
Developing Fault Predictors for Evolving Software Systems

Allen P. Nikora
Jet Propulsion Laboratory,

California Institute of Technology
Mail Stop 125-233

Pasadena, CA, USA 9 1 109-8099

Fax: +I (818)393-1362
Allen.P.Nikora@,ipl.nasa.gov

VOX: +1 (818)393-1104

John C. Munson
Computer Science Department

University of Idaho

imunson@,cs.uidaho.edu
MOSCOW, ID 83844- I O 10

ABSTRACT

Over the past several years, we have been developing methods of predicting the fault content
of software systems based on measured characteristics of their structural evolution. In previous
work, we have shown there is a signipcant linear relationship between code churn, a synthesized
metric, and the rate at which faults are inserted into the system in terms of number of faults per
unit change in code churn. A limiting factor in this and other investigations of a similar nature
has been the absence of a solid and repeatable definition of the concept of a fault. The rules for
fault definition were not suflciently rigorous to provide completely unambiguous and repeatable
fault counts.

We have begun a new investigation of this relationship with a flight software technology de-
velopment effort at the Jet Propulsion Laboratory (JPL) and have progressed in resolving the
limitations of the earlier work in two distinct steps. First, we have developed a standard for the
enumeration of faults. This new standard permits software faults to be measured precisely and
accurately. Second, we have developed a practical framework for automating the measurement
of these faults. This new standard and fault measurement process was then applied to a software
system’s structural evolution during its development. Eve y change to the software system was
measured and every fault was identiJied and tracked to a specific line of code. The measurement
process was implemented in a network appliance, minimizing the impact of measurement activi-
ties on development eflorts and enabling the comparison of measurements across multiple devel-
opment efforts.

In this paper, we analyze the measurements of structural evolution and fault counts obtained
from the JPL flight software technology development effort. Our results indicate that the meas-
ures of structural attributes of the evolving software system are suitable for forming predictors of
the number of faults inserted into software modules during their development. The new fault
standard also insures that the model so developed has greater predictive validity.

KEYWORDS: defect content estimation techniques, fault prediction, software metrics, soft-
ware quality models

mailto:Allen.P.Nikora@,ipl.nasa.gov
mailto:imunson@,cs.uidaho.edu

Developing Fault Predictors for Evolving Software Systems

Allen P. Nikora
Jet Propulsion Laboratory,

California Institute of Technology
Pasadena, CA 9 1 109-8099

Allen.P.Nikora@id.nasa.gov

ABSTRACT

Over the past several years, we have been developing
methods of predicting the fault content of software systems
based on measured characteristics of their structural evolu-
tion. In previous work, we have shown there is a signijicant
linear relationship between code churn, a synthesized met-
ric, and the rate at which faults are inserted into the system
in terms of number of faults per unit change in code churn.
A limiting factor in this and other investigations of a similar
nature has been the absence of a solid and repeatable defi-
nition of the concept of a fault. The rules for fault definition
were not suficiently rigorous to provide completely unam-
biguous and repeatable fault counts.

We have begun a new investigation of this relationship
with a flight software technology development effort at the
Jet Propulsion Laboratoly (JPL) and have progressed in
resolving the limitations of the earlier work in two distinct
steps. First, we have developed a standard for the enumera-
tion of faults. This new standard permits software faults to
be measured precisely and accurately. Second, we have

John C. Munson
Computer Science Department

University of Idaho

jmunson@,cs.uidaho.edu
MOSCOW, ID 83844-1010

developed a practical framework for automating the meas-
urement of these faults. This new standard and fault meas-
urement process was then applied to a software system’s
structural evolution during its development. Evevy change to
the software system was measured and every fault was identi-
fied and tracked to a speciJic line of code. The measurement
process was implemented in a network appliance, minimizing
the impact of measurement activities on development efforts
and enabling the comparison of measurements across multi-
ple development efforts.

In this paper, we analyze the measurements of structural
evolution and fault counts obtained from the JPL fright soft-
ware technology development effort. Our results indicate
that the measures of structural attributes of the evolving
software system are suitable for forming predictors of the
number of faults inserted into software modules during their
development. The new fault standard also insures that the
model so developed has greater predictive validity.

