
Software Security Checklist for the Software Life Cycle

David P. Gilliam, Thomas L. Wolfe, Josef S . Sherif
Jet Propulsion Laboratory, California Institute of Technology

duvid.p.niEliam~,ipl.nusa.~ov, thonrus. 1. wolfe(4iul. ncrsa.zoz*, .iosef:s.sher.i~~ipl.nusa.~ov

Matt Bishop

b ishop@,cs. ucdnsis. edzi
University of California at Davis

Abstract

A formal approach to security in the software life
cycle is essential to protect corporate resources.
However, little thought has been given to this aspect of
software development. Traditionalb, software security
has been treated as an afterthought leading to a cycle of
‘penetrate and patch. ’ Due to its criticality, security

should be integrated as a formal approach .in the
software life cycle. Both a software security checklist
and assessment tools should be incorporated into this
life cycle process. The current research at JPL
addresses both of these areas through the development
of a Software Security Assessment Instrument (SSAI).
This paper focuses on the development of a Software
Security Checklist (SSC) for the life cycle. It includes the
critical areas of requirements gathering and
specijication, design and code issues, and maintenance
and decommissioning of software and systems.

1. Introduction

A recent article, “Why Is Software So Bad” [l]
points out that bad habits and inadequate software life
cycle processes have led to the development of poor
software. In the last 10 years of advancements in
software engineering and the development of tools,
progress in improving the quality of software is still
lagging. In particular this assessment can be made with
respect to security. That is, “Why is software so
insecure and vulnerable?”

Gary McGraw points out the essential dilemma for
security, “There is no such thing as 100 percent
security. In fact, there is a fundamental tension inherent
in today’s technology between functionality (an
essential property of any working system) and security
(also an essential in many cases).”[2] This point is still

‘true today. Why? And why is integrating security into

the software life cycle so critical, but still lagging
behind other disciplines? Integrating security into the
software life cycle process until now has been a
haphazard process. It requires trained experts and
dedicated resources.

A life cycle process that includes security assurance
is needed for improving the overall security of software.
Implementing this process is the goal of this research
effort. The research has 5 foci that are integrated into a
Software Security Assessment Instrument (SSAI). The
SSAI contains: 1) a Software Security Checklist (SSC),
2) a vulnerability matrix that categorizes vulnerabilities
and exposures, 3) a Flexible Modeling Framework
(FMF) for verification of requirements, 4) a Property-
Based Tester (PBT) for testing for vulnerabilities, and
5) a collection of Security Assessment Tools (SATs)
with a description and explanation of their use for
assessing the security of software. While this research
has been reported previously, the current work that is
new is the development of the SSC.[3,4,11,12] The
SSC is an instrument to guide organizations and System
Engineers (SE’s) in integrating security into the
software life cycle.[4] The process from requirements
gathering to system test and integration, maintenance
and even decommissioning is covered by this SSC. The
SSC has two phases. Phase one is a security checklist
for the software life cycle as described above. Phase 2
is a security checklist for the external release of
software.

The SSC is critical for the software life cycle for a
number of reasons. Why is this so? One only need to
look at the current state of software development and
issues that affect the security of both software and
systems to realize that an end-to-end life cycle process
must include security as much as reliability and safety.

2. Current State of Software Security

There are several reasons for the current state of
software development. Two key issues are, 1) “The
attitude today is that you can write any sloppy piece of
code and the compiler will run diagnostics;” 2) “The
constant demand for novelty means that software is
always in the bleeding-edge phase, when products are
inherently less reliable.” To these reasons should also
be added lack of skilled developers and training, and
lack of resources such as code analyzers that can check
the security of software and systems. As McGraw
points out, “Security is like fault tolerance, a system-
wide emergent property that requires much advance
planning and careful design.”[5,6]

2.1 Current research

Organizations and companies are now recognizing
the importance of security in the life cycle from network
security, to system security and application security as
an integrated end-to-end process.[5,7,9] Microsoft,
among others, has instituted a security initiative that is
corporate-wide. It is hoped that these efforts will
produce software that is inherently more secure.[141

The highly volatile computing environment
requires that security be viewed as a continuing process
to meet the changing needs of the environment. Even
with good requirements, security design flaws are still
prevalent.

