over successive builds. If we were to standardize 
each build of the system by its own mean LOC and its own 
standard deviation, the mean of this system would always be 
zero. Thus, we will standardize the raw metrics using a 
baseline system such that the standardized metric vector for 
the ifh module m/on the j'* build would be 

where E: is a vector containing the means of the raw met- 
r i c ~  for the baseline system and 6: is a vector of standard 

deviations of these raw metrics. Thus, for each system, we 
may build an m x k data matrix, z' , that contains the stan- 
dardized metric values relative to the baseline system on 
build B. 

When we have identified a target build, B, to be the 
baseline build we will then compute the three constituent 
elements of the baseline. These elements are the trans- 
formation matrix for the baseline build, the vector of metrics 
means for the baseline build $, and a vector 6i of stan- 
dard deviations for this build. For the purposes of this study, 
the July 1, 2001 build was chosen as the baseline build. 
Table 3 shows the actual baseline that will be used to com- 
pute the derived metrics used in this study. 

B 

7. Measuring Change Activity 
A complete software system generally consists of a large 

number of program modules. Each of these modules is a 
potential candidate for modification as the system evolves 
during development and maintenance. As each program 
module is changed, the total system must be reconfigured to 
incorporate the changed module. We will refer to this recon- 
figuration as a build. For the effect of any change to be felt it 
must physically be incorporated in a build. 

In order to describe the complexity of a system at each 
build, it will be necessary to h o w  the version of each of the 
modules was in the program that failed. Each of the program 
modules is a separate entity. It will evolve at its own rate. 
Consider a software system composed of TI modules as fol- 
lows: m, , m, , m,,. e . ,  m, . Each build of the system will unify 
a set of these modules. Not all of the builds will contain pre- 
cisely the same modules. Clearly there will be different ver- 
sions of some of the modules in successive system builds. 

We can represent the build configuration in a nomencla- 
ture that will permit us to describe the measurement process 
more precisely by recording module version numbers as vec- 
tor elements in the following manner: vi =<v~,v~,v:,...v~ >. 
This build index vector will allow us to preserve the precise 
structure of each for posterity. Thus, V,; in the vectorv" 
would represent the version number of the ith module that 
went to nrh build of the system. The cardinality of the set of 
elements in the vector Vn is determined by the number of 
program modules that have been created up to and including 
the TI'* build. In this case the cardinality of the complete set 
of modules is represented by the index value m. This is also 
the number of modules in the set of all modules that have 
ever entered any build. 

The management of the configuration of each of the pro- 
gram modules is one aspect of the software management 
process. Another vital piece is the build index vector. It is 
the only record of the module version that went to each build. 
This build index vector must be maintained in some type of a 
build management database. There are many sad stories in 



the software maintenance community about software sys- 
tems that have been delivered to a customer without such a 
record. It is almost impossible to interpret trouble reports 
from customers if the structure of the build that the cus- 
tomer is using is not known. 

A natural way to capture the intermediate measure- 
ments for each build would be to incorporate the measure- 
ment tools within the configuration management system. 
Just as code deltas are maintained for each program module, 
so should deltas for the code attributes also be kept by the 
configuration management system. 

The prime objective of this discussion is to demonstrate 
the measurement process for measuring successive stages of 
an evolving software system. Thus, we will be able to as- 
sess the precise effect of the change from the build repre- 
sented by V i  to vi+’ or even vi to v or vi-“ These 
data will serve to structure the regression test activity be- 
tween builds. Those modules that have the greatest change 
in complexity from one build to the next should receive the 
majority of test effort in the regression test activity. 

When evaluating the precise nature of any changes that 
occur to the system between any two builds i, and j ,  we are 
interested in three sets of modules. The first set, Mf.‘ , is 
the set of modules present in both builds of the system. 
These modules may have changed since the earlier version 
but were not removed. The second set, M Y ,  is the set of 
modules that were in the early build, i, and were removed 
prior to the later build, j. The final set, M:’, is the set of 
modules that have been added to the system since the earlier 
build. 

