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Abstract 

Large Eddy simulation (T-ES) models are presented and evaluated on a database obtained from Direct Numerical 
Simulation (DNS) of a three-dimensional tempral mixing layer with evaporating drops. The gas-phase equations are 
written in an Eulerian frame for two perfect gas species (carrier gas and vapor emanating from the drops), while the 
liquid-phase equations are Written in a Lagrangian frame. The DNS database consists of transitional states attained 
by layers with different initial Reynolds numbers and initial liquid-phase mass loadings. The LES models evaluated 
at these transitional states are those for the filtered source terms representing the effect of the drops on the filtered 
flow field. The filtered source term models are applicable to LES in which the grid is coarser than the DNS grid and, 
consistently, the DNS physical drops are represented by fewer drops, called ‘computational’ drops in the LES context. 
Because the unfiltered flow field is required for the calculation of drop-based quantities that enter the computation of 
the source terms, but this unfiltered flow field would not be available in LES, various approximations were considered 
for it, namely, the filtered flow field and the filtered flow field augmented by corrections based on the SGS variances. 
All of the filtered source term models were found to overestimate filter4 source terms, with the relative error of 
modeling the unfiltered flow field compared to the error of using computational drops showing a complex dependence 
on filter width and number of computational drops. An a posteriori study is proposed to evaluate the impact of the 
studied models on the flow field development, so as to definitively assess their suitability for LFS with evaporating 
drops. 

Introduction 

The Large Eddy Simulation (LES)  methodology was 
conceived for single-phase (SP) flows to decrease com- 
putational costs through restricting the resolution to that 
of the large scales and including the effect of the small 
scales through models. The LES equations are o b  
tained by spatially filtering the Direct Numerical Simula- 
tion (DNS) equation set, as DNS are simulations which 
compute the entire range of scales typical of turbulent 
flows. For compressible multi-species flows, this filter- 
ing process introduces unresolved momentum, energy 
and species subgrid scale (SGS) fluxes. Therefore, for SP 
flows, the necessary SGS models consist of expressions 
relating the SGS fluxes to the resolved variables. For 
two-phase (TF’) flows with evaporating (liquid) drops, 
the situation is more complicated because the filter vol- 
ume contains drops. Assuming that the drops are small 
enough to be treated as point sources, their evolution de- 
pends on the gas-phase flow field, and in turn they affect 
the gas phase by acting as sources of mass, momentum 
and energy. Consistency in the goal of decreasing com- 
putational costs dictates that not only must the flow reso- 
lution be decreased in LES with respect to DNS, but the 
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same concept also must be applied to the ensemble of 
drops. That is, in LES the drops should not be the physi- 
cal drops of DNS, but instead should be ‘computational’ 
drops represent@g the effect of several physical drops. 
Therefore, TP LES requires modeling both the effect of 
the flow field on the drops (through the drop far-field), 
and that of the drops on the flow field (through filtered 
source terms). 

We use here the DNS database from a recent study [ 11 
to develop the necessary models for the filtered source 
terms (SGS flux models are derived elsewhere [l]) with 
the intent of introducing a consistent TP flow LES 
methodology wherein both the number of grid points and 
that of tracked drops is reduced compared to DNS. SGS 
‘I” flow models that treated the drop contribution but did 
not reduce the size of the drop ensemble or consider the 
effect of the drops on the flow field were presented in 
[2] and [3]. Some of these models are here extended so 
as to calculate the filtered source terms from the filtered 
flow field and the reduced drop ensemble. Only an ab- 
breviated description of the source term modeling study 
is here presented, with details available elsewhere [l]. 
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Highlights of the DNS model 
The detailed DNS equations along with the justifica- 

tion of the assumptions embodied in them were described 
in [l], based on the formulation of [4]. The governing 
equations are formulated in an Eulerian frame for the gas 
phase and a Lagrangian frame for the drops. The gas 
phase consists of two species which are the carrier gas 
and the vapor evolving from the drops. In contrast with 
the fomiulation of [4], the gas energy equation of [ 11 in- 
cludes the heat flux contribution due to the enthalpy car- 
ried by the species. The drops are treated as point sources 
of mass, momentum and energy for the gas phase; this 
treatment is justified by the dilute (i.e. volumetrically 
small, O( loading and the size of each particle be- 
ing much smaller than the Kolmogorov scale. 