Several recent studies have shown that the risk of
not integrating security into the software life cycle can
have highly negative impacts on a company. Both
Cigital and @Stake have done studies that show that
integrating security in the software life cycle has proven
benefits both in cost and image.[6,8,9]

Currently, companies like Citigal and @Stake are
offering assistance and tools for verifying the security of
software.[5,6,8] They include security fault injection
tools and attack trees. Camegie Mellon University has
been working on the modeling of potential attacks
against software.[101

These tools are a start in the fight to mitigate
security risks but more needs to be done. To date, an
end-to-end life cycle security risk mitigation instrument
is not known to be available commercially.[l] The
current work in progress on the SSAI addresses this
need by creating a security risk mitigation instrument
that addresses these weaknesses in the software life
cycle. Included is an SSC for the life cycle as described
below, a vulnerability Matrix (Vmatrix), a flexible
modeling framework (FMF) with model-based
verification (MBV,) and a property-based testing (PBT)
tool for the requirements specification, development and
testing phases of the life cycle (previously
reported).[3,4,11,12,15] The FMF uses Model

Checking and SPIN model checker to check for
properties in the requirements specifications that lead to
vulnerabilities or unwanted exposures. The PBT tool
can then verify the code that these properties have not
been re-introduced into it.

Goal: To Reduce Security Risk
in NASA Software and Protect
IT Systems and Data

nt Instrument (SSAI)

Figure 1: Software Security Goal and Instrument

2.2 Exploits and exposures

The exploits used to break into systems vary.
However, they can be grouped into broad categories of
similarity. The current research effort is developing an
SSC as part of an SSAI contains an appendix describing
a list of common vulnerabilities and exposures. A brief
list includes the following:

1. Environment variables: Variables that
encapsulate information that does not change across
executions of a program. On UNIX systems, the PATH
environment variable lists the directories to be searched
for a named executable. Regardless of how many
different executables are searched for, the PATH
variable’s value does not change.

2 . Bufler Overflows: Overflowing a memory stack
so that the program will execute the data after the last
address in the stack, usually an executable program that
establishes a root or command line shell giving the
attacker full control of the system. Others are heap
overflows that contain code that the program can branch
to via function pointers, and dat.a overflows to alter
variable values in conjunction with executing code
contained in environment variables.

scripting languages to include information with
3 . Data as Instructions or Script Injections: Using

executable code which the system executes due to
improper input checking.

4. Numeric Overflows: Giving a larger or smaller
value than expected. This assumes that a particular
values stays within established bounds. The concept is
to look for numbers that can be more than 2“32 or
greater, or the maximum integer

another is executed. The most common type is the
“Time of Check to Time of Use” flaw. Another is
masquerading or “Man-In-The-Middle” attacks.

check messages sent to a server adequately. Remote
commands and executables provide the majority of
examples of this type of exploit (“r” protocols like rsh,
rlogin, and especially rexd).

7 . Information Exposure: Exposing sensitive
information to unauthorized users that can be used to
compromise data or systems. For example: 1) non-
secure transmission of sensitive information such as
human resource data that can be used for social
engineering; 2) Use of clear text user ID’S and
passwords; and 3) weak encryption schemes for access.

8. Operational Misuse: Operating a system in a
non-secure mode. Using standard accounts with blank
passwords, or providing open shares giving everyone
access. Anonymous file transfer is common where
users are given readwrite access to a set of directories
or files.

9. Default Settings: Default software settings may
present a risk if they require user intervention to secure
them. For example, Root or Administrator accounts that
do not require an initial strong password also present
risks if they are not set when installed such as Windows
NT and 2000. Also, applications using open ports that
neither the system nor application check for
authentication, present potential risks. Known examples
are: SunOS’s use of “+“ in the default /etc/hosts.equiv
file; or leaving the uudecode alias in the mail alias file.

10. Programmer Backdoors: Unauthorized access
paths left by developers of the software for easy access.
If web services are included, this list greatly changes
and expands as shown by Jaquith.[8] The evaluation of
security flaws in 45 commercial applications, found
security design flaws in 70 percent of the defects
observed, with nearly half of these classified as serious.

The appendix of common vulnerabilities can be
used in concert with the SSC to mitigate these exposures
and vulnerabilities. Its use with other instruments and
tools in the SSAI can lead to the development of
software that is less prone to these types of defects.

5. Race Conditions: Sending a string of data before

6 . Network Exposures: Assuming that clients will

2.3 Software security assurance

In view of these issues, a life cycle process that
includes security is essential. Security needs to be part
of an end-to-end life cycle process, commonly called
“cradle-to-grave.” “Fixing applications post-attack is
expensive, both financially and in terms of . . .
reputation,”[151 while integrating security into the life
cycle is a true revenue loss preventative.

