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Abstract 
Following the trend of creating flight code with state 
chart modeling and auto-code generation, NASA ‘s Deep 
Impact (DI) project uses Stateflow@ for  its Fault 
Protection Flight Software development. In a parallel 
task, model checking, a powerful and formal verification 
technique, is being used to partially validate the DI fault 
protection responses against a set of core behavioral 
correctness properties. The Hi Vy Toolset described in 
this work enables model checking for  state chart-based 
designs by providing a formal method-based capability 
for  automated state chart translation from Stateflow@ 
into Promela, the input language of the Spin model 
checker. The results of this approach are compared 
against a traditional test script-based validation using 
the Matlab@ environment. Additional work is in 
progress to validate the responses in the context of a 
complete flight system model with its accompanying 
mission-derived correctness properties. Special attention 
is given to methods for reducing the model to a form that 
yields a tractable search space. 

1.0 Introduction 
Proper design validation, which seeks to ensure the 
correctness of a design at the earliest stage possible, is a 
major challenge in any responsible software development 
process. Over the years, the complexity of space 
missions has dramatically increased with more of the 
critical aspects of a spacecraft’s design being implemented 
in software. Fault Protection (FP) is autonomous flight 
software (FSW) that provides the robustness and 
autonomy needed to ensure survival of a space mission in 
the event of detected on-board failures. The design and 
validation of FP software systems is complex and its 
functionality in flight is critical, thereby making it a 
good candidate for more rigorous design and verification 
methods. 

1.1 Deep Impact Mission Overview 
The Deep Impact (DI) mission will send a pair of mated 
spacecraft to encounter the comet Tempel-1 in July of 
2005. One day before closest approach, the single-string 
Impactor spacecraft separates from the Flyby spacecraft to 
collide with the comet, excavating a football field-sized 
crater. Meanwhile, the dual-string Flyby spacecrafl 
records the resulting ejecta trajectory and spectra to 
provide insight into the intemal structure of the comet. 

The project has fault tolerance design requirements that 
lie somewhere between a lower-cost experimental mission 
(DS-1) and a higher cost flagship mission (Galileo). 
Furthermore, these design requirements must be met 
using a very small team for both design and test. JPL 
shall deliver all fault protection flight code to Ball 
Aerospace. 

To help meet these requirements, Deep Impact has turned 
to formal state machine representation coupled with 
automatic code generation. Auto-coding directly ties 
generation and testing of the flight code back to system 
design documents. By using this approach the DI team 
has been able to automatically create flight code and test 
scripts, and perform interface compliance checking and 
automated test analysis. 

1.2 DI Fault Protection Design Process 
The DI auto-coding design originates in the Pathfinder 
mission to Mars. The core fault recovery engine design 
from Pathfinder was adapted to support the Deep Space-1 
project as an experiment in automatic code generation. 
The DS-I team diagrammed fault detection and recovery 
logic with Mathworks’ Stateflow tool and then used a 
custom-modified version of Stateflow’s autocoding 
capabilities to produce flight code. 
The Deep Impact project reworked the fault recovery 
engine as a generic module that could be reused across 
multiple platforms. It also replaced the customized 
version of the Stateflow tool with Mathworks’ improved 
off-the-shelf version. Further levels of auto-coding and 



checking were added to ensure requirements compliance 
and to facilitate automated testing. 

Location 
Tiers of 

Although a similar process was applied for both fault 
detection and fault recovery development, the focus here 
will be on the recovery aspect. The steps followed in the 
fault recovery design development were: 

after a fault has been detected. 
d Prime Computer * Backup Computer 

1. Reset 1553 RT 

1 .  System Analysis 
2. Design and Initial Ver$cation 
3 .  Implementation and Verification 
4. Integration and Verijication 
5 .  System Validation 
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Interfering 
Comments 

The Matlab state chart development environment has 
allowed Deep Impact to complete rigorous design 
debugging early in the design process. The result of 
applying this method for fault detection so far has been 
that all verification (but not necessarily validation) issues 
were identified and corrected prior to system integration, 
and all but one or two have been fixed prior to unit 
testing on the target platform. Although still in progress 
for the fault recovery design, similar results are expected. 

2. 
3 .  Swap to backup electronics 
4. Exhaust 

If not at encounter cyclelreload device electronics 

No 
none 

2.0 Illustrative Design Case 
A look at a representative example will help illustrate the 
process and structure for the recovery behavior design. 