As an example, let build i consist of the following set of 
modules. 

Between build i and j module m, was removed giving. 
Thus, 

i+k  

. .  

M’ =(m,,m2,m,,m4,m51 

Mi =Mi u~:.’ -MY 
= {m,,m*,m,, m41m5)u { I- {m, )  

= (m,,m,, m4, m5 I 
Then between builds j and k two new modules, m,and 
m, are added and module m2 is deleted giving 

Mk = M I  “Mb/” - M J . ~  

= 1% m*,m4, m, bJ {m,,m, I- {m, 1 
= {ml, m,, m,, m,, m, 1 

With a suitable baseline in place, it is possible to meas- 
ure software evolution across a full spectrum of software 
metrics. We can do this first by comparing average metric 
values for the different builds. Secondly, we can measure 
the increase or decrease in system complexity as measured 
by the changes in the domain metrics, or we can measure 

the total amount of change the system has undergone across 
all of the builds to date. 

It is now possible to compute the total domain change 
activity for the aggregate system within each of the system 
builds. Let d? represent the f h  domain score of the afh 

module on bui ldj  baselined by build B. The total domain 
value of the system on build j on domain i is the sum of the 
domain scores for each of the modules present in this build. 
This system domain value 0; is given by 

d8.J . 
D / = C  OEV’ io 

We can now measure the nature of the change activity from 
one build to the next on each of the orthogonal domains. We 
will come to understand that not all changes are equal. Some 
change activity will increase the complexity of the program 
on the control flow attribute domain while other change ac- 
tivity my be neutral with respect to this domain but increase 
the size of the program. 

It is also of interest to understand the precise nature of 
change activity on each of the program modules on each of 
the builds. We can establish the precise change activity of 
any module on any domain by the domain churn measure. 
This measure of domain churn, X , for module m, between 
any two sequential builds is simply xp +.j -d;w(. 

Now we wish to characterize, or measure, the complete 
change to the system over all of the builds from build 0 to 
build L. Many modules, however, may have come and gone 
over the course of the evolution of the system. We are only 
interested in the history of the survivors; those modules that 
are now in the final build L. 

It is now possible to compute the total domain change 
activity for the aggregate system within each of the system 
builds. The total domain change activity (churn), xj’”’, 
of the system for module ma on domain i for build j+l  is the 
sum of the domain churn for this module across all modules 
in the build j+l .  

The value of the domain churn for each module is, of course, 
dependent on the referent baseline build B. 

Let us also observe that if module ma were not present 

on builds j and j + l ,  then xki+’ = 0. Also, if module ma 
had been introduced on build j + l  then xp = I d y l .  

8. Measuring and Understanding Change 

Xj.i+I= c.,,,., x2+‘  . 

We have developed two distinct measures of software 
evolution. First, there is the FI metric. This metric will per- 
mit us to understand the essential complexity of any one 
module in relation to any other module in the entire evolution 
of the software system. Thus, if we observe a module ma on 



the J'" with a value of 100, we know that this module is 
equal to an average module on the baseline build. 

There are many different levels of granularity of obser- 
vation that may be made on an evolving software system. It 
is ow objective, in this paper, to characterize each build of 
the system as a whole. This will give us a management per- 
spective of the evolving system. There are several ways that 
we can accomplish this goal. Let us begin by examining the 
system FI. To do this, we will add all of the FI values for 
each module in each system build. This will yield the total 
FI value for the system. In that the average value of FI was 
adjusted to 100 for the baseline build, then the system FI 
should simply be the product of the number of program 
modules in that system times 100. Thus, if there were 
15,000 modules on the baseline build, then the system FI 
would be 1,500,000. 

