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Abstract 

There is wide agreement that architecture plays a 
prominent role in large, complex software systems. 
Selection of an appropriate architecture - one that 
matches the system requirements and implementation 
resources - is a critically important development step. 

We advocate the use of risk-based reasoning to help 
make good architectural decisions. We explore the 
adaptation of a risk management process and tool to this 
purpose. 

1. Introduction 
Software design for complex software systems is 

difficult. The past decade has seen a convergence of 
opinion about the importance of using established 
architectures and design patterns. At the system level, 
styles of software architecture [ 1, 1 I]  like pipes-and-filters 
or event-driven provide a starting point for design of 
complex software systems. At the more detailed level, 
architectural treatments capture well-reasoned decisions 
whose strengths and weakness are understood, e.g., 
software design pattems like wrapper or builder.[7] This 
paper will focus on the system level use of architecture, 
although the approach should also be applicable to the 
finer grained use of design pattems. 

Choosing a good architecture is a critically important 
step in the design of a system. A poor choice at tlus level 
is difficult to repair at more detailed design level. We 
define the adjective good with respect to architecture to 
mean an architecture that matches system requirements 
and can be implemented within the resources allocated to 
it. The implantation itself is a non-trivial task, and induces 
a further set of critical decisions. 

The primary thesis of this paper is that risk can be used 
to guide these decisions. Use of risk-based reasoning 
enables software engineers and managers to make choices 
of software architecture and architecture implementation 
that satisfy both criteria - meeting system requirements 
and adhering to resource limitations. 

Martin S. Feather 
Jet Propulsion Laboratory 

California Institute of Technology 
4800 Oak Grove Dr 

Pasadena CA 91 109-8099 
Martins. Featherwpl. Nasa. Gov 

This paper is organized as follows: section 2 describes 
the current risk-based design process and the tool that has 
been developed to support this process; section 3 
discusses some shortcomings in t h s  process that are 
caused by the failure to capture of explicit design and, in 
particular, architectural aspects; section 4 describes ways 
in which we are incorporating software architectural 
decisions into this process and tool. 

2. Basis for the approach - risk-based design 
The approach advocated herein begins from an existing 

risk-based design process and its accompanying tool 
support. This is the “Defect Detection and Prevention 
(DDP)” process [4], developed and used at JPL to help 
engineers manage the trade space of choices in designing 
spacecraft and associated technology. 

DDP has three primary sets of issues that it captures 
and tracks: requirements, risks, and mitigations. The DDP 
tool is typically used to collect and maintain decisions and 
information discussed in several meetings with a group of 
experienced engineers and domain experts. The process 
used in these DDP sessions is diagrammatically explained 
in figure 1. The first step is the collection and weighting 
of requirements. Given the requirements, the domain 
experts determine the risks that these system requirements 
entail. Each of these risks is then scored as to its impact 
on each of the requirements. After risks are determined in 
step 2, the activities that can mitigate these risks are then 
listed. Each of these mitigations is scored as to its 
effectiveness at reducing each risk. 

DDP is unique in bringing a quantitative risk-based 
approach to bear at early stages of decision-making. The 
scoring of the links between risks and requirements, and 
between mitigations and risks, are given a quantitative, 
probabilistic interpretation. This allows DDP to add up 
the cumulative impact of all risks, compare an individual 
risk’s cumulative impact, compute how much of 
requirements are being attained, compute how much net 
benefit the use of a mitigation conveys, etc. [5] 



This information is used together with budget 
information on the cost of mitigations to make choices 
about which mitigations to select. The goal is to reduce 
the risks to sufficient levels (and so adequately attain 
requirements) while remaining within resource limitations. 

against Mitigations 
Requirements against Risks 

Determine 
Resources 

Requirements (Budget, etc) 

List & Cost 

Risks Mitigations 
List Potential Relevant 

I Select H- 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

Figure 1: Standard DDP Process 

this process, risk is used as the intermediary through 
which to indirectly link requirements to mitigations. Our 
experience is that this indirection is particularly useful. 
For example, the phenomenon of “diminishing returns” as 
more and more mitigations are applied to the same risks 
falls out naturally from this approach. In contrast, attempts 
to link requirements directly to solutions (development 
plans) often fail to capture the multiplicity of problems 
and solutions. 