2.1 System Analysis 
Analysis of failure mode symptoms at the interface 
between the device and the system was performed via 
interviews with the design engineers. The information 
was captured in a form similar to that of classical failure 
modes analysis. 
A fault tree analysis was then used to derive a system 
dependency model as illustrated in Table 1. An element 
can be a function, hardware item, or state. The column 
labeled Req ' t  describes the dependency relationships 
while the indicator and input columns identify the 
system data needed to estimate the state of the parent 
element. This data includes information such as whether 
an element is actively used in supporting the spacecrafl 
(e.g. member of the prime set). 
Flight System Elements Re9Y State Indicator Mnemonics 

Parent element mnemonic needs X FaulWarm Primestate Heathstate 
Child element #l mnemonic 
Child element #2 mnemonic 
Child element #3 mnemonic 

Child element #n mnemonic 
... 

Table 1. Element Model Structure 

actions may be taken. Table 2 illustrates a corrective 
action requirements analysis. 

Table 2. Corrective Actions and Constraints Analysis 
Eventually this information was combined with the 
dependency model to create a tier description table as 
shown in Table 3. The tier description table becomes the 
source design document for verifying that recovery 
behaviors comply with many aspects of design intent. 

FP Sequenca Calls 

Chart ID 

. . .  . 
A 

~~ 

Table 3. Tier Description Table 
Each sequence call is classified according to the type of 
action it performs. For DI five actions categories were 
defined. Choosing the correct category is a matter of 
engineering judgment, but the choice of category has a 
real impact on later assessment of valid behavior. 

Sync = re-command state to desired state; 
Reset = perform hard reset of element; 
Cycle = perform power cycle of element; 
Escape = go to altemate configuration without this 
element; 
Isolate = go to alternate configuration and make sure this 
element is physically or electrically isolated. 
Each action also specifies some requirement on whether 
the resource in question or its backup needs to be marked 
as available by ground ops. 

Corrective actions for failure modes were also collected 
during interviews with design engineers and during 
system level discussions of recovery. Attention was 
given to constraints on the conditions under which 



2.2 Design & Initial Verification 
Detailed design of recovery behaviors is eventually 
captured in the state chart drawing. Figure 1 illustrates a 
typical layout for a response’s active state. Within the 
active state the response may be in one of several sub- 
states. All but the last sub-state usually corresponds to 
the execution of a sequence of spacecraft commands. In 
terms of software behavior, the last sub-state initiates an 
exit from the response function. In a system sense the 
last state represents a period during which a triggering 
fault is given time to re-trigger if the problem has not 
actually been fixed. After a timeout period, the response 
is set to its idle state (not shown). 

Figure 1. Illustration of State Chart 
Spacecraft state information along with local data items 
are captured in a data dictionary for the state chart as 
shown in Table 4. This data dictionary is crosschecked 
against the information in the tier table. For example, 
the InputDevPrime and InputDevAvailable entries must 
appear as entries in the tier table. 
Initial design testing begins with instrumenting the state 
chart to interface with Matlab scripts, and with the 
creation of scripts to exercise the chart. A test generation 
tool uses the data dictionary along with several look-up 
tables to construct a script that traverses the data space for 
the chart. Data items are classified into several groups: 
Mask - discrete states that can inhibit access to a chart 
transition. 
Events - temporal data items that can inhibit access to a 

chart transition. 
Selects - data items that are used to compute an index 
into a table. 
Parameters - data items that we can safely assume will 
maintain a single value for the mission. 
Local Data - data items that are only used locally by the 
chart for computation support. 
Data Name Scope Type Size 
Id Local uint8 
IsSubResp 
SysTime 
SysTimelnput 
Urgency 
EnabkdActionl 
Enabled Action2 
ldDev 
MaxRetryAction 1 
MaxRetryAction2 
TimeoutAction 1 
TimeoufActionZ 
Epoch 
CalledAsSubResponse 
FpSeqActive 
InputDevAvailable 
InputDevPrime 
MaxDev 
MinDev 
SeqldActionl 
SeqldActionZ 
TimeOfLastRun 
TimeOfRecoveryDev 
ValueDev 

Local 
Local 
Local 
Local 
Param 
Param 
Param 
Param 
Param 
Param 
Param 
Persist 
Shared 
Shared 
Shared 
Shared 
Shared 
Shared 
Shared 
Shared 
Shared 
Shared 
Shared 

boolean 
double 
double 
uint8 
boolean 
boolean 
uint8 
uint8 
uint8 
uintl6 
uintl6 
double 
boolean 
boolean 
boolean 
uint8 
uint8 
uint8 
uintl6 
uintl6 
double 
double 
uint8 

3 
3 

4 
4 

4 
4 

256 
4 

Table 4. Data Dictionary Illustration 
The generated test script contains tables describing this 
information about the data space. The tables are then 
referenced as part of a nested loop structure to test 
combinations of masks, events, and selects. Figure 2 
shows an illustration of the script layout. 

