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Abstract

Many organizations look to research to yield new and
improved products and practices. Matching practitioner
needs to research activities is important to guiding
research and utilizing its results.

We present an approach to matching needs
(practitioner requirements) to solutions (research
activities). A taxonomical classification scheme acts as
intermediary between neceds and activities. Expert
practitioners express their needs in terms of this
taxonomy. Researchers express their activities in these
same terms. A decision support tool is used to assist in the
combination and study of their expressions of needs and
activities.

The approach is demonstrated in the area of software
assurance. The ACM Computing Classification System’
(1998) is used as central taxonomy. In an experiment, 9
individuals’ expressions of practitioner needs, and 19
individuals’ expressions of research activities are
combined. The value of utilizing a decision support tool to
gain insight into overlaps (and gaps) within this combined
data is exhibited.
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1. Introduction

Many benefits derive from successful technology
transfer (the flow of ideas from research to widespread
practice) and technology infusion (the adoption and use of
research results by specific organizations). However the
low rate at which these generally occur is of continual
concern. Almost a decade ago, Zelkowitz’s 1996 paper
[Zelkowitz 1996] reported on a study of software
engineering technology infusion within NASA. Many of
his observations and insights remain valid today. He in
turn references work from a decade earlier — Rogers’s
“Diffusion of Innovation” book of 1983 [Rogers, 1983].

These same concerns have recently risen to prominence
within the Requirements Enginecring community —
[Kaindl et al, 2002] “... swmmarises, clarifies and extends
the results of two panel discussions, one at the Twelfth
Conference on  Advanced Information  Systems
Engineering (CaiSE’00) and the other af the Fourth IEEE
Conference on Requirements Engineering (ICRE'00)”. As
observed by Davis and Hickey in their “Viewpoint™ article
[Davis & Hickey, 2002], the subject should be of special
interest to requircments engineering. Not only is the RE
field subject to the same concerns, but also the
understanding of customer needs in order to better target
new products, including research itself, is at the very heart
of what Requirements Engineering is supposed to do.

In this paper our focus is on the matching of customers’
(software engincering practitioners) needs to researchers’
activities. We examine this issue at the broad level of an
entire program of research. We present an approach that
allows scrutiny of an entire resecarch program (multiple
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individual research efforts) and multiple practitioners’
needs. The intent is to yield insights for organizations and
agencies in making their decisions of how to prioritize
areas of research for support. It is also intended to yield
insights for researchers, by revealing relatively unexplored
areas of need.

The paper is structured as follows:

Section 2 considers the challenges of elicitation and
representation of the information (practitioner needs and
researcher activities). It presents the key idea of using a
taxonomical classification scheme as the intermediary
between practitioner needs and research activities. It
introduces our demonstration of this approach in the area
of software assurance.

Section 3 presents the second key step, the use of a
decision support tool with which to explore the non-trivial
amount of information that our demonstration involves.

2. Information elicitation and

representation

Our objective is to be able to compare and reason about
practitioners’ needs for research advances, and
researchers’ activities that are intended to lead to such
advances. This section considers the challenges of:

s information elicitation - how do we ask
practitioners to express their needs, and researchers to
describe their activities?, and

¢ information representation — how do we represent
the answers we gather?

Because our focus is at the level of an entire research
program, we need a vocabulary that is common to both
practitioners and researchers. We also need the ability to
accommodate expressions of multiple needs and activities,
at varying levels of detail and emphasis.

The key to our solution is the use of a taxonomical
classification scheme as intermediary between practitioner
needs and researcher activities. We make several
assumptions about this scheme, namely that it

o already exists,

e is understood by
researchers,

o spans the range of concerns involved, and

e goes down to a sufficient level of detail to
distinguish among different practitioner needs and
different research activities.