The system FI values for the MDS system are shown in 
Figure 1 for 421 builds of this system. The baseline build 
for this system was set at build numberl74. For the pur- 
poses of clarity the values have been normalized to the FI of 
the last build so that the largest system FI value will be 
scaled to 100. 

What is astonishing about this evolutionary sequence is 
that there is no point of inflection wherein the evolution of 
the system begins to slow down. If anything, there is an 
apparent point of inflection at about build 240 wherein the 
slope of the line increases. 
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Figure 1. The System Overview 
The FI value is, in the last analysis, a composite of the 

individual domain scores. In this case there are three or- 
thogonal domains. Again, Domain 1 represents the control 
flow complexity of the MDS system, Domain 2 represents 
the size complexity of the modules as represented by their 
operator and operand counts, and Domain 3 represents the 
path complexity of the modules. For each of the builds, a 
composite domain value was computed. This was obtained 
by summing all of the domain scores for each of the pro- 
gram modules in the build for each of the domains. The 
composite domain scores for each of the builds are shown in 
Figure 1 together with the system FI values. As was the 
case for the FI values, the composite domain scores were 
normalized to the largest domain value that was the compos- 
ite domain value for Domain 1 on the last build. All of the 
composite domain values were then adjusted to a maximum 
value of 100 for presentation purposes. Again, the baseline 

system was chosen to be build 174. Any other build could 
have been used and equivalent results would have been ob- 
tained. 

It is clear fiom examination of Figure 1, that not all 
builds are equivalent. Each build may be characterized by 
the specific nature of changes that it induces on each of the 
three orthogonal measurement domains. The baseline build 
represents a relatively arbitrary point in the evolutionary se- 
quence. We can conclude, from Figure 1, that a substantial 
part of the change activity since the baseline build has been 
in Domain 1. That is the control structure of the program is 
changing much more rapidly than its size or path complexity. 
It is also apparent that there was a massive change in the pro- 
gram between builds 246 and 247. The specific nature of this 
change is quite obvious. There was a great increase in the 
control complexity, a slight increase in path complexity, and 
a decrease in the size domain. Oddly enough, this is a rela- 
tively common occurrence in the evolution of a system. It 
generally happens when there is a massive rewrite or redes- 
ign of the system to control for its growth in size. The prob- 
lem is, change is a multivariate activity. Change activity 
must be understood in all of the attribute domains of a sys- 
tem. 
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Figure 2. Domain Churn 
Yet another way that change may be characterized is by 

examination of the domain churn of the system during its 
evolution. The domain churn data for the MDS system are 
shown in Figure 2. These data present a different view of the 
change activity. As was the case for the cumulative change 
data, we see a substantial amount of change activity in the 
between builds 246 and 247. What is striking from this 
analysis is that there was a rather substantial decrease in the 
size complexity of the program, a view not nearly so obvious 
from the cumulative change data. It is also apparent that the 
relative rate of change, as measured by domain churn, has 
slowed down substantially after build 247. 

Another interesting perspective that domain churn gives 
us, is the degree of change activity during the initial stages of 
program development. We can see that there is considerable 
fluctuation in the several domains during this initial period. 
After build 247, the size component is no longer the dominat- 



ing feature of domain churn. They program has reached a 
relatively stable change plateau for size. Now, however, the 
dominant feature is the chum in the control complexity. 
Unfortunately, as we shall see, control complexity is highly 
correlated with fault counts. 

The bottom line is that not all system changes are equal. 
Through the use of principal components analysis on the 
raw metric data for the evolving software, we are able to 
isolate the orthogonal sources of s o h a r e  variation, soft- 
ware attributes, and analyze the specific nature of the 
change activity. 

9. The Relationship Between Change Activity 
and Software Quality Attributes 
Generally we measure with a purpose. In general, we 

really don? want to know how many lines of code a system 
has. We really aren‘t interested in the number of paths that a 
module might have. However, we can easily measure these 
things. What we really wish to know is something about the 
rate of fault insertion and the failure potential of the soft- 
ware. Unfortunately, we cannot measure these things di- 
rectly. 