Behavioral analysis is tabulated by checking the behavior 
against a set of rules such as “No response shall execute 
a recovely action for an element if a prior recovely on 
that element is already in progress.” 

Testing of simple responses on a 400 MHz PC require 
about 15 minutes to complete. Testing of complex 
safety-net responses requires about 36 hours to complete. 
The output of this testing is a behavior summary report 
that lists assertions about behavior that can be verified for 
rule compliance. 



Select Item Value Loop 

Event Loop 
Mask Loop 

Time Loop 
I Response Call 
end 
Behavior Tabulation 

end 
end 

end 

Figure 2. Matlab Test Script Layout 
Stateflow’s animated debugging environment made it 
very easy to track down unexpected behaviors. The 
insight gained by watching the execution led to a few 
significant chart layout redesigns. 
To illustrate a typical design defect caught by the test 
approach, a state chart has been modified to exclude a 
required enable check on a transition. The analysis report 
for the unmodified chart produces the excerpt: 

GyrEnabledEscape ( 1 )  inhibited nothing 
GyrEnabledEscape (2) inhibited nothing 
GyrEnabledEscape (3) inhibited nothing 

The analysis report for the modified chart produces: 
GyrEnabledEscape (1) inhibited 

GyrEnabledEscape (1) inhibited 
SeqGyroEscape (1) 2 times when NoSelect =O 

SeqGyroEscape ( 2 )  2 times when GyrIdGyro (I) 
=1 

SeqGyroEscape (3) 2 times when GyrIdGyro ( I )  
=2 

SeqGyroEscape ( 4 )  2 times when GyrIdGyro (1) 
=3 

SeqGyroEscape ( 1 )  2 times when ValueGyro(1) 
=1 

SeqGyroEscape (1) 2 times when V a l  ueGyro (1) 
=2 

GyrEnabledEscape (1) inhibited 

GyrEnabledEscape (1) inhibited 

GyrEnabledEscape (2) inhibited 

GyrEnabledEscape (2) inhibited 

GyrEnabledEscape (3) inhibited nothing 

The two excerpts show differences in the assertions about 
the affect of changing the GyrEnabledEscape variable. In 
this case the desired behavior is that changing the value 
of the variable should inhibit execution of the recovery 
sequence for the respective urgency value of 0 through 2. 
In the modified version the recovery sequence is never 
inhibited, thus violating a requirement that the sequence 
only be executed when enabled. 

2.3 Implementation & Verification 
Once Matlab testing is completed, the charts move to the 
auto-coding phase. Stateflow’s off-the-shelf code 
generator provides the initial “C” language version of the 
response behavior. Additional post-processing tools 
reorganize the “C” code into a “C++” class equivalent 
that is compatible with the flight system coding 
standards and architecture. 

The generated code is linked with a unit test harness that 
provides a subset of the overall flight software services 
and a TCL interface. Additional tools then create a TCL 
version of the original Matlab test script. Running the 
TCL scripts provides an identical summary report to the 
Matlab versions. This allows quick comparison of auto- 
generated code behavior against the Matlab-tested 
behavior. 

2.4 Integration & Verification 
After completion of unit testing, the fault protection 
software is sent to the contractor for integration with the 
flight software. Integration is performed on a soha re  
test bed, which provides engineering versions of the core 
avionics fed by reasonably high fidelity simulations of 
the flight system. Test scripting executes in real time 
under the Oasis [Oasis-CC] test environment. 
At this point it becomes impractical to apply the same 
scope of testing that was used at the unit level. The 
Oasis test scripts are designed to cover only the unit test 
cases that show an expectation of a behavior change. For 
example, if changing a particular disable in unit test 
demonstrated that it always inhibited a particular tier then 
the Oasis case would skip over event tests for that tier 
whenever the disable is applied. This is expected to still 
provide code statement coverage, but not the extensive 
data space coverage of the unit tests. 