KEYWORDS:
works, software quality models

defect content estimation techniques, fault prediction, software metrics, software measurement frame-

1. Introduction
Over the past several years, we have been investigating

relationships between measurements of a software system’s
structural evolution and the rate at which faults are inserted
into that system [Muns98, Niko981. Measuring the struc-
tural evolution of a software system has proven to be a
straightforward effort that can easily be automated. Unfor-
tunately, it has not been as easy to measure the number of
faults inserted into the system - there has been no particular
definition of just precisely what a s o h a r e fault is. In the
face of this difficulty it is rather hard to develop meaningful
associative models between faults and code attributes. In
calibrating a model, we would like to know how to count
faults in an accurate and repeatable manner just we would
expect to enumerate statements, lines of code, and so forth.
In measuring the evolution of a system to talk about rates of

fault introduction and removal, we measure in units propor-
tional to the way that the system changes over time. Changes
to the system are visible at the module level (by module we
mean procedures and hnctions), and we attempt to measure
at that level of granularity. Since the measurements of sys-
tem structure are collected at the module level, we also strive
to collect information about faults at the same granularity.

A fault, by definition, is a structural imperfection in a
software system that may lead to the system’s eventually
failing. It is a physical characteristic of the system of which
the type and extent may be measured using the same ideas
used to measure the properties of more traditional physical
systems. People making errors in their tasks introduce faults
into a system. These errors may be errors of commission or
errors of omission. There are, of course, differing etiologies
for each fault. Some faults are attributable to errors in the
specification of requirements. Some faults are directly at-

mailto:Allen.P.Nikora@id.nasa.gov
mailto:jmunson@,cs.uidaho.edu

tributable to error committed in the design process. Finally,
there are faults that are introduced directly in to the source
code. There are two major types. There are faults of com-
mission and faults of omission. Faults of commission in-
volve implementing code that is not part of the specification
or design. Faults of omission involve lapses wherein a be-
havior specified in the design was not implemented. In or-
der to count faults, there must be a well-defined method of
identification that is repeatable, consistent, and identifies
faults at the same level of granularity as our static source
code measurements.

2. Related Work
Over the past several years, a great deal of work has

been done in the area of using measurements of software
systems to identify fault-prone components and predict their
fault content. Examples of this work include the classifica-
tion methods proposed by Khoshgoftaar and Allen
[KhosOla] and by Ghokale and Lyu [Ghok97], Schneide-
wind’s work on Boolean Discriminant Functions [Schn97],
Khoshgoftaar’s application of zero-inflated Poisson regres-
sion to predicting software fault content [KhosOl], and
Schneidewind’s investigation of logistic regression as a dis-
criminant of software quality [SchnOI]. Each of these ef-
forts has provided useful insights into the problem of identi-
fying fault-prone software components prior to test. The
one thing that these efforts have in common is that each of
them analyzed a snapshot of the subject system, rather than
examining its evolution during development. This may
limit the validity of those efforts’ conclusions to the point in
the development life cycle when the measurements were
made. If, however, the entire evolution of a software sys-
tem is analyzed, any conclusions that are reached should be
applicable to any point in the development cycle of the arti-
fact being studied. With this goal in mind, we conducted a
small study on a JPL flight system several years ago
[Niko98]. We found strong indications that a system’s
measured structural evolution could predict the fault inser-
tion rate. However, this study had two limitations:

The study was relatively small - fewer than 50 observa-
tions were used in the regression analysis relating the
number of faults inserted to the amount of structural
change.
The definition of faults that was used was not quantita-
tive. The ad-hoc taxonomy, first described in Wiko971,
was an attempt to provide an unambiguous set of rules
for identifying and counting faults. The rules were based
on the types of changes made to source code in response
to failures reported in the system. Although the rules
provided a way of classifying the faults by type, and at-
tempted to address faults at the level of individual mod-
ules, they were not sufficient to enable repeatable and
consistent fault counts by different observers to be made.
The rules in and of themselves were unreliable.

Before recommending the use of measurements of struc-
tural evolution as a fault predictor, we needed to address the
limitations of the earlier study. Our main concem was de-
veloping a quantitative defmition of faults, so that we could
automate what had been a time-consuming manual activity
in the earlier study, the identification and counting of re-
paired faults at the module level. Our hope was that this
would provide us with unambiguous, consistent, and repeat-
able fault counts, as well as a substantially larger number of
observations than the earlier study.