Let us observe from the MDS data that there is a very 
definite relationship between our software metric data and 
the historical software quality that we have obtained from 
this system. We have applied our new fault measurement 
methodology to the change history of the MDS system 
[ISSRE2003]. We also have the complete failure history of 
the MDS system at each of the builds. We would now like 
to study the relationship between our evolutionary meas- 
urement data and these software quality data. 

In Figure 3 the system FI data for the evolving MDS 
system are shown together with the cumulative fault count 
and the cumulative failure counts. We see that these plots 
are very similar. Indeed the correlation coefficient between 
cumulative faults and FI is 0.98. Similarly, the correlation 
coefficient between cumulative failures and FI is 0.97. 

Now if we look at the individual attribute domains in 
regards to the index of cumulative faults we see that not all 
attributes are equally associated with faults. The cumulative 

domain values for each of the system builds is plotted in 
Figure 4 together with the cumulative FI for each build. It is 
quite apparent from this figure that Domain 1, the control 
domain, is most closely associated with the cumulative fault 
measure. Indeed, the correlation coefficient between Domain 
1 cumulative domain values and the cumulative fault values 
is 0.94. The correlation between Domain 2 and cumulative 
faults is -0.20. Finally, Correlation between Domain 3 and 
cumulative faults is 0.71. 

Perhaps the most disturbing feature on the software de- 
velopment landscape is the fact that the variation in the fault 
insertion rate is not constant and does not improve over time. 
To expose this characteristic, we will compute a moving 
standard deviation through the fault data associated with each 
of the system builds. To compute this moving standard de- 
viation, fault data were grouped in sets of ten beginning with 
the first ten builds, followed by builds 2 through 11 and so 
forth. The standard deviation for each of these groups was 
then plotted in Figure 5. There is an apparent trend in these 
data. That is, the variation in the number of faults appears to 
increase directly with the increasing complexity of the sys- 
tem. Indeed, the correlation coefficient between the cumula- 
tive chum, shown in Figure 5 and the moving fault standard 
deviation is 0.44. Cumulative chum is derived from FI. This 
relationship can also be clearly seen in Figure 5. Again, the 
correlation between FI and the variance of the faults is 0.44. 
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Figure 4. Cumulative Domain Scores v. Cumulative 
Faults 
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Figure 5. Variation in Cumulative Faults 
Not only do software systems change during their evolu- 

tion. These changes are closely linked to software quality 



criteria. Changes to some software attributes will have a 
much greater impact than similar changes in other attributes. 

10. Discussion and Future Work 
We have seen that structural measurements of a sys- 

tem’s structural evolution can serve as useful predictors of 
the number of faults inserted into a system during its devel- 
opment. Furthermore, some types of change are more likely 
than others to result in the introduction of faults in the sys- 
tem. By identifying the principal domains in which a 
change occurred, we are able to determine whether the 
change is likely to induce faults or is relatively innocuous. 
In a very real sense, then, we did meet our objective in de- 
veloping a practical method of predicting software fault 
content based on the structural characteristics of the MDS 
software system. Although the number of measurements 
used in this study was rather limited, over 90% of the varia- 
tion in the cumulative fault count was explained by the cu- 
mulative value of a specific domain. This is a sufficiently 
large value for development efforts to start using these 
measurements as a management tool. Software managers 
should be able to use these measurements to: 

Determine whether a given set of changes is likely to 
result in the insertion of faults into the system, or 
whether the changes are relatively benign. 
By applying these techniques to subset of the system 
and comparing the results, identify the modules which 
have had the most faults inserted 
Determine how many more faults a given module has 
had inserted into it than another module. 

