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Abstract 
During the past few years JPL has been actively involved in soft computing 

research encompassing theory, architecture, and electronic hardware applications. 
There are a host of soft computing applications that require orders of magnitude 
enhancement in speed compared to that obtained using simulations on digital 
machines. For on-board computing this is made possible by selecting suitable 
algorithms, designing compatible architectures and implementing them in parallel 
processing hardware. Compact low-power hardware designs include neural network 
multi-chip module performing high-speed object classification and recognition with 
10” multiply-sum operations per second (ops). Additionally, development on 
evolvable hardware implemented on suitable electronic hardware has shown exciting 
high-speed evolution of various digital and analog circuits. We will review our work 
on electronic neural networks and evolvable hardware to bring out speed advantage. 
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1 INTRODUCTION 
The Jet Propulsion Laboratory (JPL) is conducting research in various aspects of 

information processing using soft-computing algorithms and architectures. Our 
research focuses on orders of magnitude speed advantage and potential enabling 
technology promise. During neural networks revival stage in the eighties, a compact 
building block synapse-neuron design with hybrid (digital-analog) architecture was 
evolved and tested [ 11. This design with later improvements became the center-piece 
of a varied electronic circuitry, providing unprecedented data-processing speed 
(250ns) and low power consumption. It provided a power-miser data processing 
circuit, which formed the basis for a multi-layer perceptron (MLP) architecture [2]. A 
more recent highly parallel neural network design was used to stack a multi-chip 
module (MCM) (with 64 ICs) in a 3D configuration (sugar cube size) for high-speed 
(10’’ operations per second, ops) image processing [3]. 

Using these soft-computing paradigms, an architecture was evolved, which was 
very effective in providing a solution for sensor and data fusion in high-speed 
hardware. While these processors can be built in digital or analog hardware, the 
massive amount of interconnection lines of a parallel implementation and the power 
requirements encountered in certain space, military or commercial applications such 
as hand-held devices make the idea of a hybrid, digital-analog ASIC processor 
necessary. An example of such an application requiring low power and fast 
processing of multi-sensor data is that of object discrimination performed onboard a 
fast frame seeker. 

In addition, the present focus for the new research activity is on evolvable 
hardware (EHW). An appreciable amount of theoretical, algorithmic, modeling, and 

1 



analytical work has been done. Further, a series of test chips termed “Field- 
Programmable Transistor Array (FPTA)” have been designed, fabricated, tested, and 
used successfully in various digital and analog circuit-evolution experiments [4]. 
Starting with evolution in simulation, integration has now progressed using FPTAs 
combined with field programmable gate array (FPGA) for its control that provide 
high-speed evolution of circuits with potential on-board fault tolerance and function 
morphing. 

A description of these activities along with the motivation of high speed brought 
on by required applications is described. Selected results of the hardware 
implementation are presented. EHW work is described not only for the speed 
advantage but also its enabling promise for future long-life space missions. 

2 OBJECT CLASSFICATION/ RECOGNITION 
Present deployable object classification, recognition, and tracking applications 

are either bulky, power hungry, or not capable of providing reliable results in real 
time. Parallel computer systems capable of giga-operations/s, with a reasonable 
template size (32x32 or larger) and using <low of power is still beyond today’s 
computer/processor technology. This prevents the realization of a flexible, robust 
processor for such applications. 
2.1 Test-bed 

Our approach, based on 3D packaging of IC chips, is capable of processing large- 
size images (IR, UV, visible) by sequentially inputting consecutive 64x64 pixel 
chunks and performing high speed convolutions with 64 prestored 64x64 image 
templates [ 51. The data processing architecture providing an image processing system 
in a small package performing 10’’ ops of multiply-sum was designed and executed 
as a testbed [6]. It incorporates a frame grabber, a highly parallel 3D data convolver 
engine (performing 64x64 pixel operations with 64x64 templates in <250 ns) (Figure 
1). an artificial neural network, and an output processing protocol. It can be coupled 
to a variety of sensors covering spectral range ultraviolet (W) through infrared (IR). 
2.2 Neural Networks 

