
Understanding the Nature of Software Evolution

Allen P. Nikora
Jet Propulsion Laboratory,

California Institute of Technology
Pasadena, CA 9 1 109-8099

Allen.P.Nikora@,itd.nasa.gov

ABSTRACT
Over the past several years, we have been developing

methods of measuring the change characteristics of evolv-
ing software systems. Not all changes to software systems
are equal. Some changes to these systems are very small
and have low impact on the system as a whole. Other
changes are substantial and have a very large impact of the
fault proneness of the complete system. In this study we
will identifi the sources of variation in the set of software
metrics used to measure the system. We will then study the
change characteristics to the system over a large number of
builds.

We have begun a new investigation in these areas in
collaboration with a fright software technology development
effort at the Jet Propulsion Laboratory (JFL) and have pro-
gressed in resolving the limitations of the earlier work in
two distinct steps. First, we have developed a standard for
the enumeration of faults. This new standard permits sop-
ware faults to be measured precisely and accurately. Sec-
ond, we have developed a practical framework for automat-
ing the measurement of these faults. This new standard and
fault measurement process was then applied to a software
system 's structural evolution during its development. Every
change to the software system was measured and every fault
was identified and tracked to a specific code module. The
measurement process was implemented in a network appli-
ance, minimizing the impact of measurement activities on
development efforts and enabling the comparison of meas-
urements across multiple development efforts.

In this paper, we analyze the measurements of struc-
tural evolution and fault counts obtained from the JFL flight
software technology development effort. Our results indi-
cate that the measures of structural attributes of the evolv-
ing software system are suitable for forming predictors of
the number of faults inserted into software modules during
their development, and that some types of change are more
likely to result in the insertion of faults than others, The
new fault standard also insures that the model so developed
has greater predictive valid@.

John C. Munson
Computer Science Department

University of Idaho

jmunson@cs.uidaho.edu
MOSCOW, ID 83844-1010

1. Introduction
Over the past several years, we have been investigating

relationships between measurements of a software system's
structural evolution and the rate at which faults are inserted
into that system [Muns98]. Measuring the structural evolu-
tion of a software system has proven to be a straightforward
effort that can easily be automated. Unfortunately, it has not
been as easy to measure the number of faults inserted into the
system - there has been no particular definition of just pre-
cisely what a software fault is. In the face of this difficulty it
is rather hard to develop meaningful associative models be-
tween faults and code attributes. In calibrating a model, we
would like to know how to count faults in an accurate and
repeatable manner just we would expect to enumerate state-
ments, lines of code, and so forth. In measuring the evolu-
tion of a system to talk about rates of fault introduction and
removal, we measure in units proportional to the way that the
system changes over time. Changes to the system are visible
at the module level (by module we mean procedures and
functions), and we attempt to measure at that level of granu-
larity. Since the measurements of system structure are col-
lected at the module level, we also strive to collect informa-
tion about faults at the same granularity.

As software systems change over time, it is very difficult
to understand and measure the effect of the changes. We
would like to be able to describe, numerically, the way that
each system increment, or build, is different from its succes-
sor and its predecessor. This is a very complex problem in
that most modem software systems consist of thousands of
program modules on each of which there may be as many as
20-30 distinct metrics collected. For any one build, there
may be tens of thousands of metrics collected on a typical
large system. Knowing what to measure, how to measure,
and when to measure will be a key step in understanding the
software evolution process.

As programs have increased in length several orders of
magnitude in the last three decades, the problems associated
with measuring these programs have also increased several
orders of magnitude. Furthermore, these systems experience
a very large number of changes during their development and

mailto:Allen.P.Nikora@,itd.nasa.gov
mailto:jmunson@cs.uidaho.edu

early deployment. Not all changes will have the same rela-
tive impact on the code in terms of its overall complexity.
Some changes by their very nature will be innocuous, such
as the introduction of comment statements. Other changes
will make substantial changes to the basic architecture of a
program module. Even the simplest measurements taken on
each program module have a way of creating an enormous
data management problem in the measurement of evolving
systems. The key to the success of the measurement prob-
lem is to reduce the size of the problem with which we are
working.

In this paper we will examine the measurement of the
software from the standpoint of the measurement of soft-
ware physical attributes and software quality attributes. We
will then discuss the most critical issue of all in this meas-
urement process. That is, how do we compare different
versions of an evolving system in a meaningful way? We
will also examine methods for reducing the huge volume of
measurement data to information that can be used in the
management of the software development and test activities.

2. Related Work
Over the past several years, a great deal of work has

been done in the area of using measurements of software
systems to identify fault-prone components and predict their
fault content. Examples of this work include the classifica-
tion methods proposed by Khoshgoftaar and Allen
[KhosOla] and by Ghokale and Lyu [Ghok97], Schneide-
wind’s work on Boolean Discriminant Functions [Schn97],
Khoshgoftaar’s application of zero-inflated Poisson regres-
sion to predicting software fault content [KhosOI], and
Schneidewind’s investigation of logistic regression as a dis-
criminant of software quality [SchnOl]. Each of these ef-
forts has provided useful insights into the problem of identi-
fying fault-prone software components prior to test. The
one thing that these efforts have in common is that each of
them analyzed a snapshot of the subject system, rather than
examining its evolution during development. This may
limit the validity of those efforts’ conclusions to the point in
the development life cycle when the measurements were
made. If, however, the entire evolution of a software sys-
tem is analyzed, any conclusions that are reached should be
applicable to any point in the development cycle of the arti-
fact being studied. With this goal in mind, we conducted a
small study on a JPL flight system several years ago
[Niko98]. We found strong indications that measurements
of a system’s structural evolution could serve as predictors
of the fault insertion rate. However, this study had two
limitations:

