
c

Requirements, Architectures and Risks

James D. Kiper
Dept. of Computer Science and Systems

Analysis
Miami University
Oxford, OH 45056

kzperjd@muohio. edu

Abstract

There is wide agreement that architecture plays a
prominent role in large, complex software systems.
Selection of an appropriate architecture - one that
matches the system requirements and implementation
resources - is a critically important development step.

We advocate the use of risk-based reasoning to help
make good architectural decisions. We explore the
adaptation of a risk management process and tool to this
purpose.

1. Introduction
Software design for complex software systems is

difficult. The past decade has seen a convergence of
opinion about the importance of using established
architectures and design patterns. At the system level,
styles of software architecture [1, 1 I] like pipes-and-filters
or event-driven provide a starting point for design of
complex software systems. At the more detailed level,
architectural treatments capture well-reasoned decisions
whose strengths and weakness are understood, e.g.,
software design pattems like wrapper or builder.[7] This
paper will focus on the system level use of architecture,
although the approach should also be applicable to the
finer grained use of design pattems.

Choosing a good architecture is a critically important
step in the design of a system. A poor choice at tlus level
is difficult to repair at more detailed design level. We
define the adjective good with respect to architecture to
mean an architecture that matches system requirements
and can be implemented within the resources allocated to
it. The implantation itself is a non-trivial task, and induces
a further set of critical decisions.

The primary thesis of this paper is that risk can be used
to guide these decisions. Use of risk-based reasoning
enables software engineers and managers to make choices
of software architecture and architecture implementation
that satisfy both criteria - meeting system requirements
and adhering to resource limitations.

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr

Pasadena CA 91 109-8099
Martins. Featherwpl. Nasa. Gov

This paper is organized as follows: section 2 describes
the current risk-based design process and the tool that has
been developed to support this process; section 3
discusses some shortcomings in t h s process that are
caused by the failure to capture of explicit design and, in
particular, architectural aspects; section 4 describes ways
in which we are incorporating software architectural
decisions into this process and tool.

2. Basis for the approach - risk-based design
The approach advocated herein begins from an existing

risk-based design process and its accompanying tool
support. This is the “Defect Detection and Prevention
(DDP)” process [4], developed and used at JPL to help
engineers manage the trade space of choices in designing
spacecraft and associated technology.

DDP has three primary sets of issues that it captures
and tracks: requirements, risks, and mitigations. The DDP
tool is typically used to collect and maintain decisions and
information discussed in several meetings with a group of
experienced engineers and domain experts. The process
used in these DDP sessions is diagrammatically explained
in figure 1. The first step is the collection and weighting
of requirements. Given the requirements, the domain
experts determine the risks that these system requirements
entail. Each of these risks is then scored as to its impact
on each of the requirements. After risks are determined in
step 2, the activities that can mitigate these risks are then
listed. Each of these mitigations is scored as to its
effectiveness at reducing each risk.

DDP is unique in bringing a quantitative risk-based
approach to bear at early stages of decision-making. The
scoring of the links between risks and requirements, and
between mitigations and risks, are given a quantitative,
probabilistic interpretation. This allows DDP to add up
the cumulative impact of all risks, compare an individual
risk’s cumulative impact, compute how much of
requirements are being attained, compute how much net
benefit the use of a mitigation conveys, etc. [5]

This information is used together with budget
information on the cost of mitigations to make choices
about which mitigations to select. The goal is to reduce
the risks to sufficient levels (and so adequately attain
requirements) while remaining within resource limitations.

against Mitigations
Requirements against Risks

Determine
Resources

Requirements (Budget, etc)

List & Cost

Risks Mitigations
List Potential Relevant

I Select H-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

Figure 1: Standard DDP Process

this process, risk is used as the intermediary through
which to indirectly link requirements to mitigations. Our
experience is that this indirection is particularly useful.
For example, the phenomenon of “diminishing returns” as
more and more mitigations are applied to the same risks
falls out naturally from this approach. In contrast, attempts
to link requirements directly to solutions (development
plans) often fail to capture the multiplicity of problems
and solutions.