The ICs use a synapse design based on Multiplying Digital-to-Analog Converter 
(MDAC) technology using a hybrid approach reported in detail in Refs. [2]. Each 
circuit is digitally programmable, has an %bit resolution digital weight storage, and is 
a compact analog multiplier with a voltage-input and a current-output configuration 
[6]. As an MCM of 64 chips, it performs 64x64 complete inner products, each with a 
4096 (i.e., 64x64) input array and can accomplish this in 250 nanoseconds (Le., -10” 
multiply and add operations in 1 second). 
2.3 Functional Description Of Analog Processing 

The 64 analog voltage inputs first get converted to currents by a set of V-I 
converters at the beginning of each row of the 64 x 64 synaptic array. These signals 
are then current mirrored into all 64 synapses along the row so that all the synapses in 
a given row receive an identical input signal [2]. 

At each synapse, a byte, which controls switches to scale current copies of the 
input, is stored in respective local static memories ( S U M )  constituting as weights. 
By switching in different multiples of the input current and adding them together, the 
input current is effectively multiplied by the digital weight. Synapses on the same 
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column have their outputs, Iout, summed by attaching them all to the same wire. 
These 64 summed signals, one for each column of the array, are then sent directly out 

64 Anhog Outputs Every -250ns 
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Figure 1. The 3D MCM network consists of 64 ICs each with a 64x64 synapse array 
based on 8-bit multiplying digital to analog conversion technology and incorporating 
an image input circuitry to interface with a larger size (e.g. 256x256-pixel) image 
frame. With parallel processing of inner products, its 64 outputs are fed to a neural 
net classifier. It can be realized (in-set) in a 10-gm, 3-cm3 package, with power 
consumption of -5 W. A speed of 10’2multiply-add operationds is obtained. 

every 250 nanoseconds as shown in Figure 1. In the 3D scheme, respective column 
outputs of all the 64 chips are added together through edge-wise metallization, so that 
a 64x64-pixel incoming image multiplies with 64, 64x64 templates on 64 chips to 
provide 64 analog inner-product current outputs. The process is repeated by 
sequentially inputting the adjoining 64x64 image windows, “row-by-row” and 
“column-by-column”. Thus a 256x256-image convolution is completed in about 16 
milliseconds. 
2.4 Digital Weight Programming 

Before the processing can begin, the synapse weights as 64~64templates are 
obtained separately. For this purpose, an approach based on eigenvectors is 
employed. Since each data point (image) is a 4096-element vector, finding a set of 
4096 orthonormal eigenvectors is possible (64 of these can then reside on 3 D A ”  at 
a time). Selecting the most significant 64 eigenvectors constructed from principal 
component analysis of target imagery reduces dimensionality of image sets, without 
losing much of the information relevant for classification. The selected 64 templates 
are loaded single row at a time. The data for a given row is clocked into a 64 long, 8- 



bit wide shift register, one byte at a time. After 64 clock cycles, the data for an entire 
row of synapses is ready to be loaded into the local memory of each MDAC. A 6-bit 
row address is supplied and an active-low load signal is asserted, which dumps the 
data into the synapses on the row specified. The register loads from the bottom up so 
that the first data loaded corresponds to the first row. More details including its 
configuration as a recurrent neural network can be found in the literature [2,3]. 

Incorporating a multi-synapse circuit as an analog multiplier makes the network 
extremely powerful image-processing engine capable of carrying out in parallel 64 
convolutions of the form: 

Ci(X,y) = f(X,y) 0 gi(x,y); i = 1,2, ..., 64; (1) 
where f is the input image, gi is fie ith filter mask, and Ci is the ith output. 

2.5 Processing Results 
To estimate the speed advantage, an image-processing example was used. As a 

comparison, the convolution operations on a 256x256 image would only take 16 
milliseconds using our 3D MCM. However, the same processing would take as much 
as 2.5 hours using SPARC-10, and a few minutes with parallel processor such as 
SHARC. Thus, the hardware provides orders of magnitude speed advantage. 