The mixing layer geometry is illustrated in Fig. 1 
where the streamwise (XI), the cross-stream ( 3 4 ,  and the 
spanwise (q), coordinates are shown, and the domain 
lengths are L1, L2 and L3 in each direction. Periodic 
boundary conditions are used in the 2 1  and 2 3  directions, 
and adiabatic slip wall conditions are employed for the 
22 boundaries. The free-stream velocity Uo = MC,ouc,~ 
is calculated from a specified value of the convective 
Mach number MC,o based on the carrier gas initial speed 
of sound u c , ~  = ~RcTc,oC,,C/C,,C where TC,O is 
the initial uniform temperature of the carrier gas at the 
initial uniform pressure; the carrier gas is the sole initial 
species in the gas phase. The initial vorticity thickness is 

with the brackets () denoting averages over homoge- 
neous ( E  ~ , 2 3 )  planes and the velocity difference across 
the layer is AUo = 2Uo; the initial mean streamwise ve- 
locity has an error-function profile. The specified value 
of the initial Reynolds number, Reo = poAUoS,,~/p, 
where po is the initial gas density, is used to calculate 
p. The thermal conductivity and diffusivity are then 
computed using this value of p and specified values of 
Prandtl and Schmidt numbers of 0.697 (the Lewis num- 
ber is unity). All thermophysical properties are the same 
as those employed in the simulations of [2] using air as 
the carrier gas and decane as the drop liquid. 

To promote layer growth, the layer is initially per- 
turbed so as to induce roll-up and pairing. The pertur- 
bations, described in [4], specify spanwise and stream- 
wise vorticity fluctuations, with streamwise and span- 
wise wavelengths in the x1 and 23 directions of X1 = 
7.29SU,o and A3 = 0.6X1. For all the simulations per- 
formed herein, L1 = 0.2 m, L1 = 4x1, L2 = 1.1L1 and 
L3 = 4x3, where Li is the domain length in the xi direc- 
tion. The relative amplitudes of the forcing perturbations 
with respect to the circulations are 10% and 2.25% in the 

L,o = 0,  (0)  where 6, (t) = Avo/ (8 ( ~ 1 )  / 8 ~ 2 ) , ,  

spanwise and streamwise directions, respectively. 
The drops are initially distributed randomly through- 

out the 22 < 0 domain with specified temperature, ve- 
locity, number density and size distribution. Initially, 
all the drops have the same temperature, T d , o ,  and have 
the same velocity as the gas phase at their location. The 
mean number density profile is smoothed near the center- 
line, 22 = 0, using an error function profile. The drop 
size distribution is initially specified through the drop 
Stokes number St = rdAUo/S,,o whose initial distribu- 
tion is Gaussian with mean 3 and standard deviation 0.5. 
The number of drops is determined by the initial mass 
loading MLo (initial ratio of mass of liquid to mass of 
carrier gas in drop-laden part of domain). 

The DNS equations were solved numerically using 
a fourth-order explicit Runge-Kutta temporal integra- 
tion for time derivatives and eighth-order central finite 
differences with tenth-order filtering for spatial deriv- 
atives. A fourth-order Lagrange interpolation proce- 
dure was used to obtain gas-phase variable values at 
the drop locations. The DNS endeavor was under- 
taken to achieve several transitional states that could 
be further analyzed for a priori turbulence model- 
ing. As detailed in [l], simulations were performed at 
Reo = 500 and 600 and at MLo of 0, 0.2 and 0.5. 
All cases had Mc,0=0.35, Tc,o=375K, po=0.9415kglm3, 
AU0=271.7m/s and 6,,0=6.859x 10-3m. The drop 
laden (MLo>O) cases had Td,o=345K and liquid den- 
sity of 642kdm3. In the present paper, the a priori 
source-term analysis is restricted to the simulation with 
Reo = 600 and MLo = 0.2, denoted TP600a2, which 
had 2,993,360 drops, 288x320~176 grid points; at the 
transitional state which occurred at the nondimensional 
time (t* = tAUo/6,,0) of 105, this layer attained at- 
tained a momentum-thickness Reynolds number of 1576. 

Models for filtered source terms 
There are two issues in modeling the drops source 

terms in LES: (i) the necessity of knowing the gas flow 
dependent variables at the drop locations, and (ii) the 
consistent reduction, in the spirit of LES, of the number 
of tracked drops to match the reduction in the number of 
computational nodes from DNS to LES. The first issue 
has initially been studied in [3] and further in [l]. Sev- 
eral models were evaluated by comparison with the DNS 
database: (1) an ideal model which precisely replicates 
the flow field (unattainable in LES and representing the 
best-case scenario in which errors due to modeling the 
unfiltered flow field are eliminated), (2) a baseline model 
which neglected SGS effects on the drop evolution, (3) a 
random model with a mean specified by the LES solution 