3. Shortcomings in the current process
The standard DDP process depicted in figure 1

involves the gathering and linking of three major
concepts: system requirements (weighted to reflect their
relative importance), risks that threaten to detract from
attainment of those requirements, and mitigations to help
quell those risks (and so lead to improved attainment of
requirements). We have found this risk-centric approach
to be quite effective in guiding experts to make their
choices of mitigations. (The reader may wonder why
choices have to be made among mitigations. The answer
is one of resource limitation. Choosing to do all

mitigations is typically not possible from a budget and
time perspective.)

We have observed that in use of the DDP tool and
process on JPL applications, there is some additional
structure to the concepts involved that the current process
is not adequately capturing. We describe how these
observations lead us to now propose to include
architecture as a first-class concept within the DDP
process.

Our first step in this direction stemmed from the
observation that some mitigations induce andor
exacerbate risks. For example, a vibration test may be
used to check that a piece of hardware will operate
correctly when subject to vibration, thus decreasing the
risk of launching a spacecraft unable to operate under
mission conditions. However, there is some risk that the
test itself will cause problems (e.g., break something). The
risk of those problems we term induced risk. Another
example is of a protective coating applied to a piece of
circuitry, say. Its purpose is to protect the circuitry from
future damage, i.e., decrease those kinds of risks.
However, should there be need to modify the circuit, that
protective coating will make it harder, perhaps even
impossible, to effect the modification. We describe the
risks that would lead to the need to modification as
exacerbated by the protective coating (i.e., while their
likelihoods remain the same, their impact, should they
occur, is increased). Software analogies of these
phenomena are well known - fixing one bug may
introduce new ones; introducing monitoring code may aid
testing, but decrease performance (or lead to changed
timing behavior when that test-time code is dropped from
the final delivered code).

The standard DDP process (and its tool support) was
evolved to accommodate these phenomena by extending
the allowable range of the values attached to the links
between mitigations and risks. Initially all such values
were restricted to being positive proportions (i.e., in the
range (0, I]), indicating the proportion by which
application of the mitigation would eliminate risk. Lack of
a link between a risk and a mitigation indicated that the
mitigation would have no effect whatsoever on that risk.
The extension was to allow the expression of negative
values as measures of effectiveness, where a negative
value in the range [-1, 0) indicated induced risk (the more
negative, the more the likelihood of the risk being
induced), and a negative value in the range [-1000000, -1)
indicated exacerbated risk (any existing risks’ impacts
would be multiplied by the abs(va1ue)). For example, a
value of -3 means triple the impact of risks.

These extensions served their intended purpose to
allow DDP studies to take into account mitigation
inducedexacerbated risks. However, they opened the door
to (mis?)use as a way to represent design alternatives.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

I ScoreRisks
I against

Determine and Determine
Resources

Requirements (Budget, etc) r -

Score
Mitigations

-- '.
List Potential List Relevant

Risks Architectures

Score Risks
against

Requirements

Score
Architectures
against Risks

Select
Software

Architecture
I selection of
j architecture

I Revise
r--------

List & Cost
Relevant

Risks Mitigations
List Potential

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I I

Revise
Budget, etc.

Requirements

I - - - - - - - - - - - -

Risk Mitigation Plan

Figure 2: Revised DDP Process

To illustrate this we will first give a hypothetical and
simplistic system design example. Suppose that one of the
requirements for a planetary rover is to gather science data
on planetary formation, using a drill to extract a core
sample from rocks. Use of the drill demands a large
amount of power, so lack of available power is a
particularly serious risk against that science requirement.

One possible mitigation to that risk is to deploy large solar
panels, capable of generating sufficient power. (An
alternative could be to drill more slowly but for a longer
duration). The large-solar-panel mitigation has its own
risks (rover is now prone to tipping; higher overall power
levels lead to the risk of electrical shorts; etc.).

