Lower-Troposphere Sounding with GPS Occultation: Challenges and Progress

Chi O. Ao,
D. Dong, G. A. Hajj, B. A. Iijima,
M. de la Torre Juárez, A. J. Mannucci, and T. K. Meehan

NASA Jet Propulsion Laboratory
California Institute of Technology, Pasadena, USA
Overview

1. Introduction
 - Characteristics of the N-bias
 - Possible causes

2. Simulation study
 - Components of end-to-end system
 - Strategy

3. Numerical results
 - A single profile
 - Statistical comparisons
 - How does it compare with real data?

4. Conclusions
 - Pressing questions
Characteristics of the N-Bias

- Fractional refractivity difference with respect to ECMWF:

\[
\delta N = \frac{N(\text{retrieved}) - N(\text{ecwmf})}{N(\text{ecwmf})}
\]

ST = standard “Doppler” retrieval
CT = canonical transform retrieval

- The bias is most severe in the tropics and at altitudes below 2 km.

- The bias extends to mid-latitudes, and, for ST, reaches up to 8 km.

- CT significantly reduces the ST bias above 2 km.

- CT bias shows a well-defined latitudinal dependence.
Causes of the N-Bias

I. Occultation retrievals are wrong.

- *Retrieval errors*
 - Sharp refractivity structure in lower troposphere leads to atmospheric multipath, superrefraction, and ducting.
 - Breakdown of spherical symmetry.

- *Tracking errors*
 - Low SNR in the lower troposphere causes problems for the tracking loop.

II. NWP models are wrong.

- Insufficient data to assimilate in some regions.
- Low spatial and temporal resolution.
End-to-End Simulation

Input Refractivity → Forward Propagation (MPS) → Simulated Amplitude & Phase → Receiver Tracking

Retrieved Refractivity → Abel Inversion → Bending Angle & Impact Parameter → DOP, BP, CT, etc.

Global analyses, Other satellite data, In-situ measurements

Data from CHAMP, SAC-C, etc.
1. **24 simulated occultations from 24 high resolution radiosonde profiles** *
 - 2 datasets: one with receiver tracking and noise, one without.
 - 2 retrieval methods are used: ST & CT.

2. **Compare with true profiles to evaluate errors.**

3. **Compare with ECMWF to evaluate the N-bias.**

4. **Compare with observed N-bias from a selected list of CHAMP and SAC-C occultations.**

Courtesy of R. Weller, Alfred Wegener Institute for Polar and Marine Research, Germany.
Single Profile: Amplitude and Phase

![Graphs showing altitude, refractivity, and phase over time.](image-url)
Retrievals

- ST is plagued by multipaths and has vertical resolution limited by Fresnel diffraction.
- CT works extremely well above 2 km.
- Significant errors exist below 2 km.
Ducting & Abel Inversion

Ducting Condition:

\[\frac{dn}{dr} < -\frac{1}{r} \]

\[\ln n(r) = \frac{1}{\pi} \int_{a}^{\infty} \frac{\alpha(a')}{\sqrt{a'^2 - a^2}} \, da' \]

\[a = r n(r) \]
- SNR large: PLL accurately reproduces the phase.

- SNR small (below 50): the receiver enters flywheeling (FW) mode. The model Doppler is constructed based on extrapolation of non-FW data.
Retrievals with Receiver

- **Above 2 km**, CT refractivity error is caused by half-cycle slips.

- **Below 2 km**, refractivity error is due to inaccuracy from the tail-end of the occultation.
Statistical Comparison without Receiver

(a) ST w/o rx

(b) CT w/o rx

Altitude (km)

Refractivity difference (%)
Statistical Comparison with Receiver

(a) ST w/ rx

(b) CT w/ rx

Altitude (km)

Refractivity difference (%)
Statistical Comparison with ECMWF

(a) CT - ECMWF (SIM)

(b) CT - ECMWF (CHAMP/SAC-C)

Refractivity difference (%)

Altitude (km)
Conclusions

- **The negative N-bias are investigated with simulations:**
 1. With perfect data, CT retrievals give a small negative N-bias below 2 km. This represents a fundamental limitation of Abel inversion when atmospheric ducting exists.
 2. Receiver errors increase the N-bias below 2 km. No bias is introduced above 2 km.
 3. NWP errors are non-negligible.

- **How often does ducting occur in real occultations? How well do the refractivity profiles used in the simulations represent reality?**

- **How can we identify these cases? Can we rescue Abel inversion?**

- **What are the effects of non-spherically symmetric structures?**

- **What modifications can we make to the receiver tracking algorithms that would reduce retrieval errors?**