We use a real-world experiment for illustration as we
elaborate upon these issues. The subsections that follow
introduce our experiment, and then return to the issues of
elicitation and representation.

both practitioners and

2.1. Experimental area -  software
assurance
We have a special interest in the area of software

assurance, the planned and systematic set of activities that
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ensures that software processes and products conform to
requirements, standards, and procedures. (Note that
activities in this definition refer to practitioner activities,
not research activities.)

Examples of such activities are: code inspections, unit
tests, design reviews, performance analyses, construction
of tracability matrices, etc. Research that may yield
advances of relevance to software assurance include
refined inspection techniques, empirical studies that
indicate the relative costs and benefits of various methods,
advances in analysis techniques such as model checking,
adaptation of methods such as probabilistic risk
assessment to software problems, measurement and
metrics studies, etc. NASA has an ongoing program that
encompasses these kinds of research, reported annually in
the form of the NASA Office of Safety and Mission
Assurance’s Software Assurance Symposium [NASA-
OSMA-SAS 2001] [NASA-OSMA-SAS 2002].

We have conducted a substantial experiment that
investigates matching expressions of software assurance
practitioners’ needs, and software assurance rescarchers’
activities. We elicited expressions of practitioner interest
from 9 individuals, and expressions of research activities
from 19 individuals.

2.2. Taxonomical Classification Scheme

We selected the ACM Computing Classification
System (1998) [ACM 1998] as our taxonomical
classification scheme. This meets our assumptions in that
it already exists and is understandable by both
practitioners and researchers. It is crafted to cover the
whele area of computing literature, so indeed spans the
range of concerns that arise in software assurance. It goes
down to a fairly detailed which we hypothesized would
suffice for our purposes level, ¢.g., one of the leaf nodes is
“Model checking” (within category D24
Software/Program Verification).

2.3. Information elicitation

We planned to ask practitioners to express needs for
advances that would help software assurance in terms of
the ACM taxonomy. Likewise, we planned to ask
researchers to express research activities in terms of this
same taxonomy. However, the taxonomy is quite large —
there are well over 1,000 leaf nodes. If we were to insist
that each expression of interest/activity be stated in terms
of leaf mnodes, this would make broad ranging
needs/activities, which encompass many such leaf nodes,
very cumbersome to express.

Our solution to this dilemma was to ask for expressions
of interest/activity stated in terms of nodes at any level of
choosing — leaf node or not. Thus if a practitioner saw the
need for advances in the level 3 category D.2.8 Metrics,
but did not see the need to distinguish between the
clements in that category (Complexity measures,
Performance measures, Process metrics and Product



metrics), then we would allow that practitioner to express
interest with respect to that non-leaf-node category.
Similarly, if a researcher felt that a research activity
contributed to the whole of the level 2 category D.4
OPERATING SYSTEMS, then this could be expressed
with respect to that node in the taxonomy tree.

We came to realize that an individual might have
interests/activities that relate to several nodes, but not of
equal weight. For example, a practitioner might see the
need for advances to be made in both D.2.8 Metrics, and
D.4 OPERATING SYSTEMS, but put (say) twice as
much weight on the former as the latter. Similarly, a
researcher may estimate that a research activity
contributes to several areas to differing extents, and so
would correspondingly  weight expressions of
contribution.

A typical’ expression is the following:

D.2.1 Requirements/Specifications: Methodologies (2)

D.2.5 Testing and Debugging: Debugging Aids (1)

D.2.5 Testing and Debugging: Monitors (1)

D.2.8 Metrics (3)

Each line references a node somewhere in the ACM
Computing Classification Scheme, and concludes with a
relative weighting in parentheses. Thus twice as much
weight is being given to Methodologies within D.1.2 than
is given to Debugging Aids within D.2.5, or Monitors, also
within D.2.5. Note that D.2.8 Metrics is an entire
category, which has been weighted as triple that of
Debugging Aids and of Monitors.

2.4. Information Representation

The information representation that follows naturally
from our elicitation method is to attach the weighted
expressions of practitioner needs, and of researcher
activities, to nodes within the trec representation of the
ACM Computing Classification System.

