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Remote Sensing
and The Signal

Remote Sensing

¢ Broad meaning: Deducing the properties of a materials
without physical contact.

» Common usage: Deducing the properties and spatial
relationships of constituents in the Earth’s land, water, and
atmosphere environment by measuring electromagnetic
radiation.

¢ Common optical spectrum implementation: Multi-spectral
imagers with discrete, broad bands (Landsat, AVHRR, SPOT,
etc.)
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Solar Remote Sensing Signal and
Transmittance of the Atmosphere

3

%3
(=]

-

Radiance (uW/cm™/nm/sr)
5

=3 L
=1 o

S

F 0.1
T T T T - T 0.0

§0

700 1000 1300 1600 1900 2200 2500
Wavelength (nm)

Earth Solar Reflected Energy Remote Sensing

Sun Measured
Solar e signal
Iradiance /7Y Data
Radiance downlink
at instrument
Atmosphere ﬁ
—

Surface
Calibrated Signal

Energy is emitted by the Sun as well as Earth sources (fires, lights, etc)

The energy is transmitted and scattered by the atmosphere and reflected from the surface
The imaging sensor responds to the energy (L) within a field-of-view and spectral range
Sensor signal is digitized and relayed to the ground and recorded

The signal is calibrated, processed, and analyzed to answer the questions of interest

Exo Atmospheric Solar Irradiance (Earth)
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Calibrated Radiance
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1) Remote ing instr measure radi

2) The solar spectrum and the atmosphere dominate

3) The atmosphere contains fine spectral structure and is variable
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Surface Spectral Signatures

+ The constituents of the land, water, and atmosphere
environments possess spectral signatures that derive from
molecular absorption and particle scattering characteristics

+ Materials with different molecular and/or scattering
characteristics have different spectral signatures

¢ In general, surface liquids and solids do not have fine spectral
structure (5 nm and smaller) because of the inter-molecular
bonds that make them liquid and solid

Mineral Spectra
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Vegetation Spectra

Vegetation Pigments
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Spectral Signatures of Water Constituents
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Concept for the Ocean Remote Sensing Communty
Apparent versus Inherent Optical Properties

e Apparent optical properties vary as a function of illumination,
observation, and surface geometries as well as with
atmospheric conditions. Upwelling radiance is an apparent

optical property.

¢ Inherent optical properties are tied to the molecular absorption
and constituent scattering characteristics of a material.
Reflectance is an inherent optical property.

¢ The inherent optical properties are need to rigorously pose and
answer science research and application questions.
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Summary: Remote Sensing and The Signal

Earth-looking optical remote sensing instruments measure
radiance through atmospheric windows. Landsat, SPOT,
AVHRR, your eye, etc.

The measured signal is a function of the solar source,
atmosphere, surface, geometry, and instrument. Imaging Spectroscopy

Surface liquids and solid have unique spectral signatures
related to molecular and structural composition.

Radiance is an apparent optical property. Reflectance is
inherent to the material. To pose and answer research and
application questions with remote sensing, inherent properties
are needed.

Electromagnetic Spectroscopy Three Mineral Spectrum

o Physics and chemistry that deals with the interactions between
matter and electromagnetic radiation as observed by 08 L
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Imaging Spectroscopy

* Measuring spectra as imnages
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Multispectral Measurement
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Earth Imaging Spectroscopy
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Cuprite, NV Cuprite, NV

¢ Single band image * Imaging Spectroscopy

Delineate regions of Identify full range of surface

different brightness materials and delineate the
distribution

Imaging Spectroscopy Approach Mineral Spectra
— Muscovite K2AM[SGAIZ020)(OH)M == Montmorillonite (Ns,C8)0.33( AL,Mg)2Si401(OH)Z*nH20
— Alunite KAI{(SO4)2(OH)6 Kaolinite AM{Si4010{(OH)8
Gypsum CaS04.2H20 — Goethite FeO.0H
S J-msilf NaFe3+ 3(S04)XOH)6 -—(‘llci!c. CaCO3
¢ Three materials are detected | lomite CaMelCO3)2 — Hometile Fe203

s Three minerals are identified based on molecular absorption
characteristics

Reflectance

+ The expressed concentration of the three minerals may be
derived
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Reflectance
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IMAGING SPECTROSCOPY CONCEPT
Scientific Basis

* Determining the composition and inferring processes on the Earth surface
by counting photons at the top of the atmosphere is an improbable
objective.