3. Shortcomings in the current process 
The standard DDP process depicted in figure 1 

involves the gathering and linking of three major 
concepts: system requirements (weighted to reflect their 
relative importance), risks that threaten to detract from 
attainment of those requirements, and mitigations to help 
quell those risks (and so lead to improved attainment of 
requirements). We have found this risk-centric approach 
to be quite effective in guiding experts to make their 
choices of mitigations. (The reader may wonder why 
choices have to be made among mitigations. The answer 
is one of resource limitation. Choosing to do all 

mitigations is typically not possible from a budget and 
time perspective.) 

We have observed that in use of the DDP tool and 
process on JPL applications, there is some additional 
structure to the concepts involved that the current process 
is not adequately capturing. We describe how these 
observations lead us to now propose to include 
architecture as a first-class concept within the DDP 
process. 

Our first step in this direction stemmed from the 
observation that some mitigations induce andor 
exacerbate risks. For example, a vibration test may be 
used to check that a piece of hardware will operate 
correctly when subject to vibration, thus decreasing the 
risk of launching a spacecraft unable to operate under 
mission conditions. However, there is some risk that the 
test itself will cause problems (e.g., break something). The 
risk of those problems we term induced risk. Another 
example is of a protective coating applied to a piece of 
circuitry, say. Its purpose is to protect the circuitry from 
future damage, i.e., decrease those kinds of risks. 
However, should there be need to modify the circuit, that 
protective coating will make it harder, perhaps even 
impossible, to effect the modification. We describe the 
risks that would lead to the need to modification as 
exacerbated by the protective coating (i.e., while their 
likelihoods remain the same, their impact, should they 
occur, is increased). Software analogies of these 
phenomena are well known - fixing one bug may 
introduce new ones; introducing monitoring code may aid 
testing, but decrease performance (or lead to changed 
timing behavior when that test-time code is dropped from 
the final delivered code). 

The standard DDP process (and its tool support) was 
evolved to accommodate these phenomena by extending 
the allowable range of the values attached to the links 
between mitigations and risks. Initially all such values 
were restricted to being positive proportions (i.e., in the 
range (0, I]), indicating the proportion by which 
application of the mitigation would eliminate risk. Lack of 
a link between a risk and a mitigation indicated that the 
mitigation would have no effect whatsoever on that risk. 
The extension was to allow the expression of negative 
values as measures of effectiveness, where a negative 
value in the range [-1, 0) indicated induced risk (the more 
negative, the more the likelihood of the risk being 
induced), and a negative value in the range [-1000000, -1) 
indicated exacerbated risk (any existing risks’ impacts 
would be multiplied by the abs(va1ue)). For example, a 
value of -3 means triple the impact of risks. 

These extensions served their intended purpose to 
allow DDP studies to take into account mitigation 
inducedexacerbated risks. However, they opened the door 
to (mis?)use as a way to represent design alternatives. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 

I 

I ScoreRisks 
I against 

Determine and Determine 
Resources 

Requirements (Budget, etc) r -  

Score 
Mitigations 

-- '. 
List Potential List Relevant 

Risks Architectures 

Score Risks 
against 

Requirements 

Score 
Architectures 
against Risks 

Select 
Software 

Architecture 
I selection of 
j architecture 

I Revise 
r-------- 

List & Cost 
Relevant 

Risks Mitigations 
List Potential 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 

Revise 
Budget, etc. 

Requirements 

I - - - - - - - - - - - -  

Risk Mitigation Plan 

Figure 2: Revised DDP Process 

To illustrate this we will first give a hypothetical and 
simplistic system design example. Suppose that one of the 
requirements for a planetary rover is to gather science data 
on planetary formation, using a drill to extract a core 
sample from rocks. Use of the drill demands a large 
amount of power, so lack of available power is a 
particularly serious risk against that science requirement. 

One possible mitigation to that risk is to deploy large solar 
panels, capable of generating sufficient power. (An 
alternative could be to drill more slowly but for a longer 
duration). The large-solar-panel mitigation has its own 
risks (rover is now prone to tipping; higher overall power 
levels lead to the risk of electrical shorts; etc.). 