To develop fault predictors for evolving systems, two
types of measurements must be made:

The structural evolution of a system as it changes over a
series of builds.
The number of faults discovered during the system’s de-
velopment.

Measuring a system’s structural evolution is a straightfor-
ward activity - the DarwinTM network appliance can auto-
matically make these measurements if it has access to a soft-
ware development effort’s source code repository. DarwinTM
will then take structural measurements of each version of
each module (Le., f ic t ion or method) in the system and use
those measurements to produce quantitative reports of the
system’s evolutionary history according to the techniques
described in Sections 6 and 7.

Measuring faults is not quite as straightforward an activ-
ity. The structure of a software component can easily be
made because there are standard, quantitative definitions of
structural attributes (e.g., number of physical lines of code,
number of operators) that can be used to develop measure-
ment tools. The following definition of what constitutes a
fault is typical of that provided by current standards: “A
manifestation of an error in software. A fault, if encountered,
may cause a failure” [IEEE88, IEEE831. This establishes a
fault as a structural defect in a software system that underlies
the failure of that system to operate as expected, but does not
help in determining the type of failure that was observed, or
establish how individual faults may identified or measured.
Some standards address the issue of the type of failure ob-
served by describing schemes for classifying anomalies re-
corded during software development and operation. For in-
stance, [IEEE93] provides details of an anomaly classifica-
tion process, as well as criteria for classifying the type of
anomaly observed, at what point in the development process
the anomaly was observed, and the action taken in response
to the anomaly. One particular table in this standard, Table
3c, allows classification of the type of behavior exhibited by
the anomaly (e.g., “precision loss”) or the type of defect that
led to the anomaly (e.g., “referenced wrong data variable”).
This type of scheme is helpful in determining the underlying
causes of faults and failures, so that the development process
may be modified to 1) identify the types of faults on which
fault detection and removal resources should be focused for
the current development effort, and 2) minimize the introduc-
tion of the most common types of faults in future develop-

ment tasks. However, classification standards do not pro-
vide enough information to help count the number of faults
in the system. Retuming to Table 3c of [IEEE93], we see
that some of the anomaly types can readily be traced to a
single fault (e.g., “Operator in equation incorrect”). How-
ever, the response to an “I/O Timing” anomaly may involve
changes to many lines of source code spread across multiple
source code files. In this case, the standard does not provide
enough information to allow counting the number of faults
at the module level.

Orthogonal Defect Classification (ODC), initially pub-
lished in 1992 [Chi192], provides a framework for 1) identi-
fying defect types and the sources of error in a software
development effort, 2) determining the effectiveness of the
different defect detection techniques and strategies used by
the organization, and 3) using the feedback provided by
analysis of the defects to help the organization reduce the
number of defects it inserts into its systems. Like [IEEE93],
ODC provides a scheme for classifying defects, which is
useful in identifying sources of error at different points in
the development process. However, it does not seem‘to

A a u l t s at the module level. The recognition process for de-
fects is not sufficiently well defined to permit the automatic
recognition of these defects.

-b- to use ODC alone to consistently identify and co i

3. Problem Statement
The objective of our current work is to develop practical

methods of predicting fault content based on structural char-
acteristics that can be used by production software devel-
opment efforts to help them better manage the quality of the
systems they create. We chose to search for relationships
between the rate at which faults are inserted into source
code and the measured structural evolution of the source
code. Although other types of artifacts could have been
analyzed, working with source code has two advantages:

Measuring structural attributes of source code can be
easily automated.
Since the source code is controlled by a configuration
management system, different versions of the system can
be easily and unambiguously identified. In particular, a
baseline against which all other versions are to be meas-
ured can be easily established.

Through the analysis of the structural evolution of a soft-
ware system, we overcome the limitations of the related
work identified in Section 2 - that is, any predictors of fault
content we develop should have predictive validity at any
point during the development of the artifact being studied.
This is in contrast to models developed from single and iso-
lated system builds.

We worked in collaboration with the Mission Data Sys-
tem (MDS), a mission software technology development
effort in progress at JPL. We were able to measure the
structural evolution of the MDS during the development of
a specific release. For every failure reported against the

MDS, we were also able to identify the changes made to each
module in response to that failure, and thereby count the
number of faults that had been repaired. These measure-
ments were inputs to regression analyses to identify relation-
ships between the measured structural evolution and the
number of faults discovered.