*  Spectroscopy provides a framework based in physics and chemistry to
achieve this remote measurement (not sensing) objective in the context of
the interaction of photons with matter.

¢ The physics, chemistry and biology of spectroscopy have been validated
through more that 100 years of laboratory and astronomical research and
applications. (Fraunhofer 1814)
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IMAGING SPECTROSCOPY CONCEPT
Mathematical Basis

An alternate view of the imaging spectroscopy concept hinges on the
general problem of solving for unknowns from measurements.

If one has fewer measurements than unknowns, then the problem is
underdetermined. Six or Ten measurements (e. g. bands) are almost
never enough to account for the unknowns effecting the radiance at the
top of the atmosphere.

Furthermore, one can not simply solve for the a single unknown of
interest (the magic band). One must solve for all the unknowns that may
effect the expression of the unknown of interest.

If there are more measurements than unknowns (Imaging Spectroscopy)
then the problem is likely over determined and solvable.

IMAGING SPECTROSCOPY CONCEPT
Technological Basis

¢ Imaging Spectroscopy takes advantage of advances in:

— Optical, detector, and design technology
- Computer communication, analysis and storage technology

Satellite onboard processing and downlink technology

!

Science research and applications algorithms

+ Imaging Spectrometers are becoming easier to build than 20
band and greater multispectral sensors

H. G. Wells, The Outline of History

“The telescope has released the human imagination as no other implement
has ever done. If there is any other apparatus worthy to be compared to its
enlarging influence, it is the spectroscope, which was developed after the
discoveries of Fraunhofer, the glass-worker, in 1814. Since man has lived
on earth he has seen rainbows, but who could have told him that those
bands of color held in them a promise that one day he should be able to
analyze the stars? But the spectroscope receives the rays from any
luminous source, passes them through prisms and breaks them up into
rainbow-like bands. These bands reveal under examination transverse lines
of brightness and darkness which vary with the heat and the chemical
composition of the source of light and of any intervening vapour. So that
men can now sit in observatories and leam the composition and take the
temperature of stars incalculable billions of miles away.”

Biology and Chemistry Revealed in Spectroscopy
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Imaging Spectroscopy Definition

s Imaging spectroscopy is the measurement and analysis of
spectra acquired as images.

- A spectrum is generally the measurement of more than 100 contiguous
spectral channels (or bands)

— An image generally has more than 100 spatial elements in the line and
sample direction.

Imaging Spectroscopy Approach
* Measure the calibrated upwelling radiance spectra as images.

* Based upon the molecular absorptions and constituent
scattering characteristics expressed in the spectra:

— Detect multiple materials in each spectrum
— Identify the specific surface and atmospheric constituents present
— Assess and measure the expressed constituent concentrations

— Assign proportions to constituents in mixed spatial elements

!

Delineate spatial distribution of the constituents

— Monitor changes in constituents through periodic data acquisitions

Summary: Imaging Spectroscopy

+ Imaging Spectroscopy:
— The measurement and analysis of spectra acquired as images
~ The next advance in remotes sensing beyond multispectral

¢ Imaging Spectroscopy
— Identifies materials based on resolved molecular absorptions
~ Identifies more than one material per spectrum (mixtures)
— Assesses concentration through spectroscopic analysis of expressed
absorption and scattering

+ Imaging Spectroscopy
~ Based in physics, chemistry and biology
- Based in the mathematics of solving for unknowns from measurements
— Based in advanced instrument, computer, and algorithm technology

The Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS)

13



AVIRIS CONCEPT

EACH SPATIAL ELEMENT HAS A
CONTINUOUS SPECTRUM THAT

15 USED TO ANALYZE THE
SURFACE AND ATMOSPHERE
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History: AVIRIS at JPL.

Earth Imaging Spectroscopy was conceived at JPL under the
leadership Alex Goetz and Gregg Vane in the mid 1970s as the
next logical step from multi-spectral remote sensing. Many
other contributed.

The Airborne Imaging Spectrometer (AIS) was developed as a
technology test bed at JPL using discretionary funds. AIS first
flew in 1982.

AVIRIS was proposed to NASA in 1983 based on the success
of AIS.

AVIRIS has flown in every year since 1987

History: AVIRIS at JPL

s AVIRIS was designed with 1980s detector technology. This

meant AVIRIS needed to have large detectors and high optical
throughput.