The study was relatively small - fewer than 50 observa-
tions were used in the regression analysis relating the
number of faults inserted to the amount of structural
change.
The definition of faults that was used was not quantita-
tive. The ad-hoc taxonomy, first described in [Niko97],

was an attempt to provide an unambiguous set of rules
for identifying and counting faults. The rules were based
on the types of changes made to source code in response
to failures reported in the system. Although the rules
provided a way of classifying the faults by type, and at-
tempted to address faults at the level of individual mod-
ules, they were not sufficient to enable repeatable and
consistent fault counts by different observers to be made.
The rules in and of themselves were unreliable.
Before recommending the use of measurements of struc-

tural evolution as a fault predictor, we needed to address the
limitations of the earlier study. Our main concern was de-
veloping a quantitative definition of faults, so that we could
automate what had been a time-consuming manual activity in
the earlier study, the identification and counting of repaired
faults at the module level. Our hope was that this would pro-
vide us with unambiguous, consistent, and repeatable fault
counts, as well as a substantially larger number of observa-
tions than the earlier study.

To develop fault predictors for evolving systems, two
types of measurements must be made:

The structural evolution of a system as it changes over a
series of builds
The number of faults discovered during the system’s
development.

Measuring a system’s structural evolution is a straightfor-
ward activity - the DARWINTM network appliance can
automatically make these measurements if it has access to a
software development effort’s source code repository.
DARWINTM will then take structural measurements of each
version of each module (i.e., function or method) in the sys-
tem and use those measurements to produce quantitative re-
ports of the system’s evolutionary history according to the
techniques described in Sections 6 and 7.

Measuring faults is not quite as straightforward an activ-
ity. The structure of a software component can easily be
made because there are standard, quantitative definitions of
structural attributes (e.g., number of physical lines of code,
number of operators) that can be used to develop measure-
ment tools. The following definition of what constitutes a
fault is typical of that provided by current standards: “A
manifestation of an error in software. A fault, if encountered,
may cause a failure” [IEEE88, IEEE831. This establishes a
fault as a structural defect in a software system that underlies
the failure of that system to operate as expected, but does not
help in determining the type of failure that was observed, or
establish how individual faults may identified or measured.
Some standards address the issue of the type of failure ob-
served by describing schemes for classifying anomalies re-
corded during software development and operation. For in-
stance, [IEEE93] provides details of an anomaly classifica-
tion process, as well as criteria for classifying the type of
anomaly observed, at what point in the development process
the anomaly was observed, and the action taken in response
to the anomaly. For example, Table 3c in this standard al-

lows classification of the type of behavior exhibited by the
anomaly (e g , “precision loss”) or the type of defect that led
to the anomaly (e.g., “referenced wrong data variable”).
This type of scheme is helpful in determining the underlying
causes of faults and failures, so that the development proc-
ess may be modified to 1) identify the types of faults on
which fault detection and removal resources should be fo-
cused for the current development effort, and 2) minimize
the introduction of the most common types of faults in fu-
ture development tasks. However, classification standards
do not provide enough information to help count the number
of faults in the system. Returning to Table 3c of [IEEE93],
we see that some of the anomaly types can readily be traced
to a single fault (e.g., “Operator in equation incorrect”).
However, the response an “I/O Timing” anomaly may in-
volve changes to many lines of source code spread across
multiple source code files. In this case, the standard does
not provide enough information to allow counting the num-
ber of faults at the module level.

Orthogonal Defect Classification (ODC), initially re-
ported in 1992 [Chi192], provides a framework for 1) identi-
fying defect types and the sources of error in a software
development effort, 2) determining the effectiveness of the
different defect detection techniques and strategies used by
the organization, and 3) using the feedback provided by
analysis of the defects to help the organization reduce the
number of defects it inserts into its systems. Like [IEEE93],
ODC provides a scheme for classifying defects, which is
useful in identifying sources of error at different points in
the development process. However, it does not seem to
possible to use the classification scheme to consistently
count faults at the module level. The recognition process
for defects is not sufficiently well defined to permit the
automatic recognition of these defects.

3. Problem Statement
The objective of our current work is to develop practi-

cal methods of measuring software evolution. This will
involve the establishment of a baseline reference artifact or
system against which all system builds will be calibrated.
Although other types of artifacts could have been analyzed,
working with source code has two advantages:

Measuring structural attributes of source code can be
easily automated.
Since the source code is controlled by a configuration
management system, different versions of the system
can be easily and unambiguously identified. In particu-
lar, a baseline against which all other versions are to be
measured can be easily established.

Through the analysis of the structural evolution of a soft-
ware system, we overcome the limitations of the related
work identified in Section 2 - that is, any predictors of fault
content we develop should have predictive validity at any
point during the development of the artifact being studied.
This is in contrast to models developed from single and iso-

lated system builds. In a more general sense, we wish to
understand the complete system from its first build until the
most recent build.

We worked in collaboration with the Mission Data Sys-
tem (MDS), a mission software technology development
effort in progress at JPL. We were able to measure the struc-
tural evolution of the MDS during the development of a spe-
cific release. We also were able to measure the fault discov-
ery process by our new fault measurement methodology
[MunsO2]. For every failure reported against the MDS, we
were also able to identify the changes made to each module
in response to that failure, and thereby count the number of
faults that had been repaired.