A comparable software-domain example is the design
of a software subsystem with the requirement that the
software be able to respond to the position of the cursor
by displaying context-sensitive information that the user
needs. One risk to this requirement is that this
information will be displayed after an unreasonably long
delay. One possible mitigation is to design this system as
an event-driven system with an event loop that is designed
to catch and respond to mouse movements that affect
cursor position.

Master Control m
I I

Input Circular Alpha- output
Shift betizer

I
I
I
I
I
I

\
I

I
I
I
I

; Characters

Input medium I I

output
medium

-b Subprogram call
.-b Direct memory access
- - - - - - -. System I/O

Figure 3: Shared data architecture

Our first inclination was to use the mitigation-induced
risk as the means to represent these design options. For
example, the large solar panels mitigation for the risk of
lack of power we encoded as a DDP mitigation that
induces the rover tipping risk, the electrical shorts risk,
etc. Each of these induced risks were added into the same
list of potential risks, but with the unusual characteristic
that their a-priori likelihoods were set at zero (Le., the
only way those risks could occur is through being induced

when the solar panel mitigation is selected). This enabled
us to avoid the need for further extension to the DDP tool.

With this observation, we propose the capture of
architecture decisions explicitly in the DDP tool.

I

Ahhabetic Shifts I \\,
I

I

output
Figure 4: Abstract data type architecture 1 medium

Input
medium

From these latter examples, it is clear that the activities
that we have encoded as mitigations are, in fact, design
choices. In the software arena, these choices are software
architectural decisions. We are dissatisfied with
encoding of these as just more “mitigation” choices, albeit
with some unusual characteristics. At the very least, we
should call these out as architectural decisions, and so be
poised to take advantage of detailed methods for
architectural evaluation. We would also like to avoid the
need to start DDP from a “blank slate”, where all the
information must be supplied anew. Clearly, the body of
knowledge that pertains to architectures should be used to
pre-populate DDP. Finally, and most importantly, we
observe many of the risks and mitigations that derive from
an architectural choice effect how well that architecture
mitigates the original risks it was selected to address. For
example, suppose a pipes-and-filters architecture was
selected to mitigate the risk of system ossification
(inability to easily make system modifications). The more
the development of the system strays from strict adherence
to that architecture, the more it diminishes the
effectiveness of that architecture at mitigating the
ossification risk. In DDP-speak, the architecture itself can
be attained in whole or only in part (the latter due to the
cumulative impact of risks on the realization of that
architecture). Its effectiveness at mitigating risks is
determined by how successfully its own risks are
mitigated. We will see hrther examples of this in the next
section.

Before explaining
this idea further, it is
important to remind
the reader that not all
mitigations are
design decisions.
For example, one
risk that may pertain
to a piece of software
is that requirements
are inconsistent.
One mitigation to
this risk is a formal
inspection process., a
form of analysis. The
use of formal
inspections is clearly
not a design
decision. Indeed, in
typical DDP
applications, a
significant
proportion of

I -b
mediiim

+ Pipe

System I/O

Figure 5: Pipes-and-filters

----_

mitigations fall into this testing/analysis category.

4. Incorporating software architectures
To incorporate software architectures into the DDP

tool without radically changing the tool, we have
proposed a two-phase process as depicted in figure 2.

First we go through the original DDP process with
requirements-risks-architecture rather than requirements-
risks-mitigations. Thus, we are explicitly capturing
alternative design architectures that will reduce or
eliminate certain risks. Note that there may be a choice
among several architectures that reduce a particular risk to
acceptable levels.

To make this step easier, we have seeded the DDP tool
with possible classic software archtectures. [1, 111 These
architecture styles, e.g. pipes-and-filters, repository,
object-oriented, serve as a starting point for the
architecture-selection process. Designers may, of course,
add their own hybrid designs.

The architectures that result from this first step become
the starting point for another iteration of the original
process, one that deals with architectures-risks-
mitigations. Thus, the architecture serves both as a
mitigation of risks in the first phase, and as an induced
requirement in the second phase. Note that the selection
of architecture is an important outcome of the DDP
process. Although we argued that risks themselves are
merely intermediaries, we do not make the argument that
architectures have a similarly nebulous status.

