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Sensitivity analysis of models with multiple observables involves, directly or 
indirectly, sensitivities of individual observables to individual parameters of 
the models. The conventional adjoint approach to the evaluation of sensitivi- 
ties of observables uses the adjoint vector solution and yields the sensitivities 
of a single observable (or single linear combination of observables) to multiple 
parameters. Recently the author has extended the adjoint approach to the 
sensitivity analysis was extended to using the adjoint matrix solution to yield 
sensitivities of multiple observables to multiple parameters. In this presenta- 
tion, we compare the vector and matrix adjoint approaches to the sensitivity 
analysis as applied to the problem of assimilation of data. 

1. Matrix approach and vector of observables 

2. Vector approach and scalar cost function 

3. Comparison of the matrix and vector approach 

4. Conclusion 
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Linearization of Eqs. (5), (6) yields: 

t l  

RL = /W:(t)V(t) dt‘ = (We, V’) 

where (W, V’) is a corresponding inner product, and 
-I- 

(7) 

As shown in [I], perturbation of observables R’ due to varia- 
tions of model parameters contained in Eq. (3) can be expressed 
in the form of an inner product 

where, V* is the solution of the adjoint problem 

dv* 
dt 

-- + CT( t )V* ( t )  = W,(t) 

V*It1 = w c  

Also, it can be shown 

T RL = V* ( t o )  S, 

that 

(NB! In [l] the expression Eq. (9) contains an extra term which, 
as was overlooked in [l], is quadratic in perturbations of model 
parameters and can safely be omitted in the linear approxima- 
tion.) Corresponding sensitivites have the form: 

dR T - = v; ( t o )  8% 

3 



2. Vector approach and scalar cost function 

Now we consider the conventional approach to the adjoint 
sensitivity analysis as it is used in the variational assimilation of 
data. It was founded in the pioneering paper by Talagrand and 
Courtier (1987) [2] and its principles remain unchanged since 
then (see, e.g., (Talagrand, 1997) [3]). The nonlinear initial value 
problem here has the form (cf. Eq. (5) of [2]): 

d v  
dt  - + N[V]= 0 

(All model parameters are limited to the right-hand term of the 
initial conditions.) Corresponding linearized forward problem has 
the form (cf. Eqs. (3), (4): 

dv’ 
d t  
- + C(t)V’(t) = 0 

Further on, an artificial scalar observable is introduced in [2], 
in the form of a squared, not specified, norm H[V’(t),t] of the 
perturbation V’ 

tl 
R = 1 H[V’ ( t ) ,  t] d t  

t o  

For illustration purposes, we also consider the simplified, Eu- 
clidean norm: 

tl 
R = /VtT(t)V’(t) d t  = (VI, V‘) 

t o  

The scalar observable R defined in such a way, is essentially 
nonlinear and has to be linearized first. Considering the variation 
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SV of the linearized forward solution V ( t )  we linearize Eqs. (19), 
(20) in the form: 

[cf Eq. (7) of (Talagrand and Courtier 1987)] and 

t l  

SR = 2 / VIT(t)SV(t) dt  
t o  

whence, for the Euclidean norm used here, 

(23) VvH = 2 V(t)  

Comparing Eqs. (7) and (22) we see that the observables 
weighting function We(t) in (Talagrand and Courtier 1987) is 
defined as 

we(t> = ( v V H ) ~  (24) 

Or, with the norm Eq.19 defined as in Eq.20, the function We(t) 
is defined by the linearized solution V ( t ) :  

(25) We(t> = 2V' T ( t )  

Finally, since we have no observables at t = t l ,  the matrix W, 
is equal zero and, in accordance with (Talagrand and Courtier 
1987), we have the final value condition in the form: 

(26) w, = 0 
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3. Comparison of the matrix and vector approach 

In this presentation, we argue that the ability to evaluate 
sensitivities of individual observables to model parameters, which 
is intrinsic to the matrix approach [I], is important because it 
facilitates: 

(1) Selection of the most informative observables in the data 
sets and discarding of less informative ones; 

(2) Optimization of the return of planned measurements by 
maximizing of the information content of data to be obtained; 

(3) Reduction of the number of iterations in the variational 
data assimilation process. 

Below we consider these benefits separately. 

3.1. Selection of the most informative observables 

Under the matrix approach, the sensitivities of individual 
observables to individual model parameters are directly obtained 
from Eqs. (13), (14). Under the conventional approach, the in- 
dividual observables are reduced to the vector of differences V' 
between observed and modelled values of the state vector V, and, 
moreover, these differences are combined into one, artificial scalar 
observable R, Eqs. (19), (20). 