4. A Description of the Mission Data System
The brief description of the MDS provided here is

summarized from Dvorak, et al. [Dvo99]. Until recently,
planetary exploration missions were spaced years apart, with
little attention to software reuse, given the rapid pace of
computer technology and computer science. Also, since
radiation-hardened flight computers remain years behind
their commercial counterparts in speed and memory, flight
software has typically been highly customized and tuned for
each mission. In order to use software engineering resources
more effectively and to sustain a quickened pace of missions,
JPL initiated the MDS project in April 1998 to define and
develop an advanced multi-mission architecture for an end-
to-end information system for deep-space missions. MDS is
aimed at several institutional objectives: earlier collaboration
of mission, system and software design; simpler, lower cost
design, test, and operation; customer-controlled complexity;
and evolvability to in situ exploration and other autonomous
applications.

Some important ways in which MDS differs from earlier
systems are as follows:

When appropriate, capabilities can be migrated from
ground-based systems to flight systems to simplify
operations.
MDS is founded upon a state-based architecture, where
state is a representation of the momentary condition of an
evolving system.
Domain knowledge is expressed explicitly in models
rather than implicitly in program logic.
Missions are to be operated via specifications of the
desired state rather than sequences of actions.
For our study, the structural evolution of the MDS was

measured over a period from October 20, 2000, through
April 26, 2002. The first date corresponds to the date on
which the first source files for the most recent increment
were checked into the CM library. The system contains over
15000 distinct modules; over the time interval analyzed
studied, there were over 1500 builds of the MDS. The total
number of distinct versions of all modules was greater than
65,000. Over 1400 problem reports were included in the

Metric
Exec

NonExec
N,
V I
N2

bo1 flow graph
Cycles kotal number of cycles in the module control flow

Definition
Number of executable statements
Number of non-executable statements
Total operator count
Unique operator count
Total operand count

1 baph
This metric set represents the essential characteristics of

both the size of a program module and its control flow char-
acteristics. All measurements were taken at the module
level. For C program elements, a module is a function. For
C++ a module is a h c t i o n or an object.

5.1. Derived Metrics
As has been clearly established from our previous work,

these metrics are highly correlated [Muns90, Ha11001. There
are twelve metrics. There are not twelve distinct sources of
variation. We would like to be able to identify the distinct
orthogonal sources of variation and map these twelve raw
metrics onto a set of uncorrelated metrics that represent es-
sentially the same information contained in the original
twelve metrics.

First we will need to identify the distinct sources of vari-
ance. We will use principal components analysis to identify
these new measurement domains. The results of this analysis
are shown in Table 2.

There are three distinct sources of variation in the twelve
original raw metrics. We have labeled these as Domain 1,2,
and 3 in this table. Domain 1 is most closely associated with
the control flow attributes that relate to the complexity of the
control flow graph structure of the measured program mod-
ules as is shown by the relatively high values (>OM) of the
Nodes and Edges metrics in this table. The raw metrics that
are most closely associated with each the underlying or-
thogonal domains have been shown in boldface type in this
table.

is

The eigenvalues, in the last row of Table 2 show the
relative proportion of variation accounted for by each of
these new orthogonal domains. For this particular problem
space, the sum of the eigenvalues for the twelve original met-
rics will be 12.0. Thus, the relative proportion of variation
accounted for by Domain 1 will be 4.7942 = 0.40 or 40% of
the variation in the original 12 metrics. All three domains
together account for approximately 85% of the total variation
observed in the original 12 metrics.

For measurement purposes, it will be necessary to stan-
dardize all original or raw metrics so that they are on the
same relative scale. For the i" module m/on thefh build of
the system there will be a data vector .(=< .;,.I,,...,.A, > of

12 raw complexity metrics for that module. We can stan-
dardize each of the raw metrics by subtracting the mean $
of the metric #1 over all modules in thefh build and divid-
ing by its standard deviation S: such that , - x i -2 repre-

sents the standardized value of the first raw metric for the th
module on thefh build.

A by-product of the original PCA of the 12 metric
primitives is a transformation matrix, T, that will map the z-
scores of the raw metrics into the reduced space represented
by the three principal components. Let 2 represent the ma-
trix of z-scores shown in the table above for the original
problem. We can obtain new domain metrics, D, using the
transformation matrix T as follows: D = ZT where Z is a n
by 12 matrix of z-scores, T is a 12 by 3 matrix of transfor-
mation coefficients, and D is a n by 3 matrix of domain
scores where n is the number of modules being measured in
a particular build. The matrix, T, for this solution given in
columns 2 through 4 of Table 3. The means and standard
deviations that are used to compute the z-scores are also
shown in columns 5 and 6 of this table.

For each module, there are now three new metrics, each
representing one the three orthogonal principal components.
For our subsequent investigations into modeling the rela-
tionship between code evolution and software faults, these
domain scores have the very valuable property that they are
uncorrelated. Each of the new metrics represents a distinct
source of variation. This will completely eliminate the
problem of multicollinearity from the linear regression
models that we wish to develop.

In order to simplify the structure of software complex-
ity even further than the orthogonal domains produced by
the principal components analysis it would be useful if each
of the program modules in a software system could be char-
acterized by a single value representing some cumulative
measure of complexity. Previous research has established
that the fault index, FI, has properties that might be useful in
this regard. The FI metric is a weighted sum of a set of
uncorrelated attribute domain metrics[Muns03]. This metric
represents each raw metric in proportion to the amount of
unique variation contributed by that metric.