and a SGS standard deviation, OSGS, to be modeled, and 
(4) a deterministic model which reconstructs the DNS 
field at the drop location based on a Taylor expansion 
resulting in a model (subscript m) 

with the filtered standard deviation 8 = 0 modeled 
as 

where Y; (4) = {ui, T ,  Yv, p }  represents the gas-phase 
primitive variables (ui is the ith component of the 
velocity, T is the temperature, YV is the evaporated va- 
por mass fraction and p is the pressure) and 4 = 
{p ,  p i ,  pet, pYv} represents the gas-phase conservative 
variables ( p  is the density and et is the total energy). 
By definition, 4 is the volume-average associated with 
a filtering volume of width and 4 = s/p is the 
Favre (density-weighted) filtering. Using the best avail- 
able ffSGS, as calculated from the DNS database in order 
to decouple the assessment of the reconstruction process 
from the issue of modeling 4 and CTSGS, in Table 1 are 
shown the results of reconstructing $Jf, the value of $I at 
the drop far-field, taken as the gas-phase primitive vari- 
ables interpolated to the drop locations. A top-hat fil- 
ter is used with width A = 4Ax or = 8Ax, where 
Ax = max (A21 , Az2, A23) is the grid spacing with 
Ax1 _N A22 N A23 for the DNS. The quality of each 
model is measured by the closeness of its least squares 
fit slope to unity; the deterministic model eqs. 1 and 2 
is seen to perform best at both filter widths considered. 
This superiority is maintained in calculating the source 

locations (Table 2) and finally in computing the filtered 
source terms (Table 3) through 

terms s d  (“f, 2) = { S I , d ,  s I I , i , d l  S I I I , d }  at the drop 

where SI ,d ,S I I , i , d  and S I I I , d  are the source terms in 
the continuity, momentum and energy equations, = 
{ S I ,  S I I , ~ ,  ~ I I I }  is the filtered source term and Vf is 
the filtering volume of width A containing ,Ll drops. The 
ideal model used in conjunction with the physical drop 
field Z leads to the DNS-field filtered source term, but 
is not attainable in LES. The baseline model, despite ne- 
glecting SGS effects, is seen to be superior to the random 
model that does include them. 

To study the issue of reducing the number of com- 
puted drops, we consider that each computational drop 

represents a fixed number of physical drops. That is, if 
the number of real drops is N, and the number of com- 
putational drops is Np, then each computational drop ,B 
represents NR drops, where NR = N,/Np is the ratio 
between the number of physical drops and the number of 
computational drops. The filtered source terms are then 
computed for the Np drops, and scaled by NR leading to 

(4) 
where is a representative drop field rather than the 
physical drop field 2. To illustrate the effect of increas- 
ing NR (decreasing the number of computational drops), 
in Fig. 2 are the (XI ,  23) homogeneous-plane averages 
and RMS of 91 and its models. The results for 3, are la- 
beled according to the lclm used (ideal, baseline, random, 
deterministic), while those for 3 are labeled as ‘exact’. 
These plots for NR = 1,8 and 64 are not intended to be 
typical, but rather to visualize the global comparisons to 
be presented below. Clearly, in the middle of the layer 
there is strong evaporation, as indicated by the average 
SI being positive. In the lower stream, on average 31 is 
negative, indicating net condensation; further scrutiny re- 
vealed that at some locations there is also evaporation oc- 
curring. As shown by the small RMS in the lower stream, 
the magnitude of condensatiordevaporation is small. Re- 
turning to the issue of computational-drop modeling, 
Fig. 2 shows that SI is generally overpredicted by the 
models. Whereas on average, the models do not seem to 
show much dependence on NR, the RMS shows a clear 
deterioration with NR. The greatest error in  SI,^ oc- 
curs in the middle of the layer where the strongest evap- 
oration occurs and where the filtered flow field differs 
most from the unfiltered flow field. In contrast, near the 
boundaries the filtered flow field is almost identical to the 
unfiltered one. Since the models are relatively more ac- 
curate at the lower stream boundary, where the non-zero 
81 shows that the drops are still evaporatingkondensing, 
the indications are that drop evaporation is not by itself 
the cause of errors in the filtered source term models. 
Rather, errors arise from the imprecision in representing 
the physical drop field by the computational drop field, 
since the ideal model (whch uses the actual unfiltered 
variables) gives the same results as the other models near 
the lower boundary. Given that the errors due to model- 
ing the unfiltered flow field are unavoidable in LES, it is 
of interest to determine the conditions under which the 
additional errors introduced by the computational-drop 
modeling are acceptably small. 