A comparable software-domain example is the design 
of a software subsystem with the requirement that the 
software be able to respond to the position of the cursor 
by displaying context-sensitive information that the user 
needs. One risk to this requirement is that this 
information will be displayed after an unreasonably long 
delay. One possible mitigation is to design this system as 
an event-driven system with an event loop that is designed 
to catch and respond to mouse movements that affect 
cursor position. 
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Figure 3: Shared data architecture 

Our first inclination was to use the mitigation-induced 
risk as the means to represent these design options. For 
example, the large solar panels mitigation for the risk of 
lack of power we encoded as a DDP mitigation that 
induces the rover tipping risk, the electrical shorts risk, 
etc. Each of these induced risks were added into the same 
list of potential risks, but with the unusual characteristic 
that their a-priori likelihoods were set at zero (Le., the 
only way those risks could occur is through being induced 



when the solar panel mitigation is selected). This enabled 
us to avoid the need for further extension to the DDP tool. 

With this observation, we propose the capture of 
architecture decisions explicitly in the DDP tool. 
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From these latter examples, it is clear that the activities 
that we have encoded as mitigations are, in fact, design 
choices. In the software arena, these choices are software 
architectural decisions. We are dissatisfied with 
encoding of these as just more “mitigation” choices, albeit 
with some unusual characteristics. At the very least, we 
should call these out as architectural decisions, and so be 
poised to take advantage of detailed methods for 
architectural evaluation. We would also like to avoid the 
need to start DDP from a “blank slate”, where all the 
information must be supplied anew. Clearly, the body of 
knowledge that pertains to architectures should be used to 
pre-populate DDP. Finally, and most importantly, we 
observe many of the risks and mitigations that derive from 
an architectural choice effect how well that architecture 
mitigates the original risks it was selected to address. For 
example, suppose a pipes-and-filters architecture was 
selected to mitigate the risk of system ossification 
(inability to easily make system modifications). The more 
the development of the system strays from strict adherence 
to that architecture, the more it diminishes the 
effectiveness of that architecture at mitigating the 
ossification risk. In DDP-speak, the architecture itself can 
be attained in whole or only in part (the latter due to the 
cumulative impact of risks on the realization of that 
architecture). Its effectiveness at mitigating risks is 
determined by how successfully its own risks are 
mitigated. We will see hrther examples of this in the next 
section. 

Before explaining 
this idea further, it is 
important to remind 
the reader that not all 
mitigations are 
design decisions. 
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risk that may pertain 
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mitigations fall into this testing/analysis category. 

4. Incorporating software architectures 
To incorporate software architectures into the DDP 

tool without radically changing the tool, we have 
proposed a two-phase process as depicted in figure 2. 

First we go through the original DDP process with 
requirements-risks-architecture rather than requirements- 
risks-mitigations. Thus, we are explicitly capturing 
alternative design architectures that will reduce or 
eliminate certain risks. Note that there may be a choice 
among several architectures that reduce a particular risk to 
acceptable levels. 



To make this step easier, we have seeded the DDP tool 
with possible classic software archtectures. [ 1, 111 These 
architecture styles, e.g. pipes-and-filters, repository, 
object-oriented, serve as a starting point for the 
architecture-selection process. Designers may, of course, 
add their own hybrid designs. 

The architectures that result from this first step become 
the starting point for another iteration of the original 
process, one that deals with architectures-risks- 
mitigations. Thus, the architecture serves both as a 
mitigation of risks in the first phase, and as an induced 
requirement in the second phase. Note that the selection 
of architecture is an important outcome of the DDP 
process. Although we argued that risks themselves are 
merely intermediaries, we do not make the argument that 
architectures have a similarly nebulous status. 
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4.1 Examples 
As a small but illustrative example, consider the classic 

key word in context problem [lo] proposed by Parnas in 
1972 (and discussed by many other researchers since. 

The KWIC [Key Word in Context] index 
system accepts an ordered set of lines; each 
line is an ordered set of words, and each word 
is an ordered set of characters. Any line may 
be “circularly shifted” by repeatedly removing 
the first word and appending it at the end of 
the line. The KWIC index system outputs a 
listing of all circular shifts of all lines in 
alphabetical order. 

We will treat this paragraph as a first-order 
approximation to a set of requirements. In the DDP 
process and tool, this set is represented in a structured 
form, and the importance of each is evaluated and scored. 
For example, we might prioritize the generation of the list 
of all circular shifts as the most important, with the 
alphabetizing of this list as being important, but having a 
lower priority. 