Shared Abstract
data data type
store

Algorithm 0.9 0.7

4.1 Examples
As a small but illustrative example, consider the classic

key word in context problem [lo] proposed by Parnas in
1972 (and discussed by many other researchers since.

The KWIC [Key Word in Context] index
system accepts an ordered set of lines; each
line is an ordered set of words, and each word
is an ordered set of characters. Any line may
be “circularly shifted” by repeatedly removing
the first word and appending it at the end of
the line. The KWIC index system outputs a
listing of all circular shifts of all lines in
alphabetical order.

We will treat this paragraph as a first-order
approximation to a set of requirements. In the DDP
process and tool, this set is represented in a structured
form, and the importance of each is evaluated and scored.
For example, we might prioritize the generation of the list
of all circular shifts as the most important, with the
alphabetizing of this list as being important, but having a
lower priority.

Now, let us consider some of the risks that might be
associated with these requirements. Parnas suggests two
potential risks (although he labels these as potential design
changes rather than risks.)

1 .Changes to the processing algorithm
2.Changes in data representation

Garlan, et a1 [8] add three other risks to those of
Parnas.

1. Enhancement to system fimction
2. Performance
3. Reuse

(A nice discussion of this example and possible

These risks are scored against requirements to see, if
architectures is provided by Shaw and Garlan. [1 11)

they occur, how they would affect each requirement.

Pipes and
filters

0.1

Now, we consider possible architectures for a
solution to this problem. First, consider two architectures
suggested by Parnas. [lo] Figure 3 illustrates shared
memory architecture. Figure 4 gives an abstract data type
solution. Another possible architecture is the pipes-and-
filters style as inspired by the Unix index utility and
described by Shaw and Garlan. [111 This is depicted in
figure 5 .

The mechanism that we use to evaluate the strengths
and weaknesses of each potential architecture is to score
each architecture against risks that we have identified.
For example, we may determine that a pipes-and-filters
archtecture may have performance (i.e. speed) issues
although the other two possibilities are likely to perform
more adequately. Conversely, the shared data and the
abstract data type architectures are likely to have trouble if
the algorithm for generating the index is changed. The
pipes-and-filters can more easily adapt its algorithm (by
merely changing or adding a filter:) However, the abstract
data type obviously can change its data representation
more easily; the other two would find this type of change
much more difficult. (This analysis is that of Shaw and
Garlan. [1 11)

In the DDP process we would push the software
engineers to quantitativeZy value these linkages between
risks and architectures. For example, suppose that the
engineers estimate the abstract data type design has a very
small likelihood of being impacted by the risk of a change
in data representation, while they estimate that
performance risk of a pipes-and-filters architecture is
relatively problematic. Table 1 illustrates the linkage data
that engineers might produce in analyzing these
archtectures in light of particular risks. The numeric
entries are in the range 0 to 1, where 0 means no effect,
and 1 means that the architecture choice in that column
completely eliminates the risk in that row. The DDP tool
provides support for much larger matrices, and provides
other views of t h s lmkage data in addition to the tabular
format.

Table 1 : Risk - Architecture matrix

Data I 0.7 I 0.1 0.9

Performance I 0.1 I 0.1

representation I I I
0.7

issues

In a realistic design, the number of requirements and
potential risks can be large. In DDP applications at the
component level (e.g., a memory device), it is typical to
deal with 50 - 100 each of requirements, risks and
mitigations, with hundreds of links between them. Even if
the number of viable architecture choices is relatively
small, the relationships between architecture and risks,
and risk and requirements can make the choice of the
preferred architecture quite complex. Addressing this
complexity is a strength of DDP.

