


major axis on the order of 100-300 km. Guided 
entry is expected to shrink the landing ellipse to 3-6 
km for second-generation landers as early as 2009. 
However, even if a landing ellipse is only a few 
kilometers in size, it is very likely to contain 
hazards such as craters, steep slopes, and rocks, 
regardless of how the ellipse is selected. To 
decrease the probability of landing on a hazard, one 
of two safe landing approaches may be employed: 
crater hazard detection avoidance, which will detect 
all hazard craters during the descent and avoid 
landing inside any of these craters, or pinpoint 
landing, which determines the lander’s position in 
real-time and guides the spacecraft to land at a pre- 
selected site. According to recent studies on the 
size/frequency of craters on the surface of Mars [7 ] ,  
a sufficient number of adequately sized craters for 
determining spacecraft position are very likely to be 
found in descent imagery. For example, if an image 
is taken at 8km above the surface with 45-degree 
camera Field of View (FOV), there will be an 
average of 94 craters of < 200 m diameter in the 
image. These craters can be used as landmarks to 
match a pre-existing crater database and, therefore, 
to determine the position of the lander. 

Figure 1: Craters in the descent image are 
identified and matched to a database. Using the 
known 3D positions of the craters and their 2D 
images, the position and attitude of the lander can 
be computed in real-time during descent. 

PPL Operation Scenario and Requirements 
The landmark-based pinpoint landing approach 
is as follows. First, a scientifically interesting 
landing site on the targeted body is selected on 
earth using orbital imagery, and the landmarks (e.g. 

craters) within the landing ellipse are mapped. 
During the lander descent, its initial position with 
respect to the landmarks as well as to the selected 
landing site is determined automatically on board. 
The lander is then guided to the landing site using 
continuous updates of lander position and velocity 
throughout the descent (Fig. 1). Three key 
algorithms enabling PPL are the landmark (crater) 
detection, landmark matching, and position 
estimation. 

Crater Detection 
A very robust crater detection algorithm has been 
developed for autonomous spacecraft navigation 
[2]. After some modification, this algorithm can be 
used for PPL as well. The crater detection algorithm 
consists of five individual steps. 

1. Edge Detection: This step detects edges in 
an image and places them in a database. 

2. Rim Edge Grouping: This step groups 
together edges that belong to the same 
crater. The information used for this 
process include edge shape (convex), the 
image intensity profile inside a crater, and 
edge gradients. If a pair of edges (lit and 
shaded side of crater) is found, they will be 
used to fit an ellipse. 

3. Ellipse Fitting: This step fits an ellipse to 
each group of crater edges by an iterative 
algorithm - the reweighting least square 
method, which can robustly remove any 
outliers in the input points. 

4. Precision Fitting: This step adjusts the 
detected crater’s geometry directly in the 
image domain to reduce errors introduced 
in edge detection and ellipse fitting. A 
multidimensional iterative nonlinear 
minimization algorithm based on conjugate 
gradients is used to lock an ellipse precisely 
on the rim of a crater. 

5 .  Crater Confidence Evaluation: This step 
evaluates every detected crater and assigns 
a confidence value to it. 

An extensive experimental study shown that the 
detection rate is better than 94% and the false alarm 
rate is less than 7%. The position error is less than 
0.3 pixel and the geometrical error is less than 0.5 
pixel. Fig.2 shows two results of the crater detection 
algorithm. The left side is a NEAR Eros image and 
right side is a Mars Odyssey image 



Figure 2: Two examples of crater detections 

Crater Matching 
In order to determine the position of the spacecraft 
with respect to the central body, geometrical 
recognition techniques that perform matching 
between the craters that have been extracted from 
an image and a crater database containing the 3D 
locations of the craters, is used here. Each crater is 
treated as an attributed point corresponding to the 
center of the crater, where the attributes are the 
radius and orientation of the crater. The efficiency 
of the basic methodology is improved by two 
means. First, the crater attributes are used to 
remove matches that are incompatible. Second, an 
initial estimate of the spacecraft position is used to 
filter matches that are not feasible. Besides, the 
information from other sensor such as the altitude 
from the altimeter and attitude from the IMU can 
help to reduce the search scope even more. 