2.5 System Validation 
During system validation the project seeks to demonstrate 
that under mission-like conditions the design gives 
results consistent with mission level objectives. “Pass” 
criteria are less clear-cut than in verification and often rely 
on judgment calls about the appropriateness of the 
behavior. For example, recovery in a particular scenario 
eventually occurs, but one might observe that it 
needlessly changed the state of many flight elements in 
the process. 
System validation follows the traditional approach of 
previous missions. Significant mission scenarios are 
collected and analyzed for state changes. In this case we 
do make use of the flight system model to identify such 
points. Fault injections are then applied at critical 
transition points (before, during, after) and the system 
behavior recorded to confirm that everything “looks OK.” 
Although more formal metrics may be derived to assess 



the quality of a recovery, the DI project has not scoped 
such an effort. 

3.0 Model Checking Investigations 
3.1 Beyond Scripted Test Cases 
Deep Impact believes that the above verification and 
validation process is very thorough with respect to the 
standards of typical deep space missions. However, in 
the absolute sense it by no means completely tests all of 
the states and paths. Although it would be possible to 
upgrade existing test scripts to explore all combinations 
of states and inputs, it is time-prohibitive within the DI 
test environments. To complete testing within a 
manageable amount of time, the auto-generated test 
scripts take short cuts such as exploring the range of only 
the first four and last two elements of any data may. 
They also have a baseline state definition of which at 
most three or four off-nominal states are ever 
simultaneously explored. 
Such an approach provides useful information to the 
extent that one believes that all unexplored combinations 
are sufficiently equivalent to explored ones. Under ideal 
circumstances we would identify a basic set of state cases 
and know that all unexplored cases are valid 
combinations of the explored cases. For example, 
engineering analysis concludes that the system will 
always behave identically when either star tracker A or 
tracker B is providing healthy data, so having confirmed 
that A recovery and B recovery behave identically, we 
may use tracker A states as a sufficient representation of 
all tracker states. By finding system elements with 
external interactions that are invariant with respect to their 
own internal states one can reduce the search space. In 
the tracker example, by observing that the attitude 
estimator element interacts with the star tracker element 
without a specific requirement for A or B tracker, one can 
reduce the search space requirement to vary only tracker A 
states in conjunction with varying other system states. 

In practice it becomes prohibitively expensive to 
accurately identify these invariance scenarios for a real 
system. It’s quite easy to find invariance with respect to 
two elements, but upon considering the wider picture, 
find a lack of invariance with respect to other elements. 
In the star tracker example, although attitude estimation 
may not care whether it gets its valid data from tracker A 
or tracker B, the thermal system may care that having 
tracker A on tends to cause a warming trend that tracker B 
does not. When one gets to system level validation, 
where real-time testing of complex scenarios becomes 
extremely time consuming, one is continually forced to 
make a best estimate about where uncoupled behavior can 
be assumed. 

It is a goal, however, to actually perform this sort of 
comprehensive analysis and testing, thereby eliminating 
the need to make best guesses at what constitutes a 
sufficiently representative set of test cases. By encoding 
the design of the flight system using an environment that 
allows rapid exploration of state changes, such as model 
checking, one can perform a more exhaustive search of the 
system behavior. Engineering decisions about where to 
reduce the search space no longer limit the verification 
and validation. Instead the fidelity of the flight system 
physics and software behavior representation, and the mw 
faster-than-real-time computing power available become 
the limiting factors. 

3.2. The HiVy Toolset 
The HiVy toolset provides model checking for state 
charts ([SFUG]). This is achieved by translating state 
chart specifications into the input language of the Spin 
model checker ([Ho197]). The HiVy toolset transforms 
output of the commercial tool Stateflow provided by The 
Mathworks. HiVy can also be used independently from 
Stateflow. An abstract syntax of hierarchical sequential 
automata (HSA) is provided as an intermediate format for 
the toolset [Mik02]. The HiVy toolset programs include 
Sfparse, sflhsa, hsa2pr and the HSA merge facility. 