Now, let us consider some of the risks that might be 
associated with these requirements. Parnas suggests two 
potential risks (although he labels these as potential design 
changes rather than risks.) 

1 .Changes to the processing algorithm 
2.Changes in data representation 

Garlan, et a1 [8] add three other risks to those of 
Parnas. 

1. Enhancement to system fimction 
2. Performance 
3. Reuse 

(A nice discussion of this example and possible 

These risks are scored against requirements to see, if 
architectures is provided by Shaw and Garlan. [ 1 11) 

they occur, how they would affect each requirement. 

Pipes and 
filters 

0.1 

Now, we consider possible architectures for a 
solution to this problem. First, consider two architectures 
suggested by Parnas. [lo] Figure 3 illustrates shared 
memory architecture. Figure 4 gives an abstract data type 
solution. Another possible architecture is the pipes-and- 
filters style as inspired by the Unix index utility and 
described by Shaw and Garlan. [ 111 This is depicted in 
figure 5 .  

The mechanism that we use to evaluate the strengths 
and weaknesses of each potential architecture is to score 
each architecture against risks that we have identified. 
For example, we may determine that a pipes-and-filters 
archtecture may have performance (i.e. speed) issues 
although the other two possibilities are likely to perform 
more adequately. Conversely, the shared data and the 
abstract data type architectures are likely to have trouble if 
the algorithm for generating the index is changed. The 
pipes-and-filters can more easily adapt its algorithm (by 
merely changing or adding a filter:) However, the abstract 
data type obviously can change its data representation 
more easily; the other two would find this type of change 
much more difficult. (This analysis is that of Shaw and 
Garlan. [ 1 11) 

In the DDP process we would push the software 
engineers to quantitativeZy value these linkages between 
risks and architectures. For example, suppose that the 
engineers estimate the abstract data type design has a very 
small likelihood of being impacted by the risk of a change 
in data representation, while they estimate that 
performance risk of a pipes-and-filters architecture is 
relatively problematic. Table 1 illustrates the linkage data 
that engineers might produce in analyzing these 
archtectures in light of particular risks. The numeric 
entries are in the range 0 to 1, where 0 means no effect, 
and 1 means that the architecture choice in that column 
completely eliminates the risk in that row. The DDP tool 
provides support for much larger matrices, and provides 
other views of t h s  lmkage data in addition to the tabular 
format. 

Table 1 : Risk - Architecture matrix 

Data I 0.7 I 0.1 0.9 

Performance I 0.1 I 0.1 

representation I I I 
0.7 

issues 



In a realistic design, the number of requirements and 
potential risks can be large. In DDP applications at the 
component level (e.g., a memory device), it is typical to 
deal with 50 - 100 each of requirements, risks and 
mitigations, with hundreds of links between them. Even if 
the number of viable architecture choices is relatively 
small, the relationships between architecture and risks, 
and risk and requirements can make the choice of the 
preferred architecture quite complex. Addressing this 
complexity is a strength of DDP. 

With the assistance of DDP, the design team can now 
select a tentative architecture. (This is a tentative 
architecture because the entire process is iterative. For 
example, the phenomena of requirements volatility and 
requirement creep are well known.) Ths begins the 
second phase of the DDP process. The starting point for 
this phase is this tentative architecture. We list potential 
risks inherent in this architecture. The risks enumerated in 
the previous phase were those associated with 
requirements regardless of architecture choice. Here we 
are looking for design and implementation risks. What 
things stand in the way of successfully implementing this 
system with this architecture? If the system is highly 
interactive, a pipes-and-filters architecture style is quite 
risky. However, an event-driven style would have much 
lower risks in this area. Because of the paradigm shift 
needed in object-oriented design (OOD) from traditional 
procedural design, OOD may have a high dependency on 
having a trained staff. 

The process of listing risks and evaluating the impact 
of each against the tentative architecture can be a tedious 
one. It is clear that many software risks are common 
across projects. We have preloaded DDP with a set of 
common software risks. (We have used the risk taxonomy 
identified by researchers at the Software Engineering 
Institute. [ 2 ] )  Furthermore, we have entered linkages 
between these risks and a set of common architecture 
styles. [ l l ]  Thus, a choice of architecture obtains an 
associated set of risks and impacts. The design team can 
use this as a starting point, adding additional or more 
specific risks, and modifying or adding linkages. 