The FI of the factored program modules may be repre-
sented as follows:

z,, --
6:

FI = c j l j d j i

where is the eigenvalue associated with thefh factor and
c+ is the f h factor score of the ifh program module on the f h
domain. Each of the eigenvalues represents the relative
contribution of its associated domain to the total variance
explained by all of the domains. In essence, then, the FI
metric is a weighted sum of the individual domain metrics.
In this context, the FI metric represents each raw complexity
metric in proportion to the amount of unique variation con-
tributed by that complexity metric.

The FI metric has a mean of zero and a variance propor-
tional to the variance of the eigenvalues. To make it more
meaningful, we have employed a simple transformation on FI
to adjust it so that it has a mean of 100 and a standard devia-
tion of 10. Let FI' represent this transformed measure. Then
FI' = FIxlO + 100.
6. The Measurement Baseline

The first step in the measuring the evolutionary devel-
opment of a software system will be to establish a baseline
reference point in the build process. When a number of suc-
cessive system builds are to be measured, we will choose one
of the systems as a baseline system. All others will be meas-
ured in relation to the chosen system. Sometimes it will be
useful to select the initial system build for this baseline. If
we select this system, then the measurements on all other
systems will be taken in relation to the initial system configu-
ration.

As a software system changes over time, it is very diffi-
cult to understand and measure the effect of the changes. We
would like to be able to describe, numerically, the way that
each system increment, or build, is different from its succes-
sor and its predecessor. This is a very complex problem in
that we are obtaining twelve measures on each program
module. For any one build, there are tens of thousands of
metrics collected on our target system.

Software systems grow and mature just as do biological
organisms. We would not think to measure a child at birth
and think that we know all there is to know about that child.
Measurement is an on-going process. We must, therefore,
come to understand that our software systems change rapidly
over time. Whenever they are changed, them must be re-
measured. To understand what a software system is today,
we must have current measurement data on the system to-
gether with data on its evolution. We know that faults are
removed over time. Modules that have not changed very
much are likely to have had most of their faults removed.
Modules that have changed a lot are very likely to have had
new faults introduced into them. Hence, understanding
change activity is vital to our understanding where the prob-
lems in the system might be.

From the first build of each such system to the last build
the differences may be so great as to obscure the fact that it is
still the same system. We would like to be able to quantify
the differences in the system from its first build, through all
builds to the current one. Then and only then will it be pos-
sible to know how these systems have changed.

A complete software system generally consists of a large
number of program modules. Each of these modules is a
potential candidate for modification as the system evolves
during development and maintenance. As each program
module is changed, the total system must be reconfigured to
incorporate the changed module. We will refer to this recon-
figuration as a build. For the effect of any change to be felt it
must physically be incorporated in a build.

As program modules change from one build to another,
the attributes of the modified program modules change.
This means that there are measurable changes in modules
from one build to the next. Each build is numerically and
measurably different from its predecessor with respect to a
particular set of metrics. Thus, there is no such thing as
measuring a software system but once. Many software de-
velopers who profess to be deeply committed to measure-
ment are still tempted to represent a system by a set of
measurements taken at one point in a system's evolution.
The truth is, measurement is a process. Whenever changes
are made to a system, those system elements that have
changed must be re-measured.

In order to describe the complexity of a system at each
build, it will be necessary to know the version of each of the
modules that was in the program that failed. Each of the
program modules is a separate entity. It will evolve at its
own rate. Each build of the system will unify a set of pro-
gram modules. Not all of the builds will contain precisely
the same modules. Clearly there will be different versions
of some of the modules in successive system builds. This
complex process is described in detail in [Muns03].

Table 3 - The Measurement Baseline

We must be careful to standardize the metric scores in a
way that will not erase the effect of trends in the data. For
example, let us assume that we were takiig measurements
on LOC and that the system we were measuring grew in this
measure over successive builds. If we were to standardize
each build of the system by its own mean LOC and its own
standard deviation, the mean of this system would always be
zero. Thus, we will standardize the raw metrics using a
baseline system such that the standardized metric vector for
the ifh module m/on the j'* build would be

where E: is a vector containing the means of the raw met-
r i c ~ for the baseline system and 6: is a vector of standard

deviations of these raw metrics. Thus, for each system, we
may build an m x k data matrix, z' , that contains the stan-
dardized metric values relative to the baseline system on
build B.

When we have identified a target build, B, to be the
baseline build we will then compute the three constituent
elements of the baseline. These elements are the trans-
formation matrix for the baseline build, the vector of metrics
means for the baseline build $, and a vector 6i of stan-
dard deviations for this build. For the purposes of this study,
the July 1, 2001 build was chosen as the baseline build.
Table 3 shows the actual baseline that will be used to com-
pute the derived metrics used in this study.

B

7. Measuring Change Activity
A complete software system generally consists of a large

number of program modules. Each of these modules is a
potential candidate for modification as the system evolves
during development and maintenance. As each program
module is changed, the total system must be reconfigured to
incorporate the changed module. We will refer to this recon-
figuration as a build. For the effect of any change to be felt it
must physically be incorporated in a build.

In order to describe the complexity of a system at each
build, it will be necessary to h o w the version of each of the
modules was in the program that failed. Each of the program
modules is a separate entity. It will evolve at its own rate.
Consider a software system composed of TI modules as fol-
lows: m, , m, , m,,. e . , m, . Each build of the system will unify
a set of these modules. Not all of the builds will contain pre-
cisely the same modules. Clearly there will be different ver-
sions of some of the modules in successive system builds.