In the 1995 the detectors were upgraded to current technology.
These large modern detectors in conjunction with the high
optical throughput resulted in exceptional signal-to-noise ratio
perfomance.

The base design of AVIRIS has enabled a series of subsystem
refurbishments that have allowed AVIRIS performance to
continue to improve over the years.

AVIRIS at JPL

All AVIRIS data from 1992 to present are maintained in the
JPL AVIRIS archive.

AVIRIS was originally designed to fly on the ER-2 with 20
meter spatial resolution.

Since 1998 AVIRIS has also flown on the Twin Otter platform
with 4 meter spatial resolution. A georectification capability
was added for the Twin Otter data.

In the last three years AVIRIS has flown about 80 times each
year and collected about 1 terrabyte of data a year

14



AVIRIS at JPL

Given the heavy usage, AVIRIS is put through a maintenance
period for about 4 months each year.

The AVIRIS workforce functions in a team approach to keep
AVIRIS working and to try to anticipate issues before they

become problems.

All data flown for investigators are distributed to the principal
investigator and designated co investigators.

Requests for previous years data are handled as well.

About 1 terabyte of AVIRIS data are distributed each year.

AP0

AVIRIS CONCEPT

Instrument System Requirements
High Precision (SNR)

— Identification of materials based on spectroscopy

Stability (spectral, radiometric, spatial)
- Makes calibration possible

Uniformity (spectral, radiometric, spatial)
— Enables spectroscopy across the image

Calibration (spectral, radiometric, spatial)
- Required for the physics, chemistry, and biology of Spectroscopy
— Allows compensation for the atmosphere
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AVIRIS Instrument

One of four AVIRIS spectrometers

Photons are dispersed into the spectrum and converted to
electrons, amplified, digitized and recorded

AVIRIS Instrument

AVIRIS Technology Status
*Thermal control 1997
*Low Altitude 1998
*INU/GPS 1998
*Geo rectification 1998
*Onboard calibrator 1999
*Detector arrays 2000
*Digital signal chain 2001
*Onboard data storage 2001
*Scanner and fore optics 2002

AVIRIS is designed with 200 um detectors and F/1 optics.
It is hard to imagine larger detectors or faster optics.
The AVIRIS design is in the advanced technology zone of the physics of
spectroscopic measurements

AVIRIS Throughput is the Key

s Instrument optical throughput is a function of
— Integration time
— Spectral channel width
— Detector size (linear dimension squared)
— Focal length over aperture (F/1 is 100 times better than F/10)

s AVIRIS is designed with 200 pm detectors and F/1 optics.
— It is hard to imagine larger detectors or faster optics.

— The AVIRIS design is in the advanced technology zone of the physics
of spectroscopic measurements

16



AVIRIS Characteristics
Imager type Whiskbroom scanner (12 hz)
Dispersion Four grating spectrometers (A,B,C,D)
Detection 224 detectors (32,64,64,64) Si and InSb
Digitization 12 bits
Data rate 20.4 mbits/second

Spectrum rate 7300 spectra/second
Data capacity >35 gigabytes (>10,000 km*2)
Flights >80 per year

ER-2 Platform

AVIRIS: PEARL HARBOR, HAWAII

Spectral
Range 370 to 2500
Sampling 9.8 nm
Accuracy 0.5 nm
Radiometric
Range 0 to Max Lambertian

Sampling 12 bits
Accuracy 96 percent

Spatial (ER-2 / Twin Otter aircraft)
Swath 11/2.2 km
Sampling 20/4m
Accuracy 20/4m

Full INU/GPS geo rectification

AVIRIS Installation Preparations

17



Twin Otter Platform

AVIRIS Installation

Twin Otter In Flight
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AVIRIS Data Example

Raw Data
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AVIRIS Science Data Acquisition

FY98 FY99 FY00 FYO01 FY02
Months of Maintenance 4 5 4 4 5
Months of Science Data 8 7 8 8 7
Flights ER-2/Twin Otter 35/29 45/31 58/30 40/40 40/45

Flight Lines 429 517 589 600 650
Gigabytes 647 840 906 1000 1500
Scenes Acquired** 2757 3579 3860 4260 4686
Scenes Delivered 3249 5206 5734 6000 6500

**Scene: 512 lines by 614 samples
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AVIRIS Task Structure at JPL

¢ The AVIRIS task at JPL has all the following elements

— Task Leadership and Qutreach

— Calibration and Validation Science

— Mission Planning and Experiment Coordination

— Instrument Operations, Calibration, and Maintenance
— Data Quality, Archiving, Calibration, Distribution

* These include all the elements of a satellite remote sensing
instrument.