It is highly cost effective for an organization to
document their security policies, requirements,
guidelines and procedures. Additionally, education and
training of SE’s, developers, System Administrators
(SA’S), etc., are essential. There should be a corporate-
wide proactive and viable enforcement policy for
assuring security in the life cycle. Security policies,
standards, guidelines and best practices should be
inherent in the process. What is critical is that security
be integrated into the life cycle process. Critical
systems such as life support and nuclear control systems
especially need this type of process.

3. Guidelines for Generating an (SSC)

The question is, then, how to integrate security into
the life cycle? Knowing that defects can be reduced and
public image enhanced by providing products that are
more secure than competing products can drive the
efforts towards development of more secure software.

The first step is to perform a security risk analysis
and then identify security issues and requirements. The
second step is to use an SSC instrument for all phases of
the life cycle. The risk analysis and requirements
should then drive the rest of the life cycle with traceable
and verifiable security requirements throughout.

To what extent is security required and what is the
level of risk versus cost that is willing to be accepted?
Second the software should have a risk level rating.
This rating will provide those using it an awareness of
the overall security of the software. This is a critical
issue when integrating software with other software and
system components, especially in mission and safety
critical systems. A security risk rating is a particularly
useful item for re-usable code. The current SSC under
development has two phases. One phase addresses the
software development and maintenance life cycles. The
second phase addresses the external release of software.

What are some of the issues that need to be
included in a SSC? Table 1 below describes some
critical areas that can be used for generating an SSC.
The list in Table 1 is provided as one example for
generating an SSC. The list can be extended, modified,
or even replaced. What is critical is that there be either
a formal or informal process for verification of security
requirements.

Phase 2 of the SSC focuses on the external release
of software (i.e., software that is developed for release
external to the organizational environment). Prior to
release, an evaluatiodacceptance process is
recommended. Figure 2 below depicts a potential
process. The functions can be performed by the same
role. However, it is preferable to keep the functions
separate to avoid potential conflicts of interest. A
description of roles and processes for Figure 2 is:

Developer: The developer creates the products to
be released. (products include software, documentation,
test data, configuration files, etc.) Products for release
are sent to the Release Analyst function.

Release Analyst: This function analyzes the
product created by the developer to determine if it meets
the release criteria. All sensitive information in the

product must have waivers, otherwise the product is
sent back to the developer for rework.

the products to be released, any waivers and the
Software Security Checklist(s). They approve the
products for release.

Waiver Authority: The waiver authority issues
waivers for any sensitive information allowed to remain
in the release product. They may need to consult with
the Security Authority on any given piece of sensitive
information.

determination if any piece of sensitive information can
be waived.

Table 2 below provides the start of a sample set of
issues and questions for external release of software.

Release Authority: The release authority receives

Security Authority: The Security Authority makes a

Release
Analyst Developer t---o--, +--@-+

Waver Security
Authority

-
Rele ase

Authority

Figure 2: Software Release Functional Diagram

tive information?

.2 If yes, are their security restrictions on the transfer of restricted data?

.3 Is the restricted data transmitted over open networks?

3.1 Tools and instruments for use in the life cycle

The last item of the SSC addresses tools to assess
security during the life cycle process. A number of
tools are now available for use in the software life cycle
that can be used to check and test system and software
security beginning from the requirements phase through
to the operation of the software. Many of these tools are
from other formal disciplines such as reliability and
safety and include modeling, code-auditing, fault/attack-
trees and fault injection, property-based testing,

boundary testing, etc. Current research in security
modeling at JPL focuses on starting the software
development process early in requirements by ensuring
that there are no known violations of properties that lead
to security weaknesses or defects.[l5]

A security assessment instrument suite is
advantageous to developing more secure software.[121
A taxonomy of security assessment tools is maintained
by UC Davis. It discusses heir potential use in the life
cycle along with alternate tools that may be used. It
includes the relative strengths and weaknesses of these

tools as we11.[16] Additionally, they have offered a
classification scheme for security tools.[171 It is hoped
that this taxonomy will assist developers and analysts in
producing more secure software.

The SSC should point to an SSAI for security tools
that can be used to assess and mitigate security risks and
exposures. It should include both the development and
the maintenance phases of the software life cycle.

3.2 Maintenance and decommissioning of software

Maintenance and decommissioning are important
but often forgotten aspects of the life cycle. The SSC
should also cover these life cycle phases as well.
Replacing or removing software should be carefully
controlled to ensure that the rest of the system is not put
at risk in the process. For example, the software may
have installed some programs that it used, but
constrained, and if the software is replaced or removed,
the programs would be available for unconstrained use;
or, it may have left behind logic bombs or other forms
of Trojan horses. The SSC being developed will
provide guidelines to cover this phase of the life cycle
along with tools for regression testing of the software in
its operating environment both before and after the
process. Maintenance is a critical phase of the life cycle
as it covers more than 60% of the software life cycle
process.

4. Conclusion

Integrating security in the software life cycle should
be an end-to-end process beginning with a security risk
analysis and requirements gathering, through design and
development, testing and integration, include operations
and maintenance, and finally decommissioning. To
assist in the process, clearly stated corporate policies
and requirements on security as well as guidelines are
critical. Having a well-defined software security policy,
risk rating for software and a checklist that supports the
policy and requirements is essential as well.

An SSC for use in the life cycle along with tools to
verify security will aid in producing more secure
software and decrease risk to the corporate environment.
With management support and a well-defined process,
software security will no longer be an oxymoron, but
will lead to more secure systems. An SSAI will provide
ROI benefits to organizations that integrate it as part of
their software development and maintenance life cycles.

5. Acknowledgements

The research described in this paper is being carried
out at the Jet Propulsion Laboratory, Califomia Institute
of Technology, under a contract with the National
Aeronautics and Space Administration.

6. References

[11 C. Mann, “Why Software Is so Bad,” Technology Review
(July/August 2002).
[2] G. McGraw, “Software Assurance for Security,” IEEE
Computer 32(4), pp. 103-105 (April, 1999).
[3] D. Gilliam, J. Kelly, M. Bishop, “Reducing Software
Security Risk Through an Integrated Approach,” Proc. of the
Ninth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(June, 2000), Gaithersburg, MD, pp.141-146.
[4] D. Gilliam, J. Kelly, J. Powell, M. Bishop, “Development
of a Software Security Assessment Instrument to Reduce
Software Security Risk” Proc. of the Tenth IEEE International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Boston, June 2001, pp 144-149.
[5] G. McGraw, “Building Secure Software: A Difficult But
Critical Step in Protecting Your Business,” Cigital, White
Paper, available at: http://www.cigital.com/whitepapers/.
[6] G. McGraw, “Software Risk Management for Security,”
IEEE Computer, 32(4), April 1999 pp. 103-105.
[7] M. Bishop, Computer Security: Art and Science, Addison
-Wesley-Longman, Nov. 2002.
[8] A. Jaquith, “The Security of Applications: Not All Are
Created Equal,” Research Report, @Stake, February 2002,
pp. 1-12, Internet Article: http://www.atstake.com/research
[9] K. Hoo, A. Saudbury and A. Jaquith, “Tangible ROI
through Secure Software Engineering,” Secure Business
Quarterly, 44,2001
[lo] B. Robinson, ”Making Software NASA Tough,” Federal
Computer Week, July 1,2002
[ll] D. Gilliam, J. Powell, J. Kelly, M. Bishop, “Reducing
Software Security Risk Through an Integrated Approach”,
IEEE Goddard 26th Annual Software Engineering Workshop.
[12] Component Based Model Checking, J. Powell, D.
Gilliam, Proceedings of the 6th World Conference on
Integrated Design and Process Technology, June 23-28,
Pasadena CA, p66 & CD
[13] J. Viega and G. McGraw, Building Secure Software:
How to avoid Security Problems the Right Way, Addison-
Wesley, Boston, 2001.
[14] M., Howard and D. LeBlanc, Writing Secure Code,
Microsoft Press, Redmond, WA, 2002.
[15] D. Gilliam and J. Powell, “Integrating a Flexible
Modeling Framework (FMF) with the Network Security
Assessment Instrument to Reduce Software Security Risk,”
Proceedings on the 11th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, June 2002, pp. 153-160.
[16] UC Davis. A taxonomy of security tools and sites can be
found at: littv:/:seclab.cs.ucda~is.edi/Droiectsitesting.
[17] M. Bishop, H. Briggs, E. Haugh, P. LeBlanc, “A
Classification Scheme for Security Tools,” Internet Article:

http://www.cigital.com/whitepapers
http://www.atstake.com/research

http./keclab.cs. ocda is.edo;Droiecls~testiii~~R~i~~rs Accessed
November 2002.