Imaging a picture of the entire tree, annotated at
various nodes with these expressions of needs and
activities. It is easy to imagine that there could be
considerable variations among the levels in the tree at
which these various expressions are attached, and indeed
the data we gathered exhibits this diversity.

2.5. Information Combination

Having gathered the information and attached it to the
tree representation of the ACM CCS, the next step is to
decide how to combine the information. The objective is
to gain insight from the combined data into the overall
status of research needs vs. activities.

The clicitation and representation steps result in
information attached at various levels throughout the tree.
For example, suppose a practitioner had indicated interest

% For disclosure reasons, the data reported in this paper
has been deliberately skewed from the actual information
that was gathered.
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Code inspections
and walk-throughs

Debugging aids

Diagnostics

Expression of Expression of
practitioner 3’s resgarcher 7 s
need, weight 60 activity, weight 3

Figure 1 — mismatched levels of expression

in the entire category D.2.5 of Testing and Debugging,
while a researcher had indicated activity in just the one
specific area of Diagnostics within that category (Figure
1). Imtuitively, the researcher activity is making only a
partial contribution towards the practitioner need. This
dispersal of information makes comparisons difficult.

Our solution is to percolate all the weighted
expressions of needs and activities down to the leaf nodes
of the tree. For example, a practitioner’s expression of
need attached to the Testing and Debugging node
percolates down to expressions of need by that same
practitioner for each of the leaf nodes of Code inspections
and walk-throughs, Debugging aids, Diagnostics, etc. In
doing so, at each level an expression’s weight is
subdivided equally among the children of that level. The
net result will be that the resulting expression weights
assigned to the leaf nodes sum to the expression weight
originally assigned to the non-leaf node.

There is a choice of how to subdivide those weights —
an alternative to the above scheme would be to assign an
equal amount could be given to every leaf node. These
lead to different weight assignments to leaf nodes when
more than two levels are involved and the tree is not
perfectly balanced. For example, consider the tree (1 (1.1
(1.1.1, 1.1.2)) 1.2); a weight of 60 on node 1 percolated
using the first scheme would yield

1.1.1’s weight = 15

1.1.2°s weight = 15

1.2’s weight = 30

while the alternative scheme would yield

1.1.1°s weight = 20

1.1.2’s weight = 20

1.2°s weight = 20

Our choice of the recursive subdivide-among-children
scheme is based on the way in which we posed our
question during information elicitation.