Position Estimation 
From a suitable number of matched landmarks for 
which we have prior geometric data, we accurately 
estimate the position and orientation of the 
spacecraft with respect to the surface of the 
planetary body. In the case of craters, the relevant 
structures are crater centroids, which are estimated 
carefully to account for perspective distortion 
effects. 

Given a collection of points in 3D and their 2D 
projections, we recover camera pose as follows. 
The 3D points are originally presented with respect 
to some reference coordinate frame, typically 
dependent on the landing ellipse and independent of 
the location of the camera. The first step in 
recovering camera pose is to determine the 
coordinates of these points in a coordinate frame 
centered on the camera. From prior calibration of 
the camera, we know the exact 2D coordinates of a 
pixel on the image plane (CCD or CMOS device). 
If (x,y) are the 2D coordinates of an image point p 
arising from a 3D point P, then P can be 

expressesfigure in the coordinate frame of the 
camera as (h, Ay, A) for some suitable scale factor 
A. Note that the distances between 3D points are 
independent of coordinate system. Hence, for a 
collection of image points {pi} and associated 3D 
points {Pi}, we know {dij=~~Pi-P,~~). This can be 
expressed as 

resulting in a set of quadratic equations in the 
unknown {A,]. We use an efficient and robust linear 
algorithm to solve for the A, [8]. Once these 
quantities are known, the 3D coordinates of all 
points are known in both the coordinate frame of 
the camera and the reference frame. Recovery of 
the camera pose is then equivalent to finding the 
Euclidean transformation, which maps one of these 
point clouds onto the other. This absolute 
orientation problem has a known optimal solution 
[8]. For small numbers of points, it is fast and very 
robust. It requires no initialization because there is 
no iterative component. Consequently, there are no 
convergence or local minima issues. 

The PPL scenarios and requirements differ 
significantly from mission to mission. For 
example, landing on a large planetary body, such as 
Mars, the PPL will start only after the heat shield is 
jettisoned, where the lander is already very close to 
final touch down and is descending very rapidly 
(-100rds). Because of high vertical velocity and 
short travel distance, an ultra fast PPL is needed. In 
order to achieve this, valid options include use of 
very efficient algorithms, reduction of the data 
volume and use of faster computers. For example, 
using the smallest number of craters possible 
without ambiguity in PPL could save significant 
processing time. However, what is the minimum 
number of craters to ensure unambiguous 
localization? What is the effect on the position 
accuracy if few craters are used in PPL? 

Computationally it is more feasible to do PPL on a 
small body than on a large body because of its 
lower gravity and consequentially lower descent 
velocity. However, since most small bodies have 
irregular shapes, unique challenges remain. For 
example, the craters appear differently due to the 
view and lighting angles and local surface normals, 
and the plane assumption for large bodies is no 
longer valid. This may create some difficulties in 



crater matching. Another problem with small body 
PPL is that the portion of covered area might be on 
the dark side of the body(Fig.2). So only a small 
fraction of craters appear in a descent image. In this 
case, the crater detection rate is much lower than on 
a large body. For small body landing, we need to 
answer the following questions: What is the 
minimum detection rate? Where and when the PPL 
is feasible? What is the optimal FOV? Do we need 
a second descent camera with small FOV to 
compensate for the range limitation of wider FOV 
cameras? Not all these questions can be addressed 
analytically. However, a well-designed and high 
fidelity simulation can provide much insight. 