Information about the object (its class, identity, or pose) is processed in a coarse- 
to-fine manner. For instance, after detecting an object in a frame, a rough estimate of 
image poselscale is made, a result that can then be used to limit the variation that 
needs to be considered during object classification (i.e., plane, helicopter, and 
missile). Results (Figure 2) using the technique described here have achieved nearly 
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Figure 2. High detectiodclassification rates are achieved on selected data sets that 
include all possible orientations and scales of targets. 

97% detection rates, 94% classification rates for determining the angle of the 
principal dimension of an object with respect to the image (*30°), and object 
classification rates approaching 95%. Results on objecthon-object image 

4 



classification rates achieved with a helicopter/missile/plane data set were also very 
encouraging [6].  

3. EVOLVABLE HARDWARE 
An evolvable hardware system consists of two main components: the 

reconfigurable hardware (RH) and the reconfiguration mechanism (RM). In 
previously reported research, the evolutionary processor (EP) that acts as an RM was 
implemented on a variety of platforms including supercomputer, single PC, DSP, 
FPGA, and ASIC. The RH was approached as simulated model of unconstrained 
topology, real FPGA, FPAA model or actual chips, FPTA model or actual chip. For a 
survey on these different applications the reader is referred to [7,8]. 

Most simulation approaches have demonstrated that circuit evolution times can 
vary from a few seconds to hours and days. Therefore, real-world applications will 
require compact, low-power, autonomous, and stand-alone evolvable hardware. An 
effort in transitioning from PC-simulated or PC-controlled evolutions to embedded 
and ultimately to integrated system-on-a-chip evolvable systems is required, because 
in general, a circuit evolution using simulation models such as SPICE take many 
seconds to go through one iteration versus a circuit in hardware that takes only 
fraction of a second. 
3.1 A Stand-Alone Board-Level Evolvable System (SABLES) 

A board-level solution provides autonomous, fast (1,000 circuit evaluations per 
second), on-chip circuit reconfiguration. Its main components are a JPL-designed 
Field Programmable Transistor Array (FPTA) chip as a transistor-level reconfigurable 
hardware, and a Texas Instruments DSP implementing the evolutionary algorithm as 
the controller for reconfiguration. 
An overview of the components of SABLE is provided below, including the FPTA2 
chip and the DSP system. The evolution of a half-wave rectifier circuit is presented to 
illustrate how the system functions. 
3.2 SABLES Components 

As mentioned, SABLES integrates an FPTA and a DSP implementing the 
Evolutionary Platform (EP). The system is stand-alone and is connected to a PC only 
for the purpose of receiving specifications and communicating back the results of 
evolution for analysis. 

The FPTA is an implementation of an evolution-oriented reconfigurable 
architecture (EORA) [71. The lack of evolution-oriented devices, in particular for 
analog, has been an important stumbling block for researchers attempting evolution in 
intrinsic mode (with evaluation directly in hardware). Extrinsic evolution (using 
simulated models) is slow and scales badly when performed accurately e.g. in 
SPICE), and less accurate models may lead to solutions that behave differently in 
hardware than in software simulations. The FPTA has transistor level 
reconfigurability and supports any arrangement of programming bits without danger 
of damage to the chip (as is the case with some commercial devices). 

Three generations of FPTA chips have been built and used in evolutionary 
experiments. The latest chip, FF'TA-2, consists of an 8x8 array of reconfigurable cells. 
Each cell has a transistor array as well as a set of programmable resources, including 
programmable resistors and static capacitors. Figure 3 provides a block diagram of 
the chip architecture on the left and a schematic of the reconfigurable transistor array 



cell on the right. The reconfigurable circuitry consists of 14 transistors connected 
through 44  switches and is able to implement different building blocks for analog 
processing, such as two- and three-stage operational amplifiers, logarithmic photo 
detectors, or Gaussian computational circuits. It includes three capacitors, Cml, Cm2 
and Cc, of lOOfF, lOOfF and 5pF value respectively. 