We can represent the build configuration in a nomencla-
ture that will permit us to describe the measurement process
more precisely by recording module version numbers as vec-
tor elements in the following manner: vi =<v~,v~,v:,...v~ >.
This build index vector will allow us to preserve the precise
structure of each for posterity. Thus, V,; in the vectorv"
would represent the version number of the ith module that
went to nrh build of the system. The cardinality of the set of
elements in the vector Vn is determined by the number of
program modules that have been created up to and including
the TI'* build. In this case the cardinality of the complete set
of modules is represented by the index value m. This is also
the number of modules in the set of all modules that have
ever entered any build.

The management of the configuration of each of the pro-
gram modules is one aspect of the software management
process. Another vital piece is the build index vector. It is
the only record of the module version that went to each build.
This build index vector must be maintained in some type of a
build management database. There are many sad stories in

the software maintenance community about software sys-
tems that have been delivered to a customer without such a
record. It is almost impossible to interpret trouble reports
from customers if the structure of the build that the cus-
tomer is using is not known.

A natural way to capture the intermediate measure-
ments for each build would be to incorporate the measure-
ment tools within the configuration management system.
Just as code deltas are maintained for each program module,
so should deltas for the code attributes also be kept by the
configuration management system.

The prime objective of this discussion is to demonstrate
the measurement process for measuring successive stages of
an evolving software system. Thus, we will be able to as-
sess the precise effect of the change from the build repre-
sented by V i to vi+’ or even vi to v or vi-“ These
data will serve to structure the regression test activity be-
tween builds. Those modules that have the greatest change
in complexity from one build to the next should receive the
majority of test effort in the regression test activity.

When evaluating the precise nature of any changes that
occur to the system between any two builds i, and j , we are
interested in three sets of modules. The first set, Mf.‘ , is
the set of modules present in both builds of the system.
These modules may have changed since the earlier version
but were not removed. The second set, M Y , is the set of
modules that were in the early build, i, and were removed
prior to the later build, j. The final set, M:’, is the set of
modules that have been added to the system since the earlier
build.

As an example, let build i consist of the following set of
modules.

Between build i and j module m, was removed giving.
Thus,

i+k

. .

M’ =(m,,m2,m,,m4,m51

Mi =Mi u~:.’ -MY
= {m,,m*,m,, m41m5)u { I- {m,)

= (m,,m,, m4, m5 I
Then between builds j and k two new modules, m,and
m, are added and module m2 is deleted giving

Mk = M I “Mb/” - M J . ~

= 1% m*,m4, m, bJ {m,,m, I- {m, 1
= {ml, m,, m,, m,, m, 1

With a suitable baseline in place, it is possible to meas-
ure software evolution across a full spectrum of software
metrics. We can do this first by comparing average metric
values for the different builds. Secondly, we can measure
the increase or decrease in system complexity as measured
by the changes in the domain metrics, or we can measure

the total amount of change the system has undergone across
all of the builds to date.

It is now possible to compute the total domain change
activity for the aggregate system within each of the system
builds. Let d? represent the f h domain score of the afh

module on bui ldj baselined by build B. The total domain
value of the system on build j on domain i is the sum of the
domain scores for each of the modules present in this build.
This system domain value 0; is given by

d8.J .
D / = C OEV’ io

We can now measure the nature of the change activity from
one build to the next on each of the orthogonal domains. We
will come to understand that not all changes are equal. Some
change activity will increase the complexity of the program
on the control flow attribute domain while other change ac-
tivity my be neutral with respect to this domain but increase
the size of the program.

It is also of interest to understand the precise nature of
change activity on each of the program modules on each of
the builds. We can establish the precise change activity of
any module on any domain by the domain churn measure.
This measure of domain churn, X , for module m, between
any two sequential builds is simply xp +.j -d;w(.

Now we wish to characterize, or measure, the complete
change to the system over all of the builds from build 0 to
build L. Many modules, however, may have come and gone
over the course of the evolution of the system. We are only
interested in the history of the survivors; those modules that
are now in the final build L.

It is now possible to compute the total domain change
activity for the aggregate system within each of the system
builds. The total domain change activity (churn), xj’”’,
of the system for module ma on domain i for build j+l is the
sum of the domain churn for this module across all modules
in the build j+l .

The value of the domain churn for each module is, of course,
dependent on the referent baseline build B.

Let us also observe that if module ma were not present

on builds j and j + l , then xki+’ = 0. Also, if module ma
had been introduced on build j + l then xp = I d y l .

8. Measuring and Understanding Change

Xj.i+I= c.,,,., x2+‘ .

We have developed two distinct measures of software
evolution. First, there is the FI metric. This metric will per-
mit us to understand the essential complexity of any one
module in relation to any other module in the entire evolution
of the software system. Thus, if we observe a module ma on

the J'" with a value of 100, we know that this module is
equal to an average module on the baseline build.

There are many different levels of granularity of obser-
vation that may be made on an evolving software system. It
is ow objective, in this paper, to characterize each build of
the system as a whole. This will give us a management per-
spective of the evolving system. There are several ways that
we can accomplish this goal. Let us begin by examining the
system FI. To do this, we will add all of the FI values for
each module in each system build. This will yield the total
FI value for the system. In that the average value of FI was
adjusted to 100 for the baseline build, then the system FI
should simply be the product of the number of program
modules in that system times 100. Thus, if there were
15,000 modules on the baseline build, then the system FI
would be 1,500,000.

The system FI values for the MDS system are shown in
Figure 1 for 421 builds of this system. The baseline build
for this system was set at build numberl74. For the pur-
poses of clarity the values have been normalized to the FI of
the last build so that the largest system FI value will be
scaled to 100.