4. A Description of the Mission Data System
The rationale and summary description of the MDS

provided here is taken from Dvorak, et al. [Dvo99]. Until
recently, planetary exploration missions were spaced years
apart, with little attention to software reuse, given the rapid
pace of computer technology and computer science. Also,
since radiation-hardened flight computers remain years
behind their commercial counterparts in speed and memory,
flight software has typically been highly customized and
tuned for each mission. In order to use software engineering
resources more effectively and to sustain a quickened pace of
missions, JPL initiated the MDS project in April 1998 to
define and develop an advanced multi-mission architecture
for an end-to-end information system for deep-space
missions. MDS is aimed at several institutional objectives:
earlier collaboration of mission, system and software design;
simpler, lower cost design, test, and operation; customer-
controlled complexity; and evolvability to in situ exploration
and other autonomous applications.

Some important ways in which MDS differs from earlier
systems are as follows:

When appropriate, capabilities can be migrated from
ground-based systems to flight systems to simplify
operations. With increasingly powerful flight qualified
processors, there is an opportunity to migrate capabilities
from ground-based systems to spacecraft. There is also
an increasing need for such migration to accomplish
missions that must react quickly to events, without earth-
in-the-loop light-time delays, such as autonomous landing
on a comet and rover explorations on Mars.
MDS is founded upon a state-based architecture,
where state is a representation of the momentary
condition of an evolving system. System states include
device operating modes, device health states, resource
levels, temperatures, pressures, etc, as well as
environmental states such as the motions of celestial
bodies and solar flux. Some aspects of system state are
best described as functions of other states; e.g., pointing
can be derived from attitude and trajectory. In all cases
state is accessible through state variables (as opposed to a
program’s local variables), and state evolution is
described on state timelines. State timelines provide the
fundamental coordinating mechanism since they describe
both knowledge and intent. A state-based architecture
implies the need for models since models describe how a
system’s state evolves. Together, state and models supply
what is needed to operate a system, predict hture state,
control toward a desired state, and assess performance.

Domain knowledge is expressed explicitly in models
rather than implicitly in program logic. Much of what
makes software different from mission to mission is
domain knowledge about instruments and actuators and
sensors and plumbing and wiring and many other things.
This knowledge includes relationships such as how
power varies with solar incidence angle, conditions such
as the fact that gyros saturate above a certain rate, state
machines that prescribe safe sequences for valve
operation, and dynamic models that predict how long a
turn will take. Conventional practice has been to develop
programs whose logic implicitly contains such domain
knowledge, but this expresses the knowledge in a
“hidden” form that is hard to validate and hard to reuse.
In contrast, MDS advocates that domain knowledge be
represented more explicitly in inspectable models. Such
models can be tables or spreadsheets or rules or state
machines or any of several forms, as long as they
separate the domain knowledge from the general logic
for applying that knowledge to solve a problem. The task
of customizing MDS for a mission, then, becomes
largely a task of defining and validating models.
Missions are to be operated via specifications of the
desired state rather than sequences of actions.
Traditionally, spacecraft have been controlled through
linear (non-branching) command sequences that have
been carefully designed on the ground. Such design is
difficult for two reasons. First, the ground must predict
spacecraft state for the time at which the sequence is
scheduled to start, and that’s dificult to know with
confidence because of flighvground communication
limitations (data rate and light-time delay). Second, in
the event that the actual spacecraft state is different than
the predicted state, the sequence should be designed to
fail rather than chance doing something harmful. MDS,
in contrast, controls state - both flight and ground state -
via “goals”. A goal is defined as a prioritized constraint
on the value of a state variable during a time interval. A
goal differs from a command in that it specifies intent in
the form of desired state. Such goal-directed operation is
simpler than traditional sequencing because a goal is
easier to specify than the actions needed to accomplish
it. Importantly, goals specify only success criteria; they
leave options open about the means of accomplishing the
goal and the possible use of alternate actions to recover
from problems. A goal is a unifying concept that
encompasses daily operations, maintenance and
calibration, resource allocation, flight rules, and fault
responses.
For our study, the structural evolution of the MDS was

measured over a period from October 20, 2000, through
April 26, 2002. The first date corresponds to the date on
which the first source files for the most recent increment
were checked into the CM library. The system contains
over 15000 distinct modules; over the time interval analyzed

7

/
studied, there were over 1500 builds of the MDS. The total
n u n s of distinct versions of all modules was greater than
65,000. Over 1400 problem reports were included in the
analysis; these problem reports provided the information
from which the number of repaired faults was computed.