3.2. optimization of the return of planned measurements 

Equations (19), (20) provide a possibility to pre-compute, 
forecast sensitivities of results of planned measurements (observ- 
ables) to the model parameters of interest. Choosing the ob- 
servables with maximum sensitivities, one can discard the data 
adding little or nothing to the information content. This promis- 
es to reduce the requirements to the computer resources and to 
decrease the computer time expenses. 

The conventional approach does not provide this possibility. 
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3.3. Reduction of the number of iterations 

For demonstration purposes we use a simple model where the 
observables coincide with the elements of the state vector at the 
end of the integration interval V(t,), and the model parameters 
are limited to the elements of the initial state vector V(t0) = S,. 

Following the matrix approach we deal with the vector of 
linearized observables (cf. Eq. (8)) : 

R’ = ITV’(tl) (27) 

where I is a unix matrix of corresponding rank. Corresponding 
adjoint problem is: 

dv* 
dt  

-__ + CT(t)V*(t) = 0 

and its matrix solution yields the matrix of sensitivities (cf Eq. 
(14)) 

to be used in the variational data assimilation. 

Following the conventional approach, we deal with an artifi- 
cial scalar observable 

R’ = v’ ’ (t,)V’(t,) 

Corresponding adjoint problem is (cf. Eq. (25)): 

dv* 
d t  

-- + CT(t)V*(t) = 0 (32) 

(33) 
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and its vector solution yields the row vector of sensitivities of R' 
(cf Eq. (14)) 

to be used in the variational data assimilation. 

Now we compare the procedures of variational assimilation 
using two approaches. In both cases, the vector V' is treated as a 
residual, the difference between the observed value and modelled 
value of the state vector V .  This difference is used to infer the 
correction to the initial value of the state vector Vh. For the 
matrix and conventional approaches, the corresponding inverse 
problems have the form: 

KV; = R' (35) 

K V ;  = R' (36) 

where the matrix K is given by Eq. (30) and the row vector K is 
given by Eq. (34). 

From the adjoint problem accomodating multiple observ- 
ables Eqs. (28), (29), it is apparent that its matrix solution V*, 
and the resulting matrix K of the inverse problem Eq. (35) is not 
dependent on the residual V'. 

This is not the case for the vector solution V* of the conven- 
tional adjoint problem Eqs. (32), (33) and resulting row vector 
K of the inverse problem Eq. (36). The order of magnitude of K 
is proportional to the order of magnitude of the residual V ' .  

Thus, it can be expected that the availability of sensitivi- 
ties of individual observables will enable a substantially faster 
convergence of the data assimilation process. 
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3. Conclusion 

1. The matrix approach to the adjoint sensitivity analysis rep- 
resents a natural way of treatment of individual observables in 
the process of variational of data assimilation. 

2. The matrix approach gives an ability to select individual 
observables which are most sensitive to the model parameters to 
be retrieved; this is important both for planning of measurements 
and for variational assimilation of obtained data. 

3. It can be expected that the application of the matrix ap- 
proach to the variational assimilation of data may result in a 
substantial enhancement of convergence process and correspond- 
ing reduction of the number of iterations. 
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1. Matrix approach and vector of observables 

First, we present the matrix approach to the adjoint sensi- 
tivity analysis to multiple observables, which was developed in 
(Ustinov, 2001) [I]. Let evolution of the system observed is de- 
scribed by the nonlinear initial value problem 

dv 
- + N[V, a]= o dt 

Here N is a nonlinear operator that acts on the state vector 
V(t) in a way that, in general, depends on the vector of atmo- 
spheric parameters, a(t). Vector Vo consists of model parameters 
describing the initial st ate. 

If the vector of parameters a experiences a perturbation a' 
then the forward problem can be linearized around its unper- 
turbed, basic solution V(t) in the form 

dv' 
- + C(t)V'(t) = S e ( t )  dt (3) 

where the perturbations of all model parameters are contained in 
the matrix C ( t )  and in the right-hand term vectors S e ( t )  and S,. 

Let the m-vector of observables R be a result of action of 
some nonlinear operator We on the state vector V(t) over the 
interval [to, tl] where Eq.3 is integrated: 

Similarly, the observables that are obtained at the end of the in- 
terval [to, tl] are considered as a result of action of some nonlinear 
operator W on the final value of the state vector V(t1): 
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