What is astonishing about this evolutionary sequence is
that there is no point of inflection wherein the evolution of
the system begins to slow down. If anything, there is an
apparent point of inflection at about build 240 wherein the
slope of the line increases.

70.m I

Figure 1. The System Overview
The FI value is, in the last analysis, a composite of the

individual domain scores. In this case there are three or-
thogonal domains. Again, Domain 1 represents the control
flow complexity of the MDS system, Domain 2 represents
the size complexity of the modules as represented by their
operator and operand counts, and Domain 3 represents the
path complexity of the modules. For each of the builds, a
composite domain value was computed. This was obtained
by summing all of the domain scores for each of the pro-
gram modules in the build for each of the domains. The
composite domain scores for each of the builds are shown in
Figure 1 together with the system FI values. As was the
case for the FI values, the composite domain scores were
normalized to the largest domain value that was the compos-
ite domain value for Domain 1 on the last build. All of the
composite domain values were then adjusted to a maximum
value of 100 for presentation purposes. Again, the baseline

system was chosen to be build 174. Any other build could
have been used and equivalent results would have been ob-
tained.

It is clear fiom examination of Figure 1, that not all
builds are equivalent. Each build may be characterized by
the specific nature of changes that it induces on each of the
three orthogonal measurement domains. The baseline build
represents a relatively arbitrary point in the evolutionary se-
quence. We can conclude, from Figure 1, that a substantial
part of the change activity since the baseline build has been
in Domain 1. That is the control structure of the program is
changing much more rapidly than its size or path complexity.
It is also apparent that there was a massive change in the pro-
gram between builds 246 and 247. The specific nature of this
change is quite obvious. There was a great increase in the
control complexity, a slight increase in path complexity, and
a decrease in the size domain. Oddly enough, this is a rela-
tively common occurrence in the evolution of a system. It
generally happens when there is a massive rewrite or redes-
ign of the system to control for its growth in size. The prob-
lem is, change is a multivariate activity. Change activity
must be understood in all of the attribute domains of a sys-
tem.

~-

I I De,---,

I o l o l ~ I I

I
0 9

023 l5qi
o x --
0 15

0 10

I

l o m - t a r e s s ~ e l ~ c g g ~ ~ W ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I
~ _ _ - - J

1 O M

Figure 2. Domain Churn
Yet another way that change may be characterized is by

examination of the domain churn of the system during its
evolution. The domain churn data for the MDS system are
shown in Figure 2. These data present a different view of the
change activity. As was the case for the cumulative change
data, we see a substantial amount of change activity in the
between builds 246 and 247. What is striking from this
analysis is that there was a rather substantial decrease in the
size complexity of the program, a view not nearly so obvious
from the cumulative change data. It is also apparent that the
relative rate of change, as measured by domain churn, has
slowed down substantially after build 247.

Another interesting perspective that domain churn gives
us, is the degree of change activity during the initial stages of
program development. We can see that there is considerable
fluctuation in the several domains during this initial period.
After build 247, the size component is no longer the dominat-

ing feature of domain churn. They program has reached a
relatively stable change plateau for size. Now, however, the
dominant feature is the chum in the control complexity.
Unfortunately, as we shall see, control complexity is highly
correlated with fault counts.

The bottom line is that not all system changes are equal.
Through the use of principal components analysis on the
raw metric data for the evolving software, we are able to
isolate the orthogonal sources of s o h a r e variation, soft-
ware attributes, and analyze the specific nature of the
change activity.

9. The Relationship Between Change Activity
and Software Quality Attributes
Generally we measure with a purpose. In general, we

really don? want to know how many lines of code a system
has. We really aren‘t interested in the number of paths that a
module might have. However, we can easily measure these
things. What we really wish to know is something about the
rate of fault insertion and the failure potential of the soft-
ware. Unfortunately, we cannot measure these things di-
rectly.

Let us observe from the MDS data that there is a very
definite relationship between our software metric data and
the historical software quality that we have obtained from
this system. We have applied our new fault measurement
methodology to the change history of the MDS system
[ISSRE2003]. We also have the complete failure history of
the MDS system at each of the builds. We would now like
to study the relationship between our evolutionary meas-
urement data and these software quality data.

In Figure 3 the system FI data for the evolving MDS
system are shown together with the cumulative fault count
and the cumulative failure counts. We see that these plots
are very similar. Indeed the correlation coefficient between
cumulative faults and FI is 0.98. Similarly, the correlation
coefficient between cumulative failures and FI is 0.97.

Now if we look at the individual attribute domains in
regards to the index of cumulative faults we see that not all
attributes are equally associated with faults. The cumulative

domain values for each of the system builds is plotted in
Figure 4 together with the cumulative FI for each build. It is
quite apparent from this figure that Domain 1, the control
domain, is most closely associated with the cumulative fault
measure. Indeed, the correlation coefficient between Domain
1 cumulative domain values and the cumulative fault values
is 0.94. The correlation between Domain 2 and cumulative
faults is -0.20. Finally, Correlation between Domain 3 and
cumulative faults is 0.71.

