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Abstruct- This work involves developing representative 
mission-critical spacecraft software using the Real-Time Spec- 
ification for Java(RTSJ)[l]. Utilizing a real mission design, this 
work leverages the original flight code from NASA’s Deep Space 
l@Sl), which flew in 1998. However, instead of performing a line- 
by-line port, the code is re-architected in pure Javam, using best 
practices in Object-Oriented(00) design. We have successfully 
demonstrated a portion of the spacecraft attitude control and 
fault protection, running on a standard Java platform, and are 
currently in the process of taking advantage of the features 
provided by the RTSJ. Our goal is to run on flight-like hardware, 
in closed-loop with the original spacecraft dynamics simulation. 

In re-designing the software from the original C code, we have 
made a number of observations on adopting 00 techniques for 
flight software development, and we explain the benefits of this 
approach. We have taken advantage of design patterns[7], and 
have seen a strong mapping from certain patterns to the flight 
software. The state design pattern eliminates the need for long, 
error-prone switch statements. The facade pattern is used for 
communication between threads, hiding queues where necessary, 
or allowing direct method calls. To ensure the correctness of 
measurement units, numerical computations are performed via 
an abstraction layer that checks measurement units at compile- 
time. 

Our approach places an emphasis on pluggable technology. 
Interfaces, in conjunction with a faqade pattern, expose only the 
behavior of a subsystem, rather than exposing its implementation 
details. Since the RTSJ reference implementation does not cur- 
rently support debugging, we chose to apply pluggable technology 
to the scheduler and memory allocation interfaces. Thus, real- 
time client code can be run on a standard Java virtual machine, 
allowing the code to be debugged in a graphical development 
environment on a desktop PC at the cost of decreased real-time 
performance. Once non-real-time issues have been debugged, the 
real-time aspects can be debugged in isolation on an RTSJ- 
compliant virtual machine. 

I.  INTRODUCTION 
A. Motivation 

Flight software has a high development cost, due in part to 
the difficulty in maintaining the code. The lack of maintain- 
ability stems from the limitations of current implementation 
languages, which we now discuss. There is a lack of strong 
type-checking and parameter checking. Memory can easily 
be corrupted due to the lack of pointer checking and array- 
bounds checking. Without operating system protections, these 
problems can occur as silent failures. Concurrency primitives 
are very low-level, and are not part of the language. A typical 
program will abound with error-prone switch statements and 
preprocessor directives. And only a globally shared namespace 
is available. 

Pluggable components cannot be expressed with traditional 
flight software techniques. A pluggable component is a soft- 
ware article which only exposes its interface (behavior) and 
not its implementation. Pluggable components allow different 
implementations to be swapped, without requiring modifica- 
tions to the rest of the code. The C language does not provide 
this level of encapsulation mostly because of its procedural 
orientation. Although C++ attempts to provide encapsulation, 
multiple inheritance problems exist. Additionally, the encap- 
sulation can easily be broken by using the friend keyword. 

B. Advantages of Java 

To address these issues, we are investigating Java as an 
implementation language for flight software. Java improves 
maintainability with its strong type-checking at both compile- 
time and run-time. Additionally, Java checks array boundaries, 
and ensures that variables are initialized. Standard Java pro- 
vides automatic memory management, and Real-Time Java 
allows several forms of manual memory management where 
required (see III-B for details). Multi-threading and higher- 
level concurrency primitives are built into the language as well. 
Java can easily express pluggable components, provides for 
full encapsulation, and allows single inheritance with multiple 
interface inheritance. Java also provides extensibility through 
inheritance and dynamic class-loading. 

Aside from the advantages of the language itself, the Java 
platform includes a large standard class library with support 
for most programming needs. Due to the large Java developer 
community, additional Java components are available from the 
internet, often for free. 

According to NIST[9], Java’s higher level of abstraction 
leads to increased programmer productivity. The Java platform, 
coupled with Java language, improves application portability. 
Additionally, Java is easier to master than C++, and supports 
component integration and reuse. 

C. Approach 

We specifically chose to favor maintainability above all else 
during the architectual, design, and implementation phases of 
the development. Maintainability requires making extensive 
use of design patterns, taking full advantage of Java language 
features, using pluggable technology, and making appropriate 
use of commercial, off-the-shelf libraries and tools. During 
the performance evaluation phase, it is known that some 
maintainability will be sacraficed in order to optimize parts 
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of the system to meet performance requirements. However, 
empirical evidence from systematic profiling of the application 
will dictate where and what is to be optimized, as opposed 
to prematurely attempting to optimize based on intuition, 
instincts, andor assumptions of behavior. 

D. Tools 

COTS graphical development tools were used extensively in 
this project. Specifically, the open-source Eclipse[6] integrated 
development environment provided graphical code editing, 
browsing, debugging, and refactoring capabilities. Headway's 
Review[8] product was used to graphically inspect our design, 
and allowed us to maintain a consistent architecture. Addition- 
ally, JF'robe[l3] was used to examine memory usage, and to 
identify critical regions for future optimization. 

An RTSJ-compliant virtual machine is required for running 
real-time Java applications. In addtion to the the RTSJ refer- 
ence implementation, several additional RTSJ implementations 
are just now becoming available: JRate[3], OVM[lO], and 
FLEX[ 1 I]. 

11. PATTERNS 
A. States 

One of the more common design patterns we used was 
the states design pattern. To appreciate the usefulness of the 
pattern, we first describe the error-prone behavior which this 
pattern eliminates. We then discuss the advantages of the 
states design pattern, and show examples of how we applied 
the pattern to our attitude control and our fault protection 
subsystems. 

1 )  Problems with past state representations : In the past, 
states were represented as either booleans or enumerated types 
that typically generated a long switch statement which selects 
the appropriate action based on the state variable. An example 
of typical code is shown in Algorithm 1. There are two major 
problems with the switch statement approach. 

Firstly, the programmer must manually construct a switch 
statement, allowing the possibility that the programmer forgets 
a break statement. The programmer must also remember to 
consider all possible states within a switch statement. If the 
programmer forgets a particular state, at best the error will be 
caught by an assertion statement at run-time. 

Secondly, the switch statement lacks extensibility. Consider 
the scenario in which one new state is needed, which amounts 
to adding an item to the enumeration. Every possible method 
call involving the state variable would have to be manually 
found and updated. If the new state were not included, 
this error would not be caught until run-time, assuming the 
programmer was diligent enough to use the assertions at the 
end of switch statements. 

2 )  Advantages of the States Design pattern: The state 
pattern eliminates the need for long switch statements and 
repeated checking of flags. Instead, each state is a separate 
class but implements an interface common across the states. In 
this way, we can use polymorphism to automatically determine 
the appropriate code to execute in a given state, rather than 
manually checking a flag. Clients of a state class call methods 

Algorithm 1 Using switch statements for states in C 
enum colorstate{ red, green, yellow); 
void doAction(co1orstate current-color) 
I 

switch(current-color) 
{ 

case red: 
break; 

case green: 
break; 

case yellow: 
break; 

default: 
assert (false) ; 

1 
I 

colors ta te current-color; 
curren t-col or = red; 
doAction (current-color) ; 
curren t-col or = green; 
doAction (current-color) ; 

directly on the state interface, while maintaining a reference 
to an instance of this interface. When the state needs to be 
changed, the reference to the interface is changed with a simple 
assignment to a different implementation of the interface. 
With this approach, we can ensure that all states have an 
implementation of the required methods, because of compile- 
time checking. There is no need for a run-time assertion check 
on this, enabling errors to be detected earlier. Algorithm 2 
shows how each state provides its own implementation of 
doAction(), cleanly separating which code logically belongs 
to each state. We see that dynamic dispatch is used to 
automatically call the correct state, instead of manually having 
to check the state variable at the beginning of a function, as 
was the case in the traditional example in Algorithm 1. Note 
that all the code associated with a particular state is neatly 
confined to a single class. If a new state becomes necessary, 
a new implementation of the interface can be created. This 
is much cleaner than having to manually track the usage of 
an enumerated type throughout numerous functions containing 
complex switch statements. 

3) Usage in Attitude Control and Fault Protection: In 
spacecraft, typically the Attitude Control System(ACS) will 
progress through a series of states. For the case of DSl, 
several example states include an idle state, a detumble state in 
which the spacecraft attempts to reduce its angular velocities, 
and a sun-pointing state. In our implementation, we use the 
state pattern to represent the state of the ACS, following 
the example design described in Section 11-A.2. Using the 
factory pattern to hide the state implementation details, we 
provide an AttitudeControlStateFactory which returns concrete 
implementations of our State interface. The ACS behavior will 
thus change when we call a method to transition the ACS to a 
new state, passing in an implementation of the state interface 
obtained from the state factory. 

In addition to using states in the ACS, the DSl Fault 
Protection subsystem[ 121 made extensive use of states. Fault 
Protection responses were formally specified using StateFlow 
state-charts, from which the flight code for the responses was 
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Algorithm 2 Using the states pattern in Java 
interface Colorstate 
( 

1 
public class Red implements Colorstate 
I 

public void doAction0; 

public void doAction0 
( 
1 

I 
public class Green implements Colorstate 
I 

public void doAction0 
{ 
1 

I 

Colorstate red = new R e d o ;  
Colorstate green = new Green(); 
Colorstate current-color = red; 
current-color.doAction0; 
current-color = green; 
current-color.doAction0; 

. . .  

automatically generated. The semantics of StateFlow state- 
charts allow the designer to compose states together, and 
to include code which will be executing upon entering or 
exiting a particular state. The auto-generated flight code made 
extensive use of goto statements, as shown in the example in 
Algorithm 3. The auto-generated code must explicitly call the 
enter and exit methods. 

Algorithm 3 Auto-generated C state change example 
if (counter == 1) 
E 
I 
else 
E 

1 
exit-init-state(); 
enter-sun-state () ; 
return; 

goto jout; 

jout: 
. . .  

However, our Java approach uses an extended version of 
the states design pattern. Capturing a subset of the StateFlow 
semantics, we provide a direct mapping between states and 
objects. Each state provides for three designated blocks of 
code to be executed at the appropriate time: on entry to a state, 
during a stay in a particular state, and on exit from a state. 
Each state specified by the state-chart corresponds directly to 
a Java object in our implementation. We require each state 
to implement the abstract methods onEntry(), during(), and 
onExit(). Additionally, the logic necessary to change states and 
to call the appropriate methods on state transitions is handled 
by an abstract hierarchical state class, separating the response 
logic from state transition logic. Changing states is as simple 
as a call to newstate.activateState(o1dstate);. The Java version 
corresponding to the C code in Algorithm 3 is shown in 
Algorithm 4. In the Java example, the this variable refers to the 
current object, which is an instance of a state implementation 

class. We are able to take advantage of polymorphism here to 
automatically determine the proper entry() and exit() methods 
to call. 

Algorithm 4 Java state change example 
if(counter == 1) 
E 

I 
sun-sta te, activa testate (this) ; 

B. Facade 

Real-time applications will typically contain multiple 
threads which need to communicate with one another. There 
are several strategies available for inter-thread communication: 

A thread may directly call a properly synchronized 
method, gaining access to shared data. Additionally, the 
developer can take advantage of Java’s wait() and notify() 
methods. 
A more traditional flight software approach of buffering 
messages in a queue may be used. Once a message is de- 
queued by the serving thread, it will execute the method 
specified by the queued message. 

In both of the above cases, however, we want to ensure 
that the communication method itself is not hard-coded into 
client threads. This decoupling ensures that the inter-thread 
communication method can be changed, without requiring a 
full rewrite of all clients. 

To create this abstraction over the communication, we enlist 
the facade pattern. According to [2 ] ,  the facade pattern shields 
clients from complex subsystem implementations details, and 
provides a simpler interface for the client. In our case, each 
inter-thread communication is presented as a method call to 
an interface. The interface abstracts the desired functionality 
provided by serving class, which may or may not be in another 
thread. 

For the case of a direct method call, the serving object 
simply needs to implement the interface, allowing clients 
to make the method call directly. For the message passing 
possibilities, two implementations of the interface will exist: 
the actual object implementation, and the adapter. The adapter 
class has a reference to the true implementation object. The 
adapter will then provide implementations of all methods 
specified in the interface. Within a method implementation, 
the adapter creates the necessary message object, and then 
calls the appropriate method on the server thread to enqueue 
the message. Later, the server dequeues the message and 
calls the appropriate implementation method. Throughout this 
indirect call by buffered message passing, the client thread 
was unaware of the need for the packaging and queuing of the 
messages. A UML diagram of our use of the facade pattern 
is shown in Figure 1. 

C. Pluggable Components, Factories, and Dynamic Class- 
Loading 

Pluggable components are specified by an interface because 
implementation details are not visible from classes using the 
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Fig. 1 .  Communication facade 

lmplementationj 

components. To hide the implementation class of a particular 
component, a factory is used instead of directly calling a 
constructor. The factory is tasked with constructing a particular 
instance of the pluggable component, and returning the com- 
ponent as an interface. An abstract factory provides a further 
step of abstraction. Each instance of an abstract factory can 
construct an instance of a pluggable component in a differ- 
ent fashion, typically instantiating a different implementation 
class. 

We have used dynamic class-loading, in conjunction with 
abstract factories as a replacement for the C preprocessor. 
By using this approach, we allow the user of an application 
to choose at run-time the implementation corresponding to a 
particular interface. That is, the implementation of a pluggable 
component can be chosen at run-time. Clients of the interface 
use an abstract factory to request an instance of an interface. 
A particular implementation of an interface will have its own 
concrete factory as a subclass of the abstract class factory. 
The proper concrete class factory is dynamically loaded at 
run-time, returning the corresponding implementation of the 
interface. The advantage of this approach is that we can swap 
out implementations at run-time. Specifically, this was used 
to choose between our desktop scheduler implementation and 
the RTSJ scheduler implementation at run-time. 

In the long term, dynamic class-loading has much greater 
potential for spacecraft missions. Current practice requires 
reloading a binary image of the executable to a spacecraft, 
followed by a reboot. We envision that Java’s dynamic class- 
loading facilities could be used to provide additional function- 
ality to a spacecraft by uplinking new class files to a running 
system, without requiring a reboot. This capability is outside 
of our current scope, but would be an interesting avenue for 
further research. 

111. REAL-TIME LAYER 

A. Scheduler 

The nature of flight software requires that certain threads 
execute at certain times, and the times that the threads execute 
depends on the type of work being done. For instance, control 
loops run periodically while watchdogs run once at some 
time to signal the system of a potential problem. Defining 
the temporal boundaries and contraints for these threads is 
independent of the scheduling algorithm being used, but 
communicating these constraints to the scheduler is dependent 
on the scheduling algorithm and its implementation. We chose 
to apply the pluggable technology approach to our scheduler 
so that we can use whatever scheduling algorithm is available 
to us. Currently, we provide several varieties of scheduling 
requests: 

A one-shot timer. The scheduler will run a block of code 
after at a specific time. 
Periodic behavior: The scheduler will then run the block 
of code at the client specified rate. 
Standard: The scheduler will run the block of code when 
possible. 

All of these behaviors can also specify a deadline that when 
crossed will cause a secondary block of code to be executed. 
Additionally we provide facilities for specifying a maximum 
percentage of CPU usage by a particular thread. The scheduler 
to be used is selected at run-time and instantiated through the 
use of dynamic class loading and factories. 

Since the RTSJ reference implementation does not currently 
support debugging, our choice of pluggable technology al- 
lowed us to use the desktop for debugging. When running 
within an RTSJ-compliant virtual machine, our scheduler 
interface simply delegates out to the underlying RTSJ im- 
plementation. However, when running on a standard desktop 
Java virtual machine, the scheduler component uses our own 
implementation, written only using standard Java features. We 
emulate, as best as possible, the real-time scheduling features 
on a standard Java platform. Clients may chose between the 
RTSJ scheduler implementation and the desktop scheduler 
implementation at run-time. 

Thus, real-time client code can be run on a standard Java 
virtual machine, allowing the code to be debugged in a 
graphical development environment on a desktop PC at the 
cost of decreased real-time performance. Once non-real-time 
issues have been debugged on a standard Java VM, the real- 
time issues can be debugged in isolation on an RTSJ-compliant 
virtual machine. 

B. Memory Areas 

With the addition of the RTSJ’s scheduling and memory 
management features, come new failure modes and program- 
ming pitfalls. The developer must consciously avoid violating 
memory area rules, and must ensure that no memory leaks 
occur. We present a series of guidelines for using the RTSJ 
memory management features. We provide a set of recommen- 
dations for memory allocation, showing scenarios that take 
advantage of memory areas provided by RTSJ. In addition, 
restrictions are placed on memory allocation scenarios that 
are particularly error-prone. 

I )  Immortal memory : Immortal memory is a new alloca- 
tion scheme provided by the RTSJ. Once an object is allocated 
in Immortal memory, it is never freed. The advantage of this 
approach is that objects allocated in immortal memory have no 
need for interaction with the garbage collector. The disadvan- 
tage is that memory leaks are now possible. We recommend 
that allocations to immortal memory be performed in static 
initializers. We also require that object which are running in 
immortal memory only allocate in their constructors. With 
these restrictions in place, memory leaks can be avoided. 
However, this also places severe restrictions on which classes 
may be used. To use a JDK class in while running in immortal 
memory, one must inspect the source code to ensure that 
allocations are only performed in the constructor. 
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2)  Scoped memory usage: Scoped memory provides a 
means to dynamically allocate and free memory without using 
the garbage collector. Object allocated within a scope persist 
for the lifetime of the scope. Once the number of threads 
within a scope reaches zero, all objects allocated within the 
scope are destroyed. Additionally, scopes may be nested. The 
advantage for application programmers is that a large number 
of objects can be allocated and freed at once, without creating 
excess work for the garbage collector. One can think of scopes 
as a generalization of the C stack with the exception that the 
objects are finalized in the case of scopes. 

A particular scoped memory region is represented by a 
scoped memory object, which itself must be allocated in 
a memory region. If one allocated a scoped region on the 
heap, the scoped memory object itself would be subject to 
interference from the garbage collector. For our application, 
all threads are created at application startup time. In this 
case, we can allocate scopes in immortal memory, and have 
examined the possibility of creating separate scopes on a per- 
thread basis. This scope allocation paradigm is quite similar 
to having one C stack per thread. The thread would then enter 
its own scoped memory, perform allocations, and then leave 
the memory area, automatically destroying the scope-allocated 
data. The size of the scope can be determined by profiling 
the memory usage characteristics of a particular thread, taking 
into consideration the requirements of the application and the 
available hardware resources. 

With the RTSJ, it is also possible to nest scopes. We now 
provide an example of how to exploit this feature. Suppose 
we are inside a scoped memory region. Assume we have a 
for loop, which allocates 1K per iteration, and the loop runs 
1K times. Further assume that the scoped memory region is 
entered once before the loop. The scoped memory area must 
be 1 meg in size. However, if we enter a nested scope once 
per iteration of the loop, all of the memory allocated will be 
freed at the end of each loop iteration. Thus, we can reduce 
the scoped memory size to 1K. So we see that using nested 
scopes within loops allows us to reduce the memory usage. 
Further examples of the use of scoped memory can be found 
in [5 ] .  

The difficulty with scopes is their limited lifetimes. We 
envision entering and leaving a scoped memory region once 
for every iteration of our control loop. However, some data 
will need to persist beyond the lifetime of the scope, so we 
must provide mechanisms for copying data out of a scoped 
memory region. To facilitate this, we recommend providing 
memory areas as parameters to factories. These factories could 
then be used to copy and construct objects in arbitrary memory 
areas. 

3) No Heap Real-time Threads: As a new thread class, 
the RTSJ introduces NoHeapRealTimeThreads[NHRTT). 
NHRTTs cannot access object allocated on the heap, thus 
avoiding interactions with the Garbage collector. There are 
several choices available for an application architecture using 
NHRTTs: either all threads will be NHRTTs, or a mix of 
NHRTTS and real-time threads will be permitted. Designers 
who choose to use all NHRTTs will be working in a restrictive 
environment: all data which cannot be discarded upon leaving 

a scope must be allocated in immortal memory. In this 
environment with only manual memory management, some 
of the benefits of Java disappear, and another implementation 
language may be more suitable. 

We now consider the case of an application containing both 
NHRTTs and real-time threads. To maintain a clean architec- 
ture, the application architect should attempt to make inter- 
thread communication as transparent as possible. However, 
moving data between a NHRTT and a real-time thread requires 
special handling. Data moving between the two threads must 
be transferred using a wait-free queue provided by the RTSJ. 
But due to the requirements of NHRTTs, objects passed 
through the queue will typically have to be allocated in 
immortal memory. However, to avoid memory leaks these 
queued objects must be managed. We have pondered using 
two possibilities, both of which we find unsatisfactory. 

The first possibility is to implement a pool of objects 
which can be used for communicating with immortal memory. 
This has several disadvantages. The objects allocated within 
the pool cannot be immutable, decreasing the application’s 
maintainability. Additionally, a pool can only contain objects 
of a single class. As a second possibility, consider replacing 
the pool with a pre-allocated block of bytes in immortal 
memory. Objects being sent would then be serialized to this 
common area, allowing objects of different classes share 
the same memory block. Unfortunately this introduces an 
unnecessary serialization cost at run-time. The serialization 
approach essentially reduces to a Fortran common block, and 
forces classes to provide otherwise unnecessary serialization 
logic. In summary, we have not been able to determine a clean 
way of moving objects from a NHRTT to a real-time thread 
without major changes to the application’s architecture, and we 
consider this to be an open problem for the RTSJ community. 

IV. UNITS 
A. Problems with past practice 

In current flight software projects, the measurement units are 
not explicitly part of the software. Perhaps measurement units 
are designated in an external document or in code comments, 
but there are no automated checks at either compile-time or at 
run-time to ensure that unit arithmetic is correct. For example, 
multiplying a velocity by a time should result in a distance. But 
since values are only represented as doubles, nothing prevents 
the developer from incorrectly treating the result of such an 
operation as a force, for example. We have already seen the 
disastrous consequences of incorrect units in the Mars Climate 
Orbiter mission. 

B. Our approach 

To remedy this problem, we advocate making measurement 
units an integral part of the application code. Our package 
provides compile-time checking of measurement units. We 
provide interfaces for physical units, such as forces, distances, 
and times, and allow scalars, matrices, and tensors of values 
with physical units. With measurement units explicitly part of 
our code, we gain a number of advantages. Since measurement 
units are checked at compile-time, bugs are detected sooner, 
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with a lower cost to repair them. Specifically, by using the 
units framework in our development, the detumble control loop 
was debugged in only 13 iterations. Because we knew that the 
measurement units were correct, pinpointing the actual cause 
of the errors became simpler. 

In implementing our units framework, we have made use 
of COTS class libraries. However, since units are pluggable 
components, alternative implementations are possible. For per- 
forming matrix and vector operations, we take advantage of the 
classes providing such functionality in Java3d. Additionally, 
for unit representation, we make use of the Jade library[4]. The 
admitted disadvantage of using Java for this situation is the 
lack of operator overloading, since the syntax for performing 
arithmetic does become quite verbose. 

V. CONCLUSION 
A. Summary 

We have developed a pure Java prototype attitude control 
system, capable of performing a detumble maneuver in real- 
time, along with a pure Java fault protection subsystem. 
In developing this prototype, we have shown how to apply 
best practices in 00 design. We have demonstrated how to 
apply design patterns to a realistic flight software development 
effort. Specifically, we have demonstrated the applicability 
of pluggable components, factories, states, and facades. The 
measurement units facility allows the checking of unit cor- 
rectness at compile-time. We have explored the features of 
the RTSJ, discussing the usage of memory areas. We have 
created a pluggable scheduler component, enabled debugging 
on a standard Java platform. Taken together, our work has 
exploited Java and RTSJ features to demonstrate how to create 
more maintainable flight code. 
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