The net result of this is a tree whose leaf nodes are



Code inspections

and walk-through - PN3 (6.66)
"""""""" PN8 (12)
Testing and
Debugging Debugging aids
_.< ___________ PN3 (6.66)
_____________ PN3 (6.66)
Diaggostics 3_ ______
~~~~~~~~~~~~ RA7 (3)
\\\\\ RA2 (8)

Figure 2 — Practitioners’ weighted needs and
researchers’ weighted activities attached to leaf nodes

labeled by weighted expressions of needs (derived from
the expressions of practitioners), and activities (derived
from the expressions of researchers). A fragment the
resulting tree for hypothetical data is pictured in Fig. 2.

As suggested in this picture, there can be a mixture of
multiple practitioners’ needs and/or multiple researchers’
activities all at a single node. Furthermore, recall that the
ACM Computing Classification System has well over
1000 nodes. Finally, recall that we have expressions of
need/activities from 9 practitioners and 19 researchers.
The net combination is a large tree, with multiple labels at
many of the leaf nodes. Manual scrutiny of this large tree
is infeasible. Instead, we make use of a decision support
tool to aid us in gaining insights from this combined
information, as discussed in the next section.

3. Use of a Decision Support Tool

This section presents the second key step, the use of a
decision support tool with which to explore the non-trivial
amount of information that our experiment involves. The
tool we use is Defect Detection and Prevention (DDP),
intended for risk-based decision making. DDP’s primary
purpose is to help experts assess the risk status of a
system/subsystem/technology and plan a cost-effective set
of risk mitigations. At first sight its selection for this task
may seem counterinfuitive. There is however an
interesting analogy between DDP’s approach to risk
management and the task at hand. This yields some
suggestions on how to interpret the information we have
gathered, and also makes possible the use of DDP’s
mechanisms for visualization and reasoning over non-
trivial amounts of information. The inspiration for this
analogy came from JPLer David Tralli’s inventive use of
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DDP to assist activity selection across an entire
program of NASA Earth Science Missions [Tralli,
2003].

We first give some background in DDP, and then
introduce the analogy that lets us apply DDP to the
task at hand. The details of this application follow,
considering the way in which the information was
imported into DDP, the DDP-motivated and assisted
interpretation of the practitioners’ “needs” data, and
finally the DDP-motivated and assisted interpretation
of how the researchers’ “activities” data contributes
to meeting those needs.

3.1. Background to the Defect
Detection and Prevention (DDP)
tool

JPL deploys spacecraft in new and challenging
situations, employing new technologies and designs
to better attain mission objectives. Quality assurance
must therefore adapt and extend best practices and
lessons learned from past missions to each new
spacecraft. Dr. Steve Cornford at JPL conceived of a

quantitative model specifically to facilitate this [Cornford
1998]. His model, called “Defect Detection and
Prevention” (DDP), was designed for application eatly in
the lifecycle, when information is sparse, yet the
capability to influence the course of the development to
follow is large. Initial experiments that manually explored
the utility of the DDP process had positive results. These
led to development of custom software [Feather et al,
2000]. Supported by this software, DDP has been applied
to assess the viability of, and planning for, the
development of novel technologies and systems [Cornford
et al, 2001], [Cornford et al, 2002].

The core idea of DDP is to relate three sets of
information: requirements (a.k.a. objectives) — whatever
the system is to achieve, risks (ak.a. failure modes) —
things that might possibly occur that can get in the way of
attaining those requirements, and mitigations — options
available for reducing the likelihood and/or severity of
those risks. DDP uses a quantitative treatment of the
relationships between information (how much a risk,
should it occur, detracts from a requirement’s attainment,
and how much a mitigation, should it be applied, reduces a
risk). Mitigations have costs (schedule, budget and other
resources of concern to spacecraft, e.g, mass, power,
volume). In almost all cases, the sum total cost of
mitigations exceeds the resources available, so one of the
primary purposes of DDP is to help arrive at a cost-
effective selection of mitigations.

3.2. Analogy between risk-centric DDP and
relating  practitioner needs &
researcher activities



Standard DDP applications deal with requirements and
mitigations, using risks as intermediaries. Selection of
mitigations leads to attainment of requircments (by
quelling risks). For our present task of relating
practitioners’ needs and researchers’ activities, there is a
useful analogy in which requirements correspond to
practitioners, mitigations correspond to researchers, and