Perhaps the most disturbing feature on the software de-
velopment landscape is the fact that the variation in the fault
insertion rate is not constant and does not improve over time.
To expose this characteristic, we will compute a moving
standard deviation through the fault data associated with each
of the system builds. To compute this moving standard de-
viation, fault data were grouped in sets of ten beginning with
the first ten builds, followed by builds 2 through 11 and so
forth. The standard deviation for each of these groups was
then plotted in Figure 5. There is an apparent trend in these
data. That is, the variation in the number of faults appears to
increase directly with the increasing complexity of the sys-
tem. Indeed, the correlation coefficient between the cumula-
tive chum, shown in Figure 5 and the moving fault standard
deviation is 0.44. Cumulative chum is derived from FI. This
relationship can also be clearly seen in Figure 5. Again, the
correlation between FI and the variance of the faults is 0.44.

1000

-2003

Figure 4. Cumulative Domain Scores v. Cumulative
Faults

mm
5UW

Mm

som
”
10 m
am - ” ~ ~ ~ ~ ~ ~ ? E E B w ~ ~ w E ~ ~ E B I

Figure 5. Variation in Cumulative Faults
Not only do software systems change during their evolu-

tion. These changes are closely linked to software quality

criteria. Changes to some software attributes will have a
much greater impact than similar changes in other attributes.

10. Discussion and Future Work
We have seen that structural measurements of a sys-

tem’s structural evolution can serve as useful predictors of
the number of faults inserted into a system during its devel-
opment. Furthermore, some types of change are more likely
than others to result in the introduction of faults in the sys-
tem. By identifying the principal domains in which a
change occurred, we are able to determine whether the
change is likely to induce faults or is relatively innocuous.
In a very real sense, then, we did meet our objective in de-
veloping a practical method of predicting software fault
content based on the structural characteristics of the MDS
software system. Although the number of measurements
used in this study was rather limited, over 90% of the varia-
tion in the cumulative fault count was explained by the cu-
mulative value of a specific domain. This is a sufficiently
large value for development efforts to start using these
measurements as a management tool. Software managers
should be able to use these measurements to:

Determine whether a given set of changes is likely to
result in the insertion of faults into the system, or
whether the changes are relatively benign.
By applying these techniques to subset of the system
and comparing the results, identify the modules which
have had the most faults inserted
Determine how many more faults a given module has
had inserted into it than another module.

Future work will involve enlarging the set of measurements
taken by DarwinTM and determining the effect of the
enlarged set on the accuracy of the fault predictors. For
instance, DarwinTM does not currently take any measure-
ments specifically related to objects (e.g., number of meth-
ods, depth of an ob’ect in the class hierarchy). Future ver-
sions of DarwinTd might implement the object-oriented
measures proposed by Chidamber and Kemerer [Chid94].

The Darwinm network appliance is still in its period of
infancy. It presently incorporates a relatively simple metric
analysis tool. The main issues that had to be solved first in
the measurement process were infrastructure problems. We
are now able, however, to track all aspects of software
source evolution. Mechanisms are in place to measure soft-
ware faults very precisely. Mechanisms are also in place to
automate the complete measurement of a rapidly evolving
software system. As a preliminary report and investigation,
the Darwin measurement system has clearly established
itself as a viable tool for the understanding of the etiology of
software faults and their relationship to software attribute
that can be measured.

We have developed a definition of software faults that
can be applied to source code. The definition allows faults
to be unambiguously measured at the level of individual

modules. Since faults are measured at the same level at
which structural measurement are taken, it becomes more
feasible to construct meaningful models relating the number
of faults inserted into a software module to the amount of
structural change made to that module. Because of the way
in which faults are defined, the task of counting faults is eas-
ily. automated, making it much more practical to analyze
large software systems such as those developed to support
NASA flight missions. In other words, the faults may be
quantified by a software tool that can analyze the deltas in
code modules maintained by the configuration control system
and measure those changes specifically attributable to failure
reports.

There may be uncontrolled sources of noise which we
intend to address in future work. For example, developers
might be making enhancements to the system at the same
time they are responding to a reported failure. In this case,
the enhancements would be counted as repairs made in re-
sponse to the failure. Addressing this issue will involve se-
lecting an appropriate subset of the reported failures and in-
terviewing developers about the changes made in response to
those failures. We will be careful to select representative
failures from all system components to control for the noise
inserted by each development team. We will also select re-
ported failures from different times during the development
effort, to determine whether the number of enhancements
reported as fault repair changes over time.

The fault counting technique described in [MunsOZ] does
not currently allow us to identify all situations in which a
given token has been replaced by another, which may lead to
undercounting the number of faults that have been corrected.
Consider the following example, for which the original state-
ment is:

which is changed during repair to

The six tokens representing (1) is B1= {<a>, <=>, 8 7 , <+>,
<c>), and the eight tokens representing (2) is B2 = {<a>,
<=>, , <-7, <c>, <+>, <&}. We see that what has hap-
pened is that <+> in (1) has been changed to <-> in (2), and
that <c>, <+>, and <d> have been added in (2). However,
the bag difference B2 - B1 = {<a, <d>}, indicating the addi-
tion of two new tokens, but failing to indicate that one token
was replaced by another.

The technique also does not identify the number of to-
kens that have been reordered. Consider the situation illus-
trated by comparing the faulty statement (3) to the repaired
statements (4), shown below.

(1) a = b + c ;

(2) a = b - c + d ;

(3) a = b - c;
(4) a = c - b;

The bag difference is B3 - B4 = { }, the cardinality of which
is 0. We see that the ordering of and <c> has changed
from (3) to (4), for which we could count 2 faults. However,
our examination of the bag difference leads only to the
conclusion that at least 1 token has changed, for which we
count 1 fault according to our definition. In this situation,

1 fault according to our definition. In this situation, our
definition could again lead to undercounting the number of
faults repaired. Resolution of these fault-counting issues is
also a part of our planned future work. We intend to inves-
tigate a technique originally devised for merging two differ-
ent versions of a software component reported at the 2002
International Conference on Software Maintenance
[Hunt021 which may be relevant.