With the assistance of DDP, the design team can now
select a tentative architecture. (This is a tentative
architecture because the entire process is iterative. For
example, the phenomena of requirements volatility and
requirement creep are well known.) Ths begins the
second phase of the DDP process. The starting point for
this phase is this tentative architecture. We list potential
risks inherent in this architecture. The risks enumerated in
the previous phase were those associated with
requirements regardless of architecture choice. Here we
are looking for design and implementation risks. What
things stand in the way of successfully implementing this
system with this architecture? If the system is highly
interactive, a pipes-and-filters architecture style is quite
risky. However, an event-driven style would have much
lower risks in this area. Because of the paradigm shift
needed in object-oriented design (OOD) from traditional
procedural design, OOD may have a high dependency on
having a trained staff.

The process of listing risks and evaluating the impact
of each against the tentative architecture can be a tedious
one. It is clear that many software risks are common
across projects. We have preloaded DDP with a set of
common software risks. (We have used the risk taxonomy
identified by researchers at the Software Engineering
Institute. [2]) Furthermore, we have entered linkages
between these risks and a set of common architecture
styles. [l l] Thus, a choice of architecture obtains an
associated set of risks and impacts. The design team can
use this as a starting point, adding additional or more
specific risks, and modifying or adding linkages.

Having identified software risks associated with this
architecture, we now identify those activities, i.e.
mitigations, that we can perform to eliminate, avoid, or
reduce the impact of risks. For example, if there is the
risk that our staff is not experienced in OOD, we could
give them additional training or hire some experienced
00 designers. Each such mitigation has a cost - the cost
of training materials and time, or salaries and benefits for
experienced designers.

We evaluate each mitigation against each risk to
score its effect at reducing that risk. The effect of
experience designers is likely to be greater against the risk
of inexperienced staff than is training. (A new design
method is often not fully understood until a certain level

Provide
OOD

of experience is reached that cannot be provided by even
the best training.)

Table 2 illustrates this matrix. Again, the numeric
entries are in the range 0 to 1, where 0 means no effect
and 1 means that the mitigation in that column completely
eliminates the risk in that row.

Table 2: Risk - Mitigation matrix

Hire Perform
experienced formal

9
.Y '

training OOD staff inspections
0.9 0.0 Inexperienced 0.7

staff
Inconsistent 0.0 0.1 0.9
requirements I

I I I I I

Finally, this collection of information (risks x
architecture, risks x mitigations) is combined with
budgeting information to make decisions about which set
of mitigations will acheve the system requirements using
the tentative architecture and within budget and resource
constraints. This is typically a complex decision given the
enormous number of interactions among requirements
(with their relative weights), risks (with their likelihoods),
the tentative architecture, mitigations (with their costs),
and linkages among these. DDP provides graphical
displays of thls information that helps the design team
explore this complex trade space. An optimizer is
available that uses simulated annealing to find near
optimal choices of mitigations within a specified cost
bound.

As mentioned previously, this is an iterative process.
In these activities, it is common for the design team to
discover additional requirements or learn of the
infeasibility of certain requirements (resulting in the need
for descoping [6]) . Additional risks of a particular
architecture choice may not be apparent until very late in
the process. Thus, the entire DDP process may be iterated
to capture these changes. However, note that subsequent
iterations are llkely to be more efficient because of the
leverage of information derived during previous iterations.

The reader may be struck by the length and
complexity of this process. We assert that this is the
nature of the task, not a side effect of our process. Design
a complex software system is difficult.

5. Conclusions, Status, and Related Work
The argument set forth in this paper is that risk can

and should be used to guide architectural decisions. These
include both the choice of architecture itself, and the
decisions that flow from that choice. We have shown how
we arrived at thls position through our observations of a
risk-based decision process in use in real-world design

activities. The gradual evolution of that process has led to
the point where we believe that architecture deserves a
place as a first-class object within the process itself. These
points have been illustrated using a small but familiar
example, the key word in context problem introduced by
Parnas.