State chart design representations are captured in 
Stateflow model files. Two programs of the HiVy 
toolbox: SfParse and sj2hsa are used to prepare the 
model file for translation. If parsing is successful, a file 
is produced that contains an ASCII representation of the 
abstract syntax tree in HSA-format. 
Once the components of the system are parsed in HSA 
HiVy generates Promela input for the Spin model 
checker. As an interim step, if the model consists of 
several files, then they may be merged into one HSA file 
before translating into Promela for Spin using the HSA 
merge facility program hsacomplete.  To preserve 
Stateflow scope when merging a subcharted state chart 
with its parent, all state names are extended by the name 
of the root state of the subchart. This resolves potential 
name clashes in the merged state chart. It is important to 
know these naming conventions because during 
verification, the user is provided with propositions that 
refer to renamed states. These propositions are the means 
for formalizing linear temporal logic (LTL) properties 
about the state chart model for Spin. 
The program hsa2pr is used to generate Promela code 
from the HSA file. The following files are generated by 
hsa2pr: 

stmodel.pr: the Promela model of the original 
state chart. 
propositions: contains names and definitions of 
propositions. One proposition is generated for 
each state and each event. 



prop-list: contains just the names of 
propositions (not their definitions). These 
proposition names are suitable for automatic 
generation of LTL properties during verification. 

The auto-translated file stmodel.pr contains an include 
statement for a file named never. This file contains the 
Spin “never claim” to be verified. The never claim is not 
generated by hsa2pr and must be created before applying 
Spin to the generated model. 

3.3 Creating a Valid Promela Model 
HiVy implements the new HSA format that accurately 
represents Stateflow semantics. The translation method 
associates with each state chart a hierarchical sequential 
automaton that is semantically equivalent to the source 
state chart. A hierarchical sequential automaton consists 
of a finite set of cooperating sequential automata that can 
be implemented as parallel processes in Promela. 
Referring to Figure 3, we establish equivalence between 
the semantics of the source state chart, intermediate HSA 
and the resulting Promela code. 
Statechart -+ HSA --b Promela 

i t 
Semantics Semantics 

i 
Semantics - 
Figure 3. Two step translation of State charts 

Within the auto-translated code there is one Promela 
process for each Stateflow OR-state. This Promela 
process corresponds to one automaton in HSA. State 
chart states, events and variables are encoded as Promela 
variables and Promela processes change the values of 
these variables in order to simulate state changes, event 
generation and variable changes according to the 
semantics of Stateflow. The observable behavior is 
defined with respect to the variables representing state 
chart states, events and variables. 

In order to achieve a closed model for the code generated 
from the FP response state charts, we manually extend 
the automatically generated code by user-written Promela 
code, which will model the response environment. Both 
the model of the environment and its integration with the 
generated code must yield a closed system that is a valid 
model of the real system. 
We contend that the clockwise execution order of the 
Stateflow semantics might give rise to design faults that 
are hard to detect because the semantics determine one 
specific execution order to be taken based on the graphical 
representation of transitions. We compensate for this 
semantic restriction by expanding the translation of HSA 
to Promela such that every execution order is considered 
when a property of interest is verified. Stated more 
formally, this change is a generalization of the original 

semantics to consider not only the original execution 
order but altemative execution orders as well. 
In the integration of user written Promela code with 
translated code a closed system is created. The translated 
code interface allows the user-written code to pass control 
and data to the translated code. Whenever translated code 
is executed the user-written code waits for this execution 
to be completed and vice versa. Here we adopt the ideas 
of the synchrony hypothesis: the controller program (here 
represented by the translated FP response specification) 
reacts infinitely faster than the environment and therefore 
the environment can be considered as ”waiting” for the 
controller to complete. This construction is valid only if 
the controller program is responsive; i.e. eventually reacts 
to each environment input. [PMHSD02] discusses how 
we verify responsiveness in our translated models. 

The coding conventions for integration of translated code 
with user-written Promela code are the following: 
- The user-written Promela code may set values of 

event, boolean and integer variables. 
- The user-written Promela code may pass control to 

the translated code execute-root by setting the 
activation condition of this function. Similarly, after 
activation the user-written Promela code waits for the 
corresponding notification condition to be satisfied. 

Implemented in this way the flow of control between the 
user-written Promela code and the translated code 
guarantees mutual exclusiveness in their execution. 
Reactive systems are characterized by infinite interaction 
with the environment, e.g., in the case of state charts by 
receiving events from the environment and by responding 
to them. Since the FP responses designed in Stateflow 
are playing the role of the controller in a reactive system 
our translation and integration method ensures that the 
Stateflow model indeed interacts with its environment 
infinitely. We call a control program responsive if every 
execution passes the state where the notification condition 
is satisfied infinitely often. This property can be 
expressed as a formal Linear Temporal Logic (LTL) 
property and can be verified using Spin. 