Acknowledgments
The work described in this paper was carried out at the

Jet Propulsion Laboratory, California Institute of Technol-
ogy. This work is sponsored by the National Aeronautics
and Space Administration’s IV&V Facility. The authors
wish to thank the members of MDS project for the coopera-
tion that made this study possible.

References
[CA02]

[Chi1921

[Cede931

[Chid941

[Cyla03]

[Dvo99]

[Ghok97]

[Ha11001

[Hunt021

[IEEE83]

Computer Associates, “AIlFusion Harvest Change
Manager Features, Descriptions & Benefits”, Feb.
1 1,2002, available at:
http://www3.ca.com/Files/FactSheet/af~harvest~cm~
fdb.pdf
R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D.
Moebus, B. Ray, M.-Y. Wong, “Orthogonal Defect
Classification - A Concept for In-Process Measure-
ment”, IEEE Transactions on Software Engineering,
November, 1992, pp. 943-946.
Per Cederqvist, “Version Management with CVS for
CVS 1.1 l.lpl”, available at:
httu://www.cvshome.orddocs/manuaW.
S. Chidamber, C. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on
Software Engineering, vol . 20, no. 6, June, 1994,

“The Darwin Software Engineering Measurement
Appliance”, Cylant, www.cylant.com
D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks,
“Software Architecture Themes In JPL’s Mission
Data System”, AIAA Space Technology Conference
and Exposition, September 28-30, 1999, Albuquer-
que, NM.
S. S. Gokhale, M. R. Lyu, “Regression Tree Model-
ing for the Prediction of Software Quality”, proceed-
ings of the Third ISSAT International Conference on
Reliability and Quality in Design, pp 31-36, Ana-
heim, CA, March 12-14,1997
G. A. Hall and J. C. Munson, “Software evolution:
code delta and code chum”, Journal of Systems and
Software 54 (2) (2000) pp. 11 1-1 18
J. Hunt, W. Tichy, “Extensible Language-Aware
Merging”, proceedings of the 2002 International
Conference on Software Maintenance, Montrkal,
Canada, Oct 3-6,2002, pp 5 11-520
“IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Std 729-1983, Institute of Elec-
trical and Electronics Engineers, 1983.

pp. 476-493.

[IEEESI] “IEEE Standard Dictionary of Measures to Produce
Reliable Software”, IEEE Std 982.1-1988, Institute
of Electrical and Electronics Engineers, 1989.
“IEEE Standard Classification for Software Anoma-
lies”, IEEE Std 1044-1993, Institute of Electrical
and Electronics Engineers, 1994.
T. Khoshgoftaar, “An Application of Zero-Inflated
Poisson Regression for Software Fault Prediction”,
proceedings of the 12th International Symposium on
Software Reliability Engineering, pp 66-73, Hong
Kong, Nov, 200 1.
T. M. Khoshgohar, E. B. Allen, “Modeling Soft-
ware Quality with Classification Trees”, in H. Pham
(ed), Recent Advances in Reliability and Quality
Engineering, Chapter 15, pp 247-270, World Scien-
tific Publishing, Singapore, 2001.
J. Munson and A. Nikora, “Estimating Rates Of
Fault Insertion And Test Effectiveness In Software
Systems” Proceedings of the Fourth ISSAT Intema-
tional Conference on Reliability and Quality in

[IEEE93]

[KhosOl]

[KhosOla]

[Muns98]

[Muns90]

[MunsOZ]

[Muns03]

[Niko97]

[Niko98]

[NikoOl]

[Schn97]

[SChnOl J

~-
Design, August 12-14, 1998 pp. 263-269.
J. C. Munson and T. M. Khoshgoftaar, “Regression
Modeling of Software Quality,” Information and
Software Technology, Vol. 32 No. 2 March 1990,

J. Munson, A. Nikora, ”Toward a Quantifiable
Definition of S o h a r e Faults“, Proceedings of the
13th IEEE International Symposium on Software
Reliability Engineering, IEEE Press.
J. Munson, Software EnAneerine Measurement,
CRC Press, 2003.
A. Nikora, J. Munson, “Finding Fault with Faults: A
Case Study”, with J. Munson, proceedings of the
Annual Oregon Workshop on Software Metrics,
Coeur d’Alene, ID, May 11-13, 1997.
A. P. Nikora, J. C. Munson, “Determining Fault
Insertion Rates For Evolving Software Systems”,
proceedings of the 1998 IEEE Intemational Sympo-
sium of Software Reliability Engineering, Pader-
born, Germany, November 1998, IEEE Computer
Society Press.
A. Nikora, J. Munson, “A Practical Software Fault
Measurement and Estimation Framework”, Indus-
trial Presentations proceedings of the 12th Interna-
tional Symposium on Software Reliability Engineer-
ing, Hong Kong, Nov 27-30,2001.
N. F. Schneidewind, “Software Metrics Model for
Integrating Quality Control and Prediction”, pro-
ceedings of the 8th International Symposium on
Software Reliability Engineering, pp 402-415, Al-
buquerque, NM, Nov, 1997.
N. F. Schneidewind, “Investigation of Logistic Re-
gression as a Discriminant of Software Quality”,
proceedings of the 7th International Software Met-
r i c ~ Symposium, pp 328-337, London, April, 2001.

pp. 105-114.

http://www.cylant.com