To quantify the effect of increasing NR, slopes from 
the least square fits of the filtered DNS (i.e. com- 
puted at the corresponding A) to modeled SI ,  S I I , ~  and 
3111 are plotted (see [l]) for A of 4Ax and 8Ax ver- 
sus NR = 1,2,4,8,16,32,64. The results show that all 
slopes are smaller than unity, meaning that all the mod- 
els overestimate the source tenns. Generally, the deter- 
ministic model outperforms the baseline model, with er- 
rors almost halfway between those of the baseline and 
ideal models, and the random model is the worst. Con- 
sistently, the ideal model gives the best prediction for 
S; its relative superiority is significant at the larger filter 
width, and at the smaller filter width when NR is small. 
For the smaller filter width at larger NR, all the mod- 
els give similar predictions. The accuracy of the models 
declines with NR, but not at the same rate for all source 
terms as 3111 seems to be best predicted whereas SII,J 
seems to be the worst predicted with the strongest error 
growth with NR. It can thus be concluded that for small 
NR (more computational drops) the inaccuracies in $Jf ,m 

are a much stronger source of error than is the effect of 
computational-drop modeling (NR > 1). This explains 
why, when using $Jf, it is seen that the ideal model sm 
improves for fixed NR as A is increased from 4Ax to 
8Ax since the filtering volume is increased and the num- 
ber of drops within each filtering volume is accordingly 
increased, giving a better accuracy; whereas the opposite 
is observed with all the other Sm because as A increases, 
information is lost during the gas-phase variable model- 
ing, resulting in decreasing accuracy (as A increases, $ 
is more unlike $). However, for large NR (fewer compu- 
tational drops), larger than about 8, the effect of having 
few drops dominates, as there is an increasing conver- 
gence of the slopes from the ideal S, to those from the 
other Sm for larger NR. Also noticeable is the effect of 
the nonlinear relationship between $f,, and 3, in that a 
proportional reduction in grid resolution and number of 
drops does not give the same error in the filtered source 
terms. That is, increasing A from 4Ax to 8Ax means an 
eight-fold increase in the filtering volume, but an eight- 
fold decrease in the number of drops (NR = 1 ,2 ,4 ,8  
compared to NR = 8,16,32,64, respectively) does not 
give the same error in 3,. In quantifying the S, error 
through the maximal percentage error (greatest deviation 
from unity over the five source terms, multiplied by loo), 
the maximal Sm error was found to be in 311,s for the 
baseline, random and deterministic models. The max- 
imal percentage errors listed in Table 4 and plotted in 
Fig. 3(g) and 3(h).show that for the baseline model, the 
error for NR = 8 and = 8Ax is three times that for 
NR = 1 and A = 4Ax, whereas the error for NR = 64 

and = 8Ax is twice that for NR = 8 and 6 = 4Ax. 
A similar trend of decreasing error ratio with increasing 
NR is observed for the other models. When proportion- 
ally increasing NR and the filter volume, the largest loss 
of accuracy is experienced with the deterministic model, 
which is the most accurate, while the smallest relative 
error is with the random model, which is the least accu- 
rate. In LES the effect of modeling $f is unavoidable 
and most likely A would have been selected according 
to the gas-phase resolution requirements; once 6 is se- 
lected, the accuracy of the calculation will decrease with 
increasing NR, independent of the model. Tlus means 
that if large errors are computationally acceptable (i.e. 
order of magnitude calculations), a large NR and large 
d are acceptable because the error will be the same as 
for large NR and small A; that is, for large NR the error 
is independent of 6. 

The above results concerning the computational 
drops were obtained at a transitional state. It is perti- 
nent to inquire whether the overprediction of the filtered 
source tenns is unique to this time station, or rather a 
general occurrence. To this end, the analysis of 3, was 
repeated at t*=20,45 and 80, corresponding to time sta- 
tions before the first pairing, between the first and second 
pairings and at the end of the second pairing. The results, 
summarized in Fig. 3 for the maximal percentage error, 
reinforce the previous conclusions that: (1) the effect of 
modeling $f is dominant at the larger a, where the error 
is initially large but not so sensitive to NE, (2) the effect 
of modeling $Jf is significant at the smaller d for smaller 
NR but not at larger NR, (3) the deterministic model per- 
forms best, 'followed closely by the baseline model, with 
the random model giving the worst prehctions, and (4) 
decreasing the number of computational drops propor- 
tionally to the increase in filtering volume size does not 
necessarily maintain the filtering error. In considering 
the pre-transitional time stations, the trends at a given 
NR seem to be as follows: (1) for the smaller A, the 
error seems insensitive to time up to t* = 80 and then 
exhibits a small growth, except for the lowest NR = 1 or 
2 where the error clearly grows with time, and (2) for the 
larger 6, the error generally grows with time, with more 
pronounced error growth at smaller values of NR. 