Having identified software risks associated with this 
architecture, we now identify those activities, i.e. 
mitigations, that we can perform to eliminate, avoid, or 
reduce the impact of risks. For example, if there is the 
risk that our staff is not experienced in OOD, we could 
give them additional training or hire some experienced 
00 designers. Each such mitigation has a cost - the cost 
of training materials and time, or salaries and benefits for 
experienced designers. 

We evaluate each mitigation against each risk to 
score its effect at reducing that risk. The effect of 
experience designers is likely to be greater against the risk 
of inexperienced staff than is training. (A new design 
method is often not fully understood until a certain level 

Provide 
OOD 

of experience is reached that cannot be provided by even 
the best training.) 

Table 2 illustrates this matrix. Again, the numeric 
entries are in the range 0 to 1, where 0 means no effect 
and 1 means that the mitigation in that column completely 
eliminates the risk in that row. 

Table 2: Risk - Mitigation matrix 

Hire Perform 
experienced formal 

9 
.Y ' 

training OOD staff inspections 
0.9 0.0 Inexperienced 0.7 

staff 
Inconsistent 0.0 0.1 0.9 
requirements I 

I I I I I 

Finally, this collection of information (risks x 
architecture, risks x mitigations) is combined with 
budgeting information to make decisions about which set 
of mitigations will acheve the system requirements using 
the tentative architecture and within budget and resource 
constraints. This is typically a complex decision given the 
enormous number of interactions among requirements 
(with their relative weights), risks (with their likelihoods), 
the tentative architecture, mitigations (with their costs), 
and linkages among these. DDP provides graphical 
displays of thls information that helps the design team 
explore this complex trade space. An optimizer is 
available that uses simulated annealing to find near 
optimal choices of mitigations within a specified cost 
bound. 

As mentioned previously, this is an iterative process. 
In these activities, it is common for the design team to 
discover additional requirements or learn of the 
infeasibility of certain requirements (resulting in the need 
for descoping [6 ] ) .  Additional risks of a particular 
architecture choice may not be apparent until very late in 
the process. Thus, the entire DDP process may be iterated 
to capture these changes. However, note that subsequent 
iterations are llkely to be more efficient because of the 
leverage of information derived during previous iterations. 

The reader may be struck by the length and 
complexity of this process. We assert that this is the 
nature of the task, not a side effect of our process. Design 
a complex software system is difficult. 

5. Conclusions, Status, and Related Work 
The argument set forth in this paper is that risk can 

and should be used to guide architectural decisions. These 
include both the choice of architecture itself, and the 
decisions that flow from that choice. We have shown how 
we arrived at thls position through our observations of a 
risk-based decision process in use in real-world design 



activities. The gradual evolution of that process has led to 
the point where we believe that architecture deserves a 
place as a first-class object within the process itself. These 
points have been illustrated using a small but familiar 
example, the key word in context problem introduced by 
Parnas. 

The status of t h s  work is that all the aspects of DDP 
described in section 3 exist and have seen use in actual 
spacecraft technology risk studies. Instances of the 
phenomena we described in that section, of mitigation 
induced or exacerbated risks, and of design decisions 
encoded via this mechanism, have arisen in these same 
actual studies. The extensions needed of the DDP tool to 
support the two-phase approach, with mitigations leading 
to derived requirements, have been incorporated in an, as 
yet, unreleased version. We have used this within our own 
experimentation, but it has not yet seen field use in real 
project applications. Likewise, our encoding of 
architectural considerations is also at the stage of internal 
experiments that have yet to see actual customer 
application. Additional information DDP can be found at 
the Defect Detection and Prevention website, 
http://ddptool.jpl.nasa.gov 

A full comparison with related work is beyond the 
scope of this workshop paper. We do draw attention to a 
distinguishing characteristic of DDP, namely that it is able 
to accommodate both architectural design decision 
concerns, and other elements of project planning 
(analysis, testing and process, represented as mitigations 
in the DDP framework). Furthermore, DDP does so in a 
quantitative manner. The combination of these aspects 
sets DDP apart from many of the other approaches to 
architectural decision making, e.g., the influence diagrams 
of [3] (shown in use in [9]), or the goal graphs of [12]. 
Something key that we have in common with those 
referenced bodies of work is the reliance on computer 
support for decision-making. Real-world problems 
involve a myriad of concerns, the number and 
interconnections of which warrant support. 
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