risks correspond to areas of computer science (see Fig. 3).
More precisely, risks correspond to (lack of) advances in
areas of computer science.

In standard risk-centric DDP, risks serve as a useful
intermediary. A risk may impact multiple requirements to
different extents; a requirement may be impacted by
multiple risks to different extents; a mitigation may reduce
multiple risks to different extents; a risk may be reduced
by multiple mitigations to different extents. The same
holds for practitioners, needs and resecarchers. A
practitioner may have expressed the need for advances in
multiple areas of computer science to different extents;
advances in an area of computer science may have be
needed by multiple practitioners to different extents; a
researcher may have expressed that his/her activity
contributes advances to multiple areas of computer
science to different extents; advances in an area. of

computer science may be provided by multiple
researchers’ activities to different extents.
3.3. Importing the  practitioner &

researcher data into DDP

To import our data into DDP, each Practitioner became
a scparate DDP requirement, each Researcher became a
separate DDP mitigation, and the ACM Computing
Classification System tree became a DDP risk tree (the
DDP tool supports tree-structured data).

Each practitioner’s expression of need was percolated
down to the leaf level, as outlined earlier in section 2.5.
Each of the resulting weighted expressions of need was
used to link the practitioner to the computer science area,
scoring that link with the weight computed in the
percolation process. Similarly, each researcher’s

Risk-centric DDP

expression of activity was percolated down to the leaf
level, as outlined earlier in section 2.5. Each of the
resulting weighted expressions of activity was used to link
the researcher to the computer science area, scoring that
link with the weight computed in the percolation process.

The needs and activities data was available as text files
in a well structured format. It was a simple matter to write
additional DDP code to process these files and create the
appropriate DDP objects and links.

3.4. Interpreting the needs data
The risk analogy also gives a suggestion as to how to
interpret the combined needs and activities data. We begin
by focusing on the needs data.

3.4.1 Calculating the extent of a practitioner’s
needs
In risk-centric DDP applications, the extent to which a
requirement is unmet is determined by the sum of risks
impacting that requirement. By analogy, the extent to
which a practitioner’s needs are unmet is determined by
the sum of the unachieved advances impeding the
computer science area needs of that practitioner.
More premsely, in risk-centric DDP applications:
a requircment may be impacted by risks;
each such impact is scored by the proportion
of the requirement that would be lost if that
risk were to occur. For requirement Q and
risk R we will write this as: Impact(R,Q)

e cach risk’s likelihood of occurrence is
calculated from its a-priori likelihood and the
risk-reducing effects of selected mitigations.
For risk R we will write this as Likelihood(R)

Hence a requirement Q’s “at-risk” measure is

% (R € Risks): Impact(R,Q) * Likelihood(R)

So for our needs-activities task:
s a practitioner may be impeded by need for
progress in computer science areas;
e ecach such impedance is scored by the
proportion of the practitioner’s weights given

Needs/Activities mapping

Requirements <---9  Practitioners

Impact — requirement T
loss if risk occurs

Risks

Effect — risk reduction T
if mitigation applied

<>

T Impediment — unmet practitioner need if
advance not made in computer science area
Computer
Science Areas
Contribution — research activity leads to
advance in computer science area

Mitigations <---%  Researchers

Figure 3 — Analogy between standard risk-centric application of DDP
and mapping practitioners’ needs to researchers’ activities
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to that area. For example, if a practitioner had
identified three areas of need, and weighted
them 15, 15 and 30, then the first and second
of these would each score 0.25 (15/ (15 + 15
+ 30)), and the third would score 0.5 (30 / (15
+ 15 + 30)). For practitioner P and area A we
will write this as: Need(P,A)

e each area has some potential for progress; the
expected contributions of research activities in
that area contribute to such progress. For an
area A we will write this as Progress(A)

Hence a practitioner P’s “unmet-need” measure is

T (A € Areas): Need(P,A) * (1 - Progress(A))

3.4.2 Calculating the extent of an Area’s
needs
As well as calculating the “at-risk” measure for
requirements, risk-centric DDP also calculates the “total
impact” measure for risks. For risk R, the formula is:
T (Q € Requirements) Impact(R,Q) * Likelihood(R)
In practice, some requirements are more important than
others. This is captured by giving each requirement a
“Weight”, reflecting its relative importance. Taking this
into account, the above formula becomes:
2 (Q € Requirements):