Conclusions 
From this a priori study, the indications are that the 

unfiltered flow field models perform better for smaller fil- 
ter widths; however, only at small values of NE (below 
about 8 for d = 4Ax) does this translate into improved 
accuracy of filtered source term models. On the other 
hand, for larger filter widths, there is little to be gained 



by using small NE, since the error growth with NR is 
modest; however, the filtered source term models will be 
less accurate than at the smaller filter width. None of 
the models considered yields particularly accurate pre- 
dictions for the filtered source terms, with errors ranging 
from 10% to 90%. However, this does not necessarily 
preclude their use in LES, since from the budgets of the 
LES equations ([ l]), the filtered source terms are an order 
of magnitude smaller than the largest terms. The sensi- 
tivity of flow field and drop evolution to filtered source 
term errors can only be determined by performing an a 
posteriori LES study. 
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A = 8Ax 
Model Baseline Random Deterministic Baseline Random Deterministic 
UI,f 1.002 0.999 1.002 1.005 0.998 1.001 
U2,f 1.020 0.967 0.998 1.041 0.913 0.992 
~ 3 , f  1.076 0.890 0.997 1.175 0.712 0.970 
Tf 0.999 0.999 1.OOO 0.999 0.998 0.999 
Yv,f 1.006 1.003 1.002 1.014 1.008 1.007 
P f  1.000 1.000 1.000 1.001 1.001 1.000 

Table 1: Slopes from least squares fit of exact to modeled quantities, slope=exact/model, TP600a2 at t*=105: Unfil- 
tered primitive variables at the drop far-field. 

A = 4Ax A = 8Ax 
Model Baseline Random Deterministic Baseline Random Deterministic 
S I , d  0.949 0.847 0.991 0.863 0.729 0.926 
S I I , l , d  .0.839 0.440 0.939 0.556 0.229 0.686 
S I I , ~ , ~  0.843 0.355 0.929 0.498 0.156 0.624 
S I I , 3 , d  0.787 0.288 0.889 0.390 0.113 0.529 
S I I I , d  0.948 0.798 0.993 0.864 0.669 0.936 

Table 2: Slopes from least squares fit of exact to modeled quantities, slope=exact/model, TP600a2 at t*=105: Drop 
source terms. 



A = 4Ax A = 8Ax 
Model Baseline Random Deterministic Baseline Random Deterministic 
3I 0.879 0.855 0.974 0.752 0.726 0.861 
S’II ,~  0.824 0.787 0.949 0.610 0.583 0.783 
S I I , ~  0.866 0.814 0.965 0.619 0.585 0.810 
311,s 0.813 0.745 0.901 0.447 0.445 0.660 
3111 0.872 0.844 0.981 0.738 0.711 0.871 

Table 3: Slopes from least squares fit of exact to modeled quantities, slope=exact/model, TP600a2 at t*=105: Filtered 
source terms. 

NR Baseline 
Ema.x(A,NR) 1 19 

2 22 
4 27 
8 36 

2 60 
4 65 
8 73 

Em,(26,8NR) 1 56 

Random 
26 
32 
42 
54 
65 
72 
79 
a7 

Deterministic 
10 
13 
19 
30 
40 
45 
53 
64 

2 2.8 2.3 3.5 
4 2.4 1.9 2.8 
8 2.1 1.6 2.1 

Table 4: Maximal percentage error of filtered source term models, Emu, for TP600a2 at t*=105, A = 4Ax. 

Figure 1: Mixing layer configuration 
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Figure 2: Homogeneous (ZI, ZS) plane (a,c,e> averages and (b,d,f) RMS of SI models, TP600a2 (Reo=600, MLo=0.2) 
at t*=105, 6=4Ax: (a,b) N R = ~ ,  (c,d) N R = ~ ,  (e,0 N~=64.  The filtered source term models are designated ideal, 
baseline, random or deterministic according to $ J ~ ,  the model used for the unfiltered gas-phase variables. NR is the 
ratio of the number of actual drops to the number of computational drops. (In the figures, the notations [SI and A are 
used for S and A respectively.) 
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Figure 3: Maximal percentage error in filtered source term models, TP600a2 at: (a,b) t*=20, (c,d) t*= 45, (e,f) t*=80, 
(g,h) t*= 105 for (a,c,e,g) A = 4Ax and (b,d,f,h) A = 8Ax. See caption of figure 2 for additional information. 