Instrument System Requirements

High Precision (SNR)
— Identification of materials based on spectroscopy

Stability (spectral, radiometric, spatial)
— Makes calibration possible

Uniformity (spectral, radiometric, spatial)
— Enables spectroscopy across the image

Calibration (spectral, radiometric, spatial)
— Required for the physics, chemistry, and biology of spectroscopy
~ Allows autonomous compensation for the atmosphere

Summary: AVIRIS

o AVIRIS has spectral, radiometric, and spatial properties

 Sensor Priority
— High Precision (SNR)
— Stability (spectral, radiometric, spatial)
- Uniformity (spectral, radiometric, spatial)

s The large detectors and fast optics of AVIRIS give it an edge
in the physics

¢ There must be a total system to acquire and deliver data

CALIBRATION

20



CALIBRATION

¢ Requirement
» Laboratory
* Inflight

e Issues

Calibration and the Signal

Surface Reflectance
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CALIBRATION REQUIREMENT

¢+ Imaging spectroscopy data must be spectrally, radiometrically
and spatially calibrated in order to:

Extract information from measured radiance

Compare information acquired from different regions and different

times

Compare and analyze imaging spectroscopy measurements with

measurements provided by other instruments

Extract information from spectral image measurements using

physically based computer models

Laboratory Calibration

¢ Spectral
* Radiometric

* Spatial

21



. Mercury Vapor Lam
Laboratory Spectral Calibration Ty vap P
Spectral Calibration Standard
* Parameters
5000
— Range 4500 - — Line
- Sampling and uncertainty — Higher Order
— Response Function and Uncertainty 40001
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Laboratory Spectral Calibration Spectral Calibration Apparatus and Result
* Approach
500
— Calibrate scanning monochromator to Hg or Ne spectral lines Foroptice - l_‘jc 400
umpuousiv — "
— Fill the aperture with collimated monochromatic light from the 20
monchromator
Monochromator 100 °©
— Measure each channel response as monochromatic light is scanned Collimator —&= * 680 % 700
through the spectrum cking Serens. T WAVELENGTH [nm)]
- Analyze the measurements to a generate a spectral position and
response function for each channel




Spectral Calibration Parameters

Laboratory Radiometric Calibration

Parameters
~ Radiometric Calibration Range
— Radiometric Calibration Sampling
— Radiometric Calibration Accuracy
— Radiometric Calibration Precision

Standards
— NIST Hrradiance Lamp
— Fixed point blackbody source
~ Quantum efficient detector
— Detector stabilized integrating sphere
— 3000C blackbody source
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Radiometric Calibration Coefficients

AVIRIS Saturation Levels (12 bits)
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Laboratory Spatial Calibration
¢ Parameters

- Cross-track Sampling and uncertainty

— Along-track Sampling and uncertainty

— Cross-track Response and uncertainty

- Along-track Response and uncertainty

¢ Standards

— Known illuminated slit

— Scan a point source in the focal plane of a collimator
« Alternately, use slit source or knife-edge source

Observe the scanned point source with the sensor
* Cross-track
 Along-track

— Measure sensor response

Analyze measurements to determine the spatial calibration parameters
~ Fourier transform of point spread function is MTF

Spatial sampling interval is distance between adjacent PSF
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Slit Response Function Measurement

Normalized Response

Spatial Response Functions
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Laboratory Calibration

s Imaging Spectrometers have spectral, radiometric, and spatial
characteristics

s Each calibration characteristic has response, range and
corresponding uncertainty factors

s With 100s of spectral channels, imaging spectrometer present
special challenges for calibration

Calibration Conundrum

* Three or more months may be spent calibrating a sensor in the
laboratory, and yet the inflight data are NOT calibrated.