5. Metrics Used in this Study
We would like very much to understand the distribution

of faults in the code that we are building. To this end, it
would be very useful to just measure them as we are develop-
ing the software. Nature, unfortunately, is both fickle and
coy. She will not disclose these faults to us. We cannot
measure then until we have fixed them. We have learned
over time, however, that the distribution of faults in an evolv-
ing software systems is distinctly related to software attrib-
utes that we can measure. We can then use our historical
data to build models that will permit us to understand 1)
where faults are likely to be in the code that we have devel-
oped, 2) where the faults are located in the changes that we
have just made, and 3) determine the rate at which faults are
being introduced into changes that are being made to the un-
derlying software system.

We have obtained measurement data from the DarwinTM
system on the target software system [Cyla03]. These meas-
urement data were obtained by checking out each build of the
system from the configuration control system and then apply-
ing the measurement tool incorporated in the DarwinTM Net-
work Appliance.
5.1. Static Metrics

The specific metrics used in this study are listed in Table
1. These metrics were obtained for both the C and the C++
code modules in the MDS system. The precise definition of
each of these metrics and the standard used to measure them
can be found in Munson [MunsO3].

bo1 flow graph
Cycles Fotal number of cycles in the module control flow

I (graph I
This metric set represents the essential characteristics of

both the size of a program module and its control flow char-

acteristics. All measurements were taken at the module
level. For C program elements, a module is a function. For
C++ a module is a function or an object.

5.2. Derived Metrics
As has been clearly established from our previous work,

these metrics are highly correlated [Muns90, Ha11001. There
are twelve metrics. There are not twelve distinct sources of
variation. We would like to be able to identify the distinct
orthogonal sources of variation and map these twelve raw
metrics onto a set of uncorrelated metrics that represent es-
sentially the same information contained in the original
twelve metrics.

First we will need to identify the distinct sources of vari-
ance. We will use principal components analysis to identify
these new measurement domains. The results of this analy-
sis are shown in Table 2.

There are three distinct sources of variation in the twelve
original raw metrics. We have labeled these as Domain 1,
2, and 3 in this table. Domain 1 is most closely associated
with the control flow attributes that relate to the complexity
of the control flow graph structure of the measured program
modules as is shown by the relatively high values (B0.85) of
the Nodes and Edges metrics in this table. The raw metrics
that are most closely associated with each the underlying
orthogonal domains have been shown in boldface type in
this table.

S

The eigenvalues, in the last row of Table 2 show the
relative proportion of variation accounted for by each of
these new orthogonal domains. For this particular problem
space, the sum of the eigenvalues for the twelve original
metrics will be 12.0. Thus, the relative proportion of varia-
tion accounted for by Domain 1 will be 4.79/12 = 0.40 or
40% of the variation in the original 12 metrics. All three
domains together account for approximately 85% of the
total variation observed in the original 12 metrics.

For measurement purposes, it will be necessary to stan-
dardize all original or raw metrics so that they are on the
same relative scale. For the f b module m/on the$ build of
the system there will be a data vector x: =< *,..., .:,* > of
12 raw complexity metrics for that module. We can stan-
dardize each of the raw metrics by subtracting the mean ?:
of the metric #1 over all modules in theJJh build and dividing
by its standard deviation 8,' such that z:, - x i -z: represents

the standardized value of the first raw metric for the th mod-
ule on theJ"" build.

A by-product of the original PCA of the 12 metric primi-
tives is a transformation matrix, T, that will map the z-scores
of the raw metrics into the reduced space represented by the
three principal components. Let Z represent the matrix of z-
scores shown in the table above for the original problem. We
can obtain new domain metrics, D, using the transformation
matrix T as follows: D = ZT where Z is a n by 12 matrix of
z-scores, T is a 12 by 3 matrix of transformation coefficients,
and D is a n by 3 matrix of domain scores where n is the
number of modules being measured in a particular build.
The matrix, T, for this solution given in columns 2 through 4
of Table 3. The means and standard deviations that are used
to compute the z-scores are also shown in columns 5 and 6 of
this table.