The evolutionary algorithm was implemented in a DSP that directly controlled 
the FPTA, together forming a board-level evolvable system with fast internal 
communication ensured by a 32-bit bus operating at 7.5MHz. Details of the EP were 
presented in [9]. SABLES fits in a box 20.0x20.0x7.6 cm3. 
3.3 An Evolution on SABLES 

The following experiments illustrate evolutions on SABLES. The objective of the 
first experiment is to synthesize a half-wave rectifier circuit. The testing of candidate 
circuits is made for an excitation input of 2kHz sine wave of amplitude 2V. A 
computed rectified waveform of this signal is considered as the target. The fitness 
function rewards those individuals exhibiting behavior closer to target (using a simple 
sum of differences between the response of a circuit and target) and penalizes those 
farther from it. After evaluation of 100 individuals, they are sorted according to 
fitness and a 9% portion (elite percentage) is set aside, the remaining individuals 
undergoing first crossover (70% rate), either among themselves or with an individual 
from elite, and then mutation (4% rate). In this experiment only two cells of the 
FFTA was allocated. 

In the second experiment, evolution builds a circuit able to extract two sine 
waves (independent source signals) from linear combinations of these sources: the 
evolving circuit is excited with two different linear combinations of the source 
signals, and the two circuit outputs should respectively restore each source signal. In 
this signal separation experiment, the GA parameters were: 70% mutation rate; 20% 
crossover rate; replacement factor of 20%; population of 400; and 100 to 200 
generations. Each execution took about 5 minutes in the SABLES system. More than 
20 different GA executions were performed. The fitness was the sum of the absolute 
difference between the FFT of the output signals and the target values over a 
spectrum between 1kHz and 50kHz. The fitness equation is shown below. 

Figure 4 displays snapshots of evolution in progress in the rectifier experiment, 
illustrating the response of the best individual in the population over a set of 
generations. Figure 4 a) shows the best individual of the initial population, while the 
subsequent ones show the best after 5, 50 and 82 generations. The solution, with a 
fitness value below a minimum for a satisfactory solution is shown on the right. 

In the second experiment, evolution builds a circuit able to extract two sine 
waves (independent source signals) from linear combinations of these sources: the 
evolving circuit is excited with two different linear combinations of the source 
signals, and the two circuit outputs should respectively restore each source signal. 
More than 20 different GA executions were performed. The fitness was the sum of 
the absolute difference between the FFT of the output signals and the target values 
over a spectrum between 1kHz and 50kHz. 

In the signal separation experiment we selected as source signals two sine waves 
of frequencies fi = 1OkHz and ft = 20kHz. The set of experiments was performed 
using 10 cells of the FPTA-2. Figure 5 depicts the inputs and outputs of the best 
circuit achieved in this experiment. For further details the reader can refer to [lo]. 
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Figure 3. FPTA 2 architecture (left) and schematic of cell transistor array (right). The 
cell contains additional capacitors and programmable resistors (not shown). 

Figure 4. Evolution of a halfivave rectifier showing the response of the best individual 
of generation a) 1, b) 5, c) 50 and finally the solution at generation d) .82. The final 
solution is illustrated on the right. 

Figure 5. Result of a signal separation 
experiment. At the top inputs El ,  E2, 
& at the bottom, outputs 01 (lOkHz), 
0 2  (20kHz) are shown. 

3.4 Results 
SABLES achieves about 1-2 

orders of magnitude reduction in 
memory and nearly 4 orders of 
magnitude speed enhancement 
compared to systems evolving in 
simulations, and about 1 order of 
magnitude reduction in volume and 1 
order of magnitude improvement in 
speed ( th rough  improved 
communication) compared to a PC- 
controlled system using the same 
FPTA chip. In the signal separation 
experiment, each trial takes about 5 to 
10 minutes. This means a 1 to 2 orders 
of magnitude speed enhancement 
compared to systems evolving in 
simulations. 
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3.5 Conclusion 
SABLES has shown its performance with an evolution time in seconds for a 

halfwave rectifier circuit. To date, this is the fastest, most flexible, and most compact 
stand-alone evolvable system for both analog and digital circuits. Similarly, a 1 to 2 
orders of magnitude speed advantage was obtained with SABLES for the signal 
separation experiment. 
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