The status of t h s work is that all the aspects of DDP
described in section 3 exist and have seen use in actual
spacecraft technology risk studies. Instances of the
phenomena we described in that section, of mitigation
induced or exacerbated risks, and of design decisions
encoded via this mechanism, have arisen in these same
actual studies. The extensions needed of the DDP tool to
support the two-phase approach, with mitigations leading
to derived requirements, have been incorporated in an, as
yet, unreleased version. We have used this within our own
experimentation, but it has not yet seen field use in real
project applications. Likewise, our encoding of
architectural considerations is also at the stage of internal
experiments that have yet to see actual customer
application. Additional information DDP can be found at
the Defect Detection and Prevention website,
http://ddptool.jpl.nasa.gov

A full comparison with related work is beyond the
scope of this workshop paper. We do draw attention to a
distinguishing characteristic of DDP, namely that it is able
to accommodate both architectural design decision
concerns, and other elements of project planning
(analysis, testing and process, represented as mitigations
in the DDP framework). Furthermore, DDP does so in a
quantitative manner. The combination of these aspects
sets DDP apart from many of the other approaches to
architectural decision making, e.g., the influence diagrams
of [3] (shown in use in [9]), or the goal graphs of [12].
Something key that we have in common with those
referenced bodies of work is the reliance on computer
support for decision-making. Real-world problems
involve a myriad of concerns, the number and
interconnections of which warrant support.

Acknowledgements
The research described in this paper was carried out

at the Jet Propulsion Laboratory, California Institute of
Technology and at Miami University, Oxford, Ohio, both
under a contract with the National Aeronautics and Space
Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States
Government, the Jet Propulsion Laboratory, California
Institute of Technology, or Miami University.

Dr. Steve Cornford leads the DDP project at JPL.
DDP technology has been developed with NASA’s

Software IV&V, Code R and Code Q support, managed in
part through JPL’s Assurance Technology Program Office.

6. References
[l] Bass, L., P. Clements, et al. (1998). Software
Architecture in Practice. Boston, Addison-Wesley.

[2] Carr, M. J., S. L. Konda, et al. (1993). Taxonomy-
Based Risk Identification. Pittsburg, PA., Software
Engineering Institute: 78.

[3] Chung, L., B.A. Nixon, B.A., E. Yu, E., and
Mylopoulos, J., 2000 “Non-Functional Requirements in
Software Engineering” Kluwer Academic Publishers.

[4] Cornford, S. L., M. S. Feather, et al. (2001). DDP - A
tool for life-cycle risk management. IEEE Aerospace
Conference, Big Sky, Montana.

[5] Feather, M.S., Cornford, S.L. Dunphy, J. & Hicks,
K.A. (2002). A Quantitative Risk Model for Early
Lifecycle Decision Making; Proceedings of the
Conference on Integrated Design and Process
Technology, Pasadena, California, June 2002. Society for
Design and Process Science

[6] Feather, M.S., S.L. Cornford & K.A. Hicks (2002)
Descoping; To appear in: Proceedings of the 27th
IEEEDJASA Software Engineering Workshop, Greenbelt,
Maryland, Dec 2002. IEEE Computer Society.

[7] Gamma, E., R. Helm, et al. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Reading,
Massachusetts, Addison-Wesley.

[8] Garlan, D., G. E. Kaiser, et al. (1992). “Using tool
abstraction to compose systems.” IEEE Computer 25(6).

[9] Mylopoulos, J., L. Chung, S. Liao, H. Wang & E. Yu.
“Exploring Alternatives during Requirements Analysis”,
IEEE Software 18(l), Jan-Feb 2001, pp 92-96.

[lo] Parnas, D. L. (1972). “On the criteria to be used in
decomposing systems into modules.” Communications of
the ACM 15(12): 1053-1058.

[113 Shaw, M. and D. Garlan (1996). Software
Architecture: Perspectives on an Emerging Discipline.
Upper Saddle River, NJ, Prentice-Hall.

[121 van Lamsweerde, A., 2001, “Goal-Oriented
Requirements Engineering: A Guided Tour”, Proceedings
5th IEEE International Symposium on Requirements
Engineering, Toronto, Canada, August, pp. 249-263.

http://ddptool.jpl.nasa.gov