For each module, there are now three new metrics, each
representing one the three orthogonal principal components.
For our subsequent investigations into modeling the relation-
ship between code evolution and software faults, these do-
main scores have the very valuable property that they are
uncorrelated. Each of the new metrics represents a distinct
source of variation. This will completely eliminate the prob-
lem of multicollinearity from the linear regression models
that we wish to develop.

5.3. Measuring Software Faults
Perhaps one of the most important considerations in the

measurement of software faults is the ability to scale the
fault. Not all faults are equal. Sometimes a simple operator
is at fault. The developer used a "+" instead of a "-". Some-
times two or three statements must be modified, added, or
deleted to remedy a single fault. We ought to be able iden-
tify and enumerate faults mechanically. That is, it should be
possible to develop a tool that could count the faults for us.
Further, some program changes to fix faults are substantially
larger than are others. We would like our fault count to re-
flect that fact. If we have accidentally mistyped a relational
operator like k' instead of 5' , this is very different from hav-
ing messed up an entire predicate clause from an if statement.
The actual changes made to a code module are tracked for us
in configuration control systems such as RCS or CVS
[Cede931 as code deltas. We must learn to classify the code
deltas that we make as to the origin of the fix. In other
words, each change to each module should reflect a specific

6:

code fault fix, a design problem, or a specification problem.
If we manifestly change any code module, significantly
change it, and fail to record each fault as we repaired it, we
will pay the price in losing the ability to resolve faults for
measurement purposes.

We will base our recognition and enumeration of soft-
ware faults on the grammar of the language of the software
system. Specifically, faults are to be found in statements,
executable and non-executable. In very simple terms, these
structures will cause our executable statement count, Exec,
to change. If any of the tokens change that comprise the
statement then each of the change tokens will represent a
contribution to a fault count. The granularity of measure-
ment for faults will be in terms of tokens that have changed.
Thus if one had typed the following statement in C:

a = b + c * d;
but had meant to type

a = b + c 1 d;
then there is but one incorrect token. In this example, there
are eight tokens in each statement. There is one token that
has changed. There is one fault. This circumstance is very
different when wholesale changes are made to the statement.
Suppose that this statement

a = b + c * d;
was changed to

a = b + (c * x) + sin(z);
We are going to assume, for the moment, that the second
statement is a correct implementation of the design and that
the first was not. This is clearly a not coding error. (Gener-
ally when changes of this magnitude occur they are design
problems.) In this case there are 8 tokens in the first state-
ment and 15 tokens in the second statement. This is a fairly
substantial change in the code. Our fault recording method-
ology should reflect the degree of the change.

The important consideration with this fault measurement
strategy is that there must be some indication as to the
amount of code that has changed in resolving a problem in
the code. We have regularly witnessed changes to tens or
even hundreds of lines of code recorded as a single "bug" or
fault. The only measurable index of the degree of the
change is the number of tokens that have changed to amelio-
rate the original problem. To simplify and disambiguate
further discussion, consider the following definitions.

Definition: A fault is an invalid token or bag of tokens
in the source code that will cause a failure when the
compiled code that implements the source code token is
executed.
Definition: A failure is the departure of a program from
its specified functionalities.
Definition: A defect is an apparent anomaly in the pro-
gram source code.
Each line of text in each version of the program can be

seen as a bag of tokens. That is, there may be multiple to-
kens of the same kind on each line of the text. When a soft-

software developer changes a line of code in response to the
detection of a fault, either through normal inspection, code
review processes, or as a result of a failure event in a pro-
gram module, the tokens on that line will change. New to-
kens may be added. Invalid tokens may be removed. The
sequence of tokens may be changed. Enumeration of faults
under this definition is simple, straightforward. Most impor-
tant of all, this process can be automated. Measurement of
faults can be performed very precisely, which will eliminate
the errors of observation introduced by existing ad hoc fault
reporting schemes [Muns02, Muns031.

An example would be useful to show this fault measure-
ment process. Consider the following line of C code.

(1) a = b + c ;
There are five tokens on this line of code. They are B1 =
{<e, <=>, , <+>, <c>} where B1 is the bag representing
this token sequence. Now let us suppose that the design, in
fact, required that the difference between b and c be com-
puted:

There will again be five tokens in the new line of code. This
will be the bag B2 = {<a>, <=>, , <->, <c>}. The bag
difference is B1 - B2 = {<+>, <-> }