* This is largely because the inflight environment is vastly
different than the laboratory environment.

s Calibration in the flight environment is the only

calibration that counts.
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Inflight Calibration Experiment

¢ Objective

— Establish that the imaging spectrometer data are calibrated in the flight
environment

* Approach

- Measure the surface and atmosphere at a homogeneous ground target
and independently predict the upwelling spectral radiance at the time
of imaging spectrometer data acquisition

— Use the predicted upwelling radiance spectrum to validate the spectral
and radiometric calibration of the imaging spectrometer in the flight
environment

Calibration Site
Leoncito, Argentina

AVIRIS Image Calibration Target, Leoncito, Argentina

AVIRIS Signal from Calibration Target
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AVIRIS Calibrated Radiance
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Leoncito, Team Argentina
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Measured Sun Photometer Voltages

Measured Optical Depths
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Predicted Radiance Convolved to AVIRIS

Predicted Compared to Measured
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Spatial Correction with INS/GPS Input

Critical Calibration and Instrument Factors

* Spectral Smile (Frown)
» Keystone

* Radiometric Precision

Smile or Spectral Calibration Variability

¢ Because the upwelling radiance contains fine structure from
solar and atmosphere molecules imaging spectrometers are
very sensitive to accurate spectral calibration

¢ A 10% error in spectral calibration can produce a 15% error in
radiometric calibration
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Spectral Convolution
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Spectral Smile

Lack of spectral calibration knowledge induces large
spectrally pernicious errors

Pushbroom spectrometer can (not always) have large
cross track spectral variation

Imaging spectroscopy requires stable, accurately
known spectral calibration parameters

Keystone

* Keystone is a linked spectral and spatial non-unformity

* Effectively different wavelengths are derived different spatial
areas on the surface

Reflectance

Spectral-Spatial Keystone

0.8
07 1 —— Agriculture
06 L ~— Desert Sage
— 0to 10% keystone
0.5 + -0 to 50 % keystone
04 +
-1 Vo
- p—.
02+ aY \/\,\
TN
01+ A
0 t + + t t t
400 700 1000 1300 1600 1900 2200 2500

Wavelength (nm)

Error in Reflectance (%)

Errors from Kestone

200
150
— 0 to 5% Keystone
— 0 to 10% keystone
100

— 0 to 50 % keystone

-50 t —+ —+ + t
400 700 1000 1300 1600 1900 2200
Wavelength (nm)

2500

32



Radiometric Precision

* Radiometric precision is reported as the signal-to-noise ratio
or noise equivalent delta radiance

* Radiometric precision establishes the random uncertainty at
the single spectrum level

Reflectance

High Precision Spectra
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Modern Spaceborne Imaging Spectrometers
Should Have:

¢ 5% or less Smile
* %S5 of less Keystone
* AVIRIS precision or better

¢ Excellent stability

Appropriate designs and lab demonstrations

now exist to meet these requirements

Key Points: Calibration

¢ Imaging spectrometers have spectral, radiometric, and spatial
domains
~ Sampling, Range, Stability, Uniformity, Accuracy, Precision

¢ Calibration in the laboratory is essential
¢ Calibration in the flight environment is what matters

¢ The quality of the measurement is linked to the design of the
instrument and the quality of the calibration

s Smile and keystone should be avoided and precision embraced

Atmospheric Correction

Atmospheric Correction
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Atmospheric Correction

* Objective
— Compensate for illumination and atmospheric effect to reveal the
surface reflectance

* Approach:
— Calculate, model, and derive illumination and atmospheric factors
— Use these factors in a radiance to reflectance inversion

¢ Factors
— Solar irradiance
— Atmospheric absorption and scattering
~ Illumination, surface, and observation geometry

Percent Difference

Variability in Solar Irradiance Spectra
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Influence of Water Vapor

Estimation of Water Vapor
Continuum Interpolated Band Ratio (CIBR)
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Reflectance

Water Vapor and Vegetation
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Radiative Transfer Atmospheric Correction

+ With imaging spectroscopy, because the full spectrum is
measured, the dominant absorbing constituent of the
atmosphere, water vapor may be derived directly.

¢+ The derived atmospheric composition in conjunction with an
accurate radiative transfer code may be used to invert from
measured radiance to apparent surface reflectance.

+ Radiative transfer atmospheric correction is possible with
imaging spectroscopy data only if the imaging spectrometer
radiance spectra are well calibrated.