Weight(Q) * Impact(R,Q) * Likelihood(R)

Similarly, in our needs-activities world, some
practitioners are more important than others (for example,
they may be responsible for the V&V of a larger program
area). If we use “Weight” to capture relative importance in
the same manner, the “total unmet need” measure for area
Ais:

Z (P e Practitioners):
Weight(P) * Need(P,A) * (1 - Progress(A))

1 om

,0 general; d software
1

[0 genesal; d.1 programming techniques: d software

If there were no research activities taking place, then
Progress(A) would equal zero for each area A, and the
formula would simplify to

T (P e Practitioners): Weight(P) * Need(P,A)

Intuitively, this gives a quantitative measure of the
practitioner need for advances in each of the computer
science areas.

3.4.3 Visualizing the ‘“need”
using DDP

The DDP tool automatically calculates the measures
listed above, and provides scveral graphical means to
visualize the information.

As an illustration, Fig. 4 is a screenshot taken from the
DDP tool showing the leaf nodes in category D of the
ACM Computing Classification System. In this view, the
node names are listed in the same order as they appear as
leaves in the tree. The length of the red bars to the left of
the names indicate extent of practitioner need for
research advances in that named area. (Note: the chart is
generated from our collected data, modified somewhat to
preserve confidentiality, but still indicative of the
magnitude and complexity of the real data). The small-
scale red lines to the right hand side of the image are a
complete thumb-nail view of the entire D category, with a
rectangle drawn around the small portion towards the top
corresponding to the portion whose names are in view.

One of the useful DDP options is to sort these into
descending order, from which we can see the areas most
needing research advances. Figure 5 shows such a view,
where the thumbnail shows that we have scrolled to
partway down the sorted list.

3.5. Interpreting the activities data
We now consider how to interpret the researchers’
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activities data.
3.5.1 Calculating the contribution of a
researcher’s activities

In risk-centric DDP applications, mitigations reduce
risks, and so lead to greater aftainment of requirements.
By analogy, researchers’ activities contribute advances to
areas of computer science, and so lead to meeting more of
the needs of practitioners.

More precisely, in risk-centric DDP applications:

e a risk may be effected by mitigations.
(Usually the effect is a reduction of either the
risk likelihood or the risk severity; DDP also
allows for the case that a mitigation makes
certain risks worse. For the analogy used here,
only risk reduction is relevant);

o each such effect is scored by the proportion by
which the risk would be reduced if that
mitigation were applied. For mitigation M and
risk R we will write this as: Effect(M,R)

e each risk’s likelihood of occurrence,
Likelihood(R), is calculated from its a-priori
likelihood and the effects of applied
mitigations, thus:

A-Priori(R) * I1 (M e Mitigations): (1 — Effect(M,R))
Intuitively, mitigations act like “filters”, each filtering out
some proportion of the incoming risks, with multiple
filters arranged in series. For example, if one mitigation’s
effect is 0.9, it filters out 90% of the incoming risks,
leaving 10% remaining. A second filter whose effect is 0.5
would filter out 50% of the risks that got through the first
filter, leaving just 5% of the original risks remaining.

So for our needs-activitics task:

e a researcher’s activities may contribute
research advances to areas of computer
science;
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e each such contribution is scored by the
magnitude of the advances in that area. For
rescarcher R and area A, write this as
Contribution(R,A)

e in an area A the combination of multiple
researchers’ contributions within that area
leads to a measure of Progress(A) =

1 - ( [T (R € Researchers): (1 — Contribution(R,A)) )

For example, if there were no researchers active in a
given area, its Progress measure would be 0; if there was
just one researcher active with Contribution=0.8, then its
Progress measure would be (1 — (1-0.8)) = 0.8; if there
were two researchers with Contributions 0.8 and 0.5, then
its Progress measure would be (1 — (1-0.8)*(1-0.5)) = 0.9

This formula captures the intuitive notion of some
overlap among the researchers activities within a given
area. We discuss its validity in section 4.

3.5.2 Visualizing the “contribution”
information using DDP

As was the case for the “needs” data, the DDP tool
automatically calculates the measures listed above, and
provides several graphical means to visualize the
information.

As an illustration, Fig. 6 is a screenshot taken from the
DDP tool showing the same leaf nodes of category D as
appeared in Fig. 4, but now taking into account the
contributions expected of the researchers’ activities at
mecting practitioners’ needs. The green portions of the
bars in this figure show need that is expected to be met