Future work will involve enlarging the set of measurements 
taken by DarwinTM and determining the effect of the 
enlarged set on the accuracy of the fault predictors. For 
instance, DarwinTM does not currently take any measure- 
ments specifically related to objects (e.g., number of meth- 
ods, depth of an ob’ect in the class hierarchy). Future ver- 
sions of DarwinTd might implement the object-oriented 
measures proposed by Chidamber and Kemerer [Chid94]. 

The Darwinm network appliance is still in its period of 
infancy. It presently incorporates a relatively simple metric 
analysis tool. The main issues that had to be solved first in 
the measurement process were infrastructure problems. We 
are now able, however, to track all aspects of software 
source evolution. Mechanisms are in place to measure soft- 
ware faults very precisely. Mechanisms are also in place to 
automate the complete measurement of a rapidly evolving 
software system. As a preliminary report and investigation, 
the Darwin measurement system has clearly established 
itself as a viable tool for the understanding of the etiology of 
software faults and their relationship to software attribute 
that can be measured. 

We have developed a definition of software faults that 
can be applied to source code. The definition allows faults 
to be unambiguously measured at the level of individual 

modules. Since faults are measured at the same level at 
which structural measurement are taken, it becomes more 
feasible to construct meaningful models relating the number 
of faults inserted into a software module to the amount of 
structural change made to that module. Because of the way 
in which faults are defined, the task of counting faults is eas- 
ily. automated, making it much more practical to analyze 
large software systems such as those developed to support 
NASA flight missions. In other words, the faults may be 
quantified by a software tool that can analyze the deltas in 
code modules maintained by the configuration control system 
and measure those changes specifically attributable to failure 
reports. 

There may be uncontrolled sources of noise which we 
intend to address in future work. For example, developers 
might be making enhancements to the system at the same 
time they are responding to a reported failure. In this case, 
the enhancements would be counted as repairs made in re- 
sponse to the failure. Addressing this issue will involve se- 
lecting an appropriate subset of the reported failures and in- 
terviewing developers about the changes made in response to 
those failures. We will be careful to select representative 
failures from all system components to control for the noise 
inserted by each development team. We will also select re- 
ported failures from different times during the development 
effort, to determine whether the number of enhancements 
reported as fault repair changes over time. 

The fault counting technique described in [MunsOZ] does 
not currently allow us to identify all situations in which a 
given token has been replaced by another, which may lead to 
undercounting the number of faults that have been corrected. 
Consider the following example, for which the original state- 
ment is: 

which is changed during repair to 

The six tokens representing (1) is B1= {<a>, <=>, 8 7 ,  <+>, 
<c>), and the eight tokens representing (2) is B2 = {<a>, 
<=>, <b>, <-7, <c>, <+>, <&}. We see that what has hap- 
pened is that <+> in (1) has been changed to <-> in (2), and 
that <c>, <+>, and <d> have been added in (2). However, 
the bag difference B2 - B1 = {<a, <d>}, indicating the addi- 
tion of two new tokens, but failing to indicate that one token 
was replaced by another. 

The technique also does not identify the number of to- 
kens that have been reordered. Consider the situation illus- 
trated by comparing the faulty statement (3) to the repaired 
statements (4), shown below. 

(1) a = b + c ;  

(2) a = b - c + d ;  

(3) a = b - c; 
(4) a = c - b; 

The bag difference is B3 - B4 = { }, the cardinality of which 
is 0. We see that the ordering of <b> and <c> has changed 
from (3) to (4), for which we could count 2 faults. However, 
our examination of the bag difference leads only to the 
conclusion that at least 1 token has changed, for which we 
count 1 fault according to our definition. In this situation, 



1 fault according to our definition. In this situation, our 
definition could again lead to undercounting the number of 
faults repaired. Resolution of these fault-counting issues is 
also a part of our planned future work. We intend to inves- 
tigate a technique originally devised for merging two differ- 
ent versions of a software component reported at the 2002 
International Conference on Software Maintenance 
[Hunt021 which may be relevant. 
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