Radiance at the Sensor

Simplified equation of the radiance at the sensor
Lt = puFyp,/n + pF Typ T, /m

Lt is the at sensor radiance

p is the cosine of the solar zenith angle

F, is the exo atmospheric irradiance

p, is the upward reflectance of the atmosphere
Ty is the downward transmittance

P is the reflectance of the surface

T, is the upward transmittance of the atmosphere

Reflectance Inversion

+ The surface reflectance is solved on a spectrum by spectrum
basis with atmospheric factors calculated with a radiative
transfer code

Pg = (Lt - pFopy Y uF TyT,
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AVIRIS Image from New York area
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Ground Calibration or Single Spectrum
Enhancement

s Because there are systematic errors in
— Radiative transfer codes
— In the ability to constrain the atmosphere
— And in AVIRIS

+ Reflectance inversion results contain spectral artifacts

¢ These artifacts may be addressed through ground calibration or
single spectrum enhancement where

— A correction ratio if formed between the derived reflectance and the
measured reflectance of a known area in the image

— This spectral ratio is applied to the entire image to suppress the artifacts
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Cirrus Clouds

« Cirrus clouds are common and perhaps second only to water
vapor in there impact on optical remote sensing

* With traditional multispectral remote sensing they are difficult
to detect

* There are strategic wavelengths for cirrus cloud detection

* There are evolving strategies to correct for the effects of cirrus
clouds

Image of the Mojave Desert, CA

Image of the Mojave Desert, CA at 1380 nm

Cirrus Cloud Detection Basis
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Image of the Mojave Desert, CA at 1380 nm

Summary: Atmospheric Correction

s The Atmosphere is present in every measurement (Landsat,
SPOT, AVHRR, your eye)

s Water vapor is largest factor for atmospheric correction

« Other factors:Aerosols, Cirrus Clouds, Well mixed gases,
Ozone

+ With calibrated imaging spectroscopy data, a radiative transfer
based atmospheric correction is achievable

Research and Applications

Research and Applications

Atmosphere: water vapor, clouds properties, aerosols, absorbing gases. ..

Ecology: chlorophyll, leaf water, lignin, cellulose, pigments, structure, nonphotosynthetic
constituents. ..

Geology and soils: mineralogy, soil type...

Coastal and Inland waters: chlorophyll, plankton, dissolved organics, sediments, bottom
composition, bathymetry...

Snow and Ice Hydrology: snow cover fraction, grainsize, impurities, melting...
Biomass Burning: subpixel temperatures and extent, smoke, combustion products. ..
Envirc 1 hazards: cc i directly and indirectly, geological substrate...
Calibration: aircraft and satellite sensors, sensor simulation, standard validation..
Modeling: radiative transfer model validation and constraint...

Commercial: mineral exploration, agriculture and forest status. ..

Algorithms: autonomous atmospheric correction, advance spectra derivation...
Other: human infrastructure...
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AVIRIS Literature

s A citation search for “AVIRIS” in titles and abstract shows
285 refereed journal articles currently published.

* The AVIRIS workshops contain over 500 papers. These
are available on-line at the AVIRIS web site.

* There are many additional AVIRIS papers in SPIE,
IGARSS, ERIM and other conference proceedings

SUMMARY

Imaging Spectroscopy is a new approach to remote sensing
based in the physic, chemistry, and biology of spectroscopy

Imaging Spectroscopy leads to over determined solutions for
the composition of the surface and atmosphere.

Imaging Spectroscopy requires advanced sensor, computer,
and algorithm technology

Imaging Spectroscopy requires an instrument with high SNR,
high stability, high uniformity,

SUMMARY

Imaging Spectroscopy requires an instrument with
- High SNR
- High stability
— High uniformity
- Excellent calibration

With these instrument and corresponding data characteristics
atmospheric correction is possible

With high fidelity imaging spectrometer data, a range of new
research and application become possible...

What Next

It is important for you to contact NASA and let them hear your
perspective on Imaging Spectroscopy

— Flight requests

- Communicate with NASA managers at appropriate venues

Communicate with your colleagues about Imaging
Spectroscopy

— Government, Universities, Industry, etc.

Publish in the journal literature

Make the case for Imaging Spectroscopy and the next step
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What Is Possible

* AVIRIS Class Spaceborne Imaging Spectrometer
— AVIRIS level precision
— <5% smile
— <5% keystone
~ 10 to 30 meter spatial resolution
— 20 to 180 km swath
— Access to any point on the Earth in 3 days

Information

* AVIRIS website: http://aviris.jpl.nasa.gov

* Email: rog@jpl.nasa.gov

AVIRIS Workshop Proceedings: On-line at website

AVIRIS Workshop: March 2004
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