by the researchers’ actitivies. The length of the red bars
in this figure indicate the extent of the remaining unmet
need for advances in each area. Again, the thumbnail on
the right side gives an overview of the entire D category.

From this kind of visualization it is possible to draw
several kinds of insights at a glance, for example:

e pure red bars - the lack of any research activity
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Figure 6 — DDP visualization of practitioner needs, and researcher activities contributing to meeting them

whatsoever in arca d,1,3,1 (second from the top in
the figure)

e small to modest green bars - small to moderate
amounts of research activity in many of the
visible areas

e large green bars - a relatively large amount of
research activity contributing to the needs in area
d2.1.4

e red and green regions in thumbnail — overall, there
is a good deal of unevenness in fulfilling needs
extent to which areas of need are being met by
e.g., there some areas of even greater unfulfilled
need scrolied off the top, while there are some
areas of relatively small need to which research is
contributing significantly scrolled off the bottom.

It is of course possible to re-sort thesc based on

residual need (length of the red bars) and so readily
identify those areas of maximum unfulfilled need. This
would be a useful indication of areas worthy of increased
research.

3.5.3 Gaining insights from other DDP
supported visualizations

Further insights can be gained from using DDP’s other
capabilities to summarize and visualize information. We
give two examples.

Figure 7 shows a fragment of the screen showing a
concise view of researcher activities. Each wide rectangle
in the left column corresponds to an individual researcher.
To the right are numerous smaller white rectangles labeled

-~ - T G- M-
I -+ - B s« B - s
.10

1.4 4.4
3

41
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Figure 7 — A concise view of researcher activities
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by nodes of the research area taxonomy. These indicate
the areas in which that researcher’s activities are expected
to contribute. Turquoise smaller rectangles overlay those
white rectangles, indicating the magnitude of the
researcher’s expected contribution to that area — the wider
the turquoise rectangle, the greater the contribution.
Finally, red borders highlight all the instances of the same
area (the one over which the cursor — not visible — was
positioned). Once the format of this display is understood,
it is easy to gain insights at a glance. For example, the
activities of rescarcher RS are clearly concentrated in a
small number of areas, while the activities of researcher
number R6 are much more widely dispersed. For the area
highlighted in red, we can sec that all three of the
researchers in the visible fragment are contributing to that
area. This concise view is capable of showing all the
researcher activities information on a single screen —
hundreds of items in all. Analogous views exists in which:

e taxonomy areas are listed down the left, and
researchers contributing to those areas are
listed alongside,

s taxonomy areas are listed down the left and
practitioners needing advances in those areas
are listed alongside, and

e practitioners are listed down the left and
taxonomy areas in which they have needs for
advances are listed alongside.

DDP also provides the ability to study the tree
information when the tree is only partially expanded (i.c.,
not necessarily all the way down to the leaf level). Fig. 8
shows such a view, where the D category has been
expanded down to the first level for its sublevels 1,3,4 and
m, and down to the second level for its sublevel 2 (d,2,0 ...
d,2,m). The lengths of the bars are computed
automatically by aggregating the information from the
lower levels. This kind of view is well suited to secing the
“big picture”, and allows the user to drill down into detail
in the areas of the user’s choosing.
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4, Discussion

4.1. Related Work

Our objective of matching practitioners’ needs to
researchers’ activities is closely related to the classic
requirements analysis problem of matching features of a
to-be-developed product to  customer  needs.
Representative work in this area includes:

Karlsson & Ryan’s study of selection of requirements
for software system developments [Karlsson & Ryan,
1997]. Their approach yields a 2-dimensional “cost-value
diagram in which each requirement is plotted as a point
located according to its customer value in one dimension,
and cost of implementation in the other dimension.

Kulik & Macdonald’s approach to classifying project
requirements into the major categories of “Add Value”,
“Must Do”, “Nice to Have” and “Defer” [Kulik &
Macdonald, 2002]. Their method combines results of
Quality Function Deployment and Kano Analysis into a 2-
dimensional “needs-opportunity” diagram in which each
requirement is plotted as a circle centered at the point