LAMPS 
In order to answer these questions above, a 
landmark-based pinpoint-landing simulator 
(LAMPS) is being developed. The objective of 
LAMPS is to provide solid answers to many 
operational questions. LAMPS can incorporate 
numerous types of information and data to simulate 
I real mission scenario (Fig.3). 
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Figure 3. The framework of LAMPS 

The input data that LAMPS will use include 
1. PPL error models, which include error 

models of each individual algorithm 
involved, such as the landmark detection 
rate, false alarm rate, landmark position and 
geometry error, etc. 

2. Surface model: When the local surface is not 
flat, which is particularly true for small 
bodies, a local surface model will play an 
important role in the landmark appearance in 
the optical image. 

3. Landmark database, which includes the 
position, major and minor axes, orientation, 
and local surface normals, etc. of all craters. 

4. Spacecraft trajectory: which includes the 
trajectory error models, such as error ellipse, 

5 .  Sensor error model: Sensor’s error model, 
Attitude error of MU, range error from 
range finder, camera calibration model. 

6 .  Ephemeris data: sun position, central 
target’s attitude etc. 

Currently, LAMPS can perform two types of 
analysis: the position estimation accuracy analysis 
and crater constellation uniqueness analysis. 

Crater Constellation Uniqueness Analysis 
To be used for unambiguous position estimation, 
the constellation of landmarks must be unique in 
terms of size and location in the landing ellipse. Our 
initial study uses the Odyssey THEMIS data 
mentioned above, which contains 9 17 detected 
craters. We detect for all clusters of 3 to 10 points 
within the chosen FOV of the camera in any initial 
position, whether there is a rigid motion taking the 
given cluster to another. In such a case, position 
estimation will be inherently ambiguous if these 
craters are chosen for the estimate. Note that our 
analysis is exhaustive in the sense that we examine 
all 270,000+ admissible configurations of 3 craters. 
Since, any ambiguous constellation n>3 craters is 
also ambiguous for subsets containing 3, the 
associated rigid motion for the n crater case is 
covered by our analysis. 

Position Estimation Analysis 
From a suitable number of matched landmarks for 
which we have prior geometric data, we accurately 
estimate the position and orientation of the 
spacecraft with respect to the surface of the 
planetary body. We identify 3D to 2D point 
correspondences between our database and descent 
or orbital imagery. In the case of craters, the 
relevant structures are crater centroids, which is 
estimated carefully to account for perspective 
distortion effects. We study this accuracy of this 
approach via a detailed simulation described below. 

Given a dataset containing the 3D locations of 
crater centroids within a theoretical landing ellipse, 
we randomly insert the spacecraft within the ellipse 
assuming a truncated Gaussian distribution with ox 
and o,, derived from the major and minor axes. By 
truncated, we mean that we do no allow insertion 



outside the landing ellipse. We set insertion 
altitude, orientation, imager resolution and FOV as 
desired. The onboard camera then takes a virtual 
snapshot of the visible portion of the 3D terrain. 
The 2D image coordinates of the crater centroids 
are distorted noise with a truncated Gaussian 
distribution with predefined standard deviation and 
truncation point. If there are not enough craters (a 
tunable parameter n with a minimum value of 4) for 
position estimation, we mark the insertion point as a 
failure. Otherwise, we randomly select n of the 
visible craters for position estimation. Assuming 
perfect matching between the 2D and 3D datasets, 
we use our position estimation algorithm to 
estimate spacecraft position and orientation and 
compare to the preset ground truth. In our initial 
version of this simulation, we are not doing any 
form of temporal averaging. Therefore, results are 
on a frame-by-frame basis. We are also ignoring the 
fact that with a laser altimeter and knowledge of the 
gravity vector the pose problem becomes much 
better constrained and the remaining degrees of 
freedom can be more accurately estimated. 

Case Study 
We now present a case study of both the position 
estimation and constellation uniqueness analysis 
using imagery of a 24km x 45km patch of the 
Martian surface taken from the Odyssey THEMIS 
mission. In Fig.4, we see the actual image (warped) 
along with a crater density map. 