3.4 Model Checking with Spin 
Model checking is a powerful formal methods approach 
which can detect defects in designs that are typically 
difficult to discover with conventional testing approaches. 
The Spin model checker accepts input of a closed-loop 
model of the validation article of interest and 
specification of LTL correctness properties against which 
the model can be validated. 
The DI state charts implement two categories of temporal 
constraints by comparing recorded time tags of certain 
events. Some chart transitions act on whether temporal 
relationships are satisfied. For example, it is determined 
that recovery is in progress by comparing the estimated 



time of conclusion of a recovery with the current time. 
Of primary importance to the chart behavior is whether 
that comparison indicates one of two states: (1) A prior 
recovery in progess OR (2) No prior recovery in progress. 
Because Spin model checking does not support a concept 
of time per se, this chart implementation presented a 
problem for conversion. To get around this, the charts 
were pre-processed to replace each time comparison with 
an equivalent single boolean state indicating which of the 
two possible comparison results were to be tested. For 
example, the expression TimeOfRecoveryX SystemTime 
would be translated to the single boolean 
TimeOfRecoveryXLess ThanSys Time. 

Next we applied the following correctness property (CP) 
to the closed-loop Promela model of the Deep Impact 
device response previously described: 
!([](Urgency=WantIt ( 1  UrgencFNeedIt) 11 RunFPSeq=False) 

This Spin “never claim” seeks to verify the following DI 
FP requirement where “[ 1” in the property means that it 
is always the case that: 
“No repair response shall attempt recovery actions for 
an element unless the corresponding urgency has been 
assessed as either ‘Need It ’ or ‘Want It ’. ” 

We can induce a bug by manipulating the variables in the 
model pertaining to those in the property. However, the 
Spin results verifying that this property holds in the 
correctly designed response are: 
--------_--___-___- start ____--_---__--__--_____________I__ 

!([](Urgency=WantIt )I UrgencFNeedIt) 11 RunFPSeq=False) 

--Building the verifier 

--Verification 

(Spin Version 4.0.0 -- 9 May 2001 -- Lucent Proprietary 
Code) 

Hash-Compact 4 search for: 

never-claim + 
assertion violations 

acceptance cycles + (fairness disabled) 

invalid endstates 

+ (if within scope of claim) 

- (disabled by never-claim) 

State-vector 120 byte, depth reached 0, errors: 0 

1 states, stored 

0 states, matched 

1 transitions (= stored+matched) 

0 atomic steps 

hash conflicts: 0 (resolved) 

(max size 2”18 states) 

5.060 memory usage (Mbyte) 

real 0.1 

user 0.0 

sys 0.0 

.................... compare results: expected - actual ----------- 
State-vector 120 byte, depth reached 76, errors: 0 

In the event of an error (i.e., a failed correctness property), 
Spin produces a counterexample file that documents the 
property conflict with the Promela model of the system. 
We are in the process of building a library of correctness 
properties for this code, from which we plan to derive 
formal Spin “never claims” that can then be verified by 
the model checker. The final system should allow us to 
check the Stateflow specifications within their intended 
context with a thoroughness that is virtually impossible 
to achieve by other means. 
Once the design is validated we will also investigate how 
to correlate the validated design (a conservative 
abstraction of the real system) to the real implementation, 
Le., are all errors of the design reproducible in the model 
checking implementation? We will report on the system 
design and validation of its implementation in future 
work. 

4.0 Summary 
The HiVy Toolset permits the validation of complex 
mission critical software designs with the exhaustive 
exploration techniques of model checking. The HiVy 
translation method preserves the Stateflow semantics of 
the software design to guarantee direct association of the 
auto-translated Promela model for validation with the 
flight software code that is auto-generated from the state 
chart specification using Stateflow Coder. Spin’s 
capability to express correctness properties in explicit 
LTL statements provides a clear connection between 
design requirements and verification artifacts, removing 
the need to invent some of the verification mechanisms 
such as Deep Impact has employed. When the state chart 
is the source of both the flight code and the Promela 
model, this automated approach ensures design and 
validation integrity of the implemented code. 
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