located according to that requirement’s degree of
customer need in one dimension, and proportion of
customers who have that need in the other dimension;
radius of the circle indicates a measure of the Return On
Investment that requirement represents.

We might attempt these approaches in our problem
area by plotting computer science areas as requirements
(valued in terms of practitioners’ needs, and costed in
terms of researchers’ activities). However, we deal with a
much larger number of items (over two hundred leaf
nodes in just the D category of the ACM Computing
Classification System) compared to the 20 or so
requirements on which these authors illustrate their work.
We also seem faced with a more open-ended decision
space than the equivalent of secking the optimum set of
requirements for a given cost level. For example, we wish
to use the information we have gathered to give insights
into future areas where research would be beneficial, as

Feather, Menzies & Connelly

well as understand how the identified sct of activities
meets practitioners’ needs.

Note that asking a practitioner to rank the relevance of
each researcher’s set of activities is not a viable
alternative. It assumes overly much knowledge by the
practitioner of the research activities, and requires
continued update by the practitioner as more researchers
are added. It also precludes recognition of the sitnation
that the union of several researchers’ activities together
meets the practitioner’s needs. By a similar argument,
rescarchers cannot rank their relevance to each
practitioner’s problem. The use of the intermediary
taxonomy, familiar to both sides, is key. As mentioned
before, we got inspiration for this from JPLer David
Tralli’s use of DDP to assist activity selection across an
entire program of NASA Earth Science Missions [Tralli,
2003].

4.2. Conclusions
The overall aim of this work is to match practitioners’
needs to researchers’ activities so as to gain insights into
the status of entire research programs. These insights
should benefit organizations that fund, direct and/or utilize
research, researchers who wish to know areas are in need
of research and by whom, and practitioners who wish to
know what research activities are taking place and who is
performing them.
The two key steps of our approach are:
1. Employing a taxonomical classification scheme as
intermediary between expressions of need and
expressions of activity. This was key to
successfully  eliciting from  practitioners
expressions of needs, and from researchers
expressions of activities, and thereafter combining
them.
2. Inventive use of a risk-centric decision-support
tool, which both
a. suggests a useful amalogy in which lack of
progress in a given area is a “risk” that
adversely impacts attaining practitioners’
needs, and which can be mitigated through the
contributions of researchers’ activities, and

b. provides the mechanical support needed to
handle the volume of information. DDP’s
mechanisms for information visualization have
proven useful for presenting the information in
such a way that insights can be made despite
the volume of information.

We were able to use the DDP tool’s capabilities for

calculation and visualization as is, with the only

additional work needed being a small amount of

programming to import the data.

One of the assumptions buried within our approach is

the definition of how to calculate the contribution of a set
of research activities towards meeting a need for advances
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within a given area. The formula we presented in section
3.5.1 was motivated by the risk analogy, but is not the
only possible way of approaching this calculation. Our
feeling is that this problem falls into the category that
Ritell termed “wicked problems” [Rittel 1972]. Wicked
problems have many features, the most important being
that no objective measure of success exists. Designing
solutions for wicked problems cannot aim to produce
some perfectly correct answer since no such definition of
correct exists. Our approach will be to experiment with
several variations of data combination, and find which of
the conclusions we extract from the resulting data remain
stable across many/all of those variations.

The status of our work is that the preliminary data
gathered from 9 researchers and 19 practitioners has been
successfully imported into DDP in the manner described
and illustrated (albeit with deliberate skewing to avoid
disclosure of sensitive information) herein. A second
round of data gathering is underway, and DDP is to be
used to help gain insight into the aggregate of that data.

Future work will be to inject this capability into the
research planning and management processes. The hope is
that armed with the kind of information that this approach
reveals, research program managers will be better able to
match their programs to the emerging needs of long-lived
projects. The extension of this approach to study frends of
research and application is also an area of interest.
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