Figure 4. Oddysey THEMIS image (left). Detected 
craters (center). Crater density map (right) 

considered identical there existed a rigid motion 
taking one to other, subject to error bounds. In 
particular, we required the major and minor axes of 
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Figure 5. Probability of ambiguous configuration 
for n=3 to 10 points. 

related ellipses to vary by no more than 5 meters 
and the crater centers to vary by no more than 50 
meters. In practice, these are highly conservative 
numbers. In Fig.5, we show the percentage 
probability of finding an ambiguous constellation, 
given n points in the constellation with the camera 
FOV, where n ranges from 3 to 10. With the small 
number of craters in our dataset, even the case of 3 
points is ambiguous in <0.2% of cases. In 
particular, since we prune by crater shape, the set of 
viable candidates decreases dramatically. We are 
currently working on other datasets and on 
extending our result to a purely analytical model, 
which depends only on crater density and error 
models rather than on a set of crater data. 

The simulation framework for all position 
estimation analyses to follow is as described above 
with the following parameters: altitude = 8 km., 
orientation = downward pointing, image resolution 
= 1024 x 1024. In figure 6 we plot for 3 different 
FOVs and 50000 insertion points each, the areas 
over which 5 craters are visible. As we will show, 5 
craters appear adequate for the position estimate. 

For the uniqueness analysis, we chose a FOV of 45 
degrees, an altitude of 8km and a downward 
looking camera. Note that this resulted in over 
270,000 unique clusters of 3 points within the FOV 
ranging over all initial positions. Two clusters were 
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Figure 6. Success (in green) vs. failure (in red) for 
insertion 50000 positions and 25 deg (left), 45 deg 
(center) and 65 deg (right) FOV. 

Note that with low depth variation (there is none at 
all in our case), position estimation is least accurate 
along the viewing direction (downward in our case). 
However, in a real implementation, we would have 
highly accurate estimates of elevation and gravity 
vector from other onboard systems. This not only 
constrains the most sensitive component of our 
estimate but also reduces the number of degrees of 
freedom of the search. In our current 
implementation, we do not take this extra 
information into account. We would use a state 
estimator and temporal filtering to stabilize the pose 
estimate in a real-world system. In the current 
version of the simulation, we estimate pose from 
single frames only. Hence, as a measure of 
consistency, we take two estimates for each 
insertion position, using different subsets of points 
and different random noise. If the recovered 
positions and attitudes differ by more than 100 
meters or 10 degrees, we reject the data as an 
outlier. Note that this is very conservative, since an 
altimeter would reduce the elevation error 
dramatically. This interim procedure will be 
replaced by a state estimator and planned trajectory 
approach in subsequent versions. Below, we vary 
FOV by increments of 5 degrees from 20 to 90. For 
each angle we perform 5000 random insertions as 
described above using 5 points for position 
estimation with noise set to 6-0.5 pixel. The results 
are shown in Fig.7. 
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Figure 7. RMS position error in X (red), Y(green) 
and Z(b1ack) for FOV ranging from 20 deg. To 90 
deg. Probability of finding 5 craters in blue. 

As expected, the recovered position estimate in the 
Z (camera depth and spacecraft elevation) direction 
is the worst. However, the lateral position estimate 
is on the order of 20 meters at an altitude of 8 km. 
We find this result very encouraging. The error 
appears to be largely independent of FOV with the . 
given camera configurations. Observe that the 
probability of finding the requisite number of 
craters increases with FOV. Further study is 
warranted, but this result seems to indicate that 
within limits defined by resolution, etc., the largest 
FOV is preferable for position estimation 

Conclusions 
In this paper, LAMPS is presented. This system can 
incorporate many types of information to simulate a 
real operational scenario. LAMPS can answers 
many operational questions, which are often very 
important but hard to address analytically. In short, 
it is a very valuable tool in PPL research and 
development and PPL mission design and planning. 

Future work on the LAMPS will include 
incorporating the surface model, spacecraft 
trajectory model, and ephemeris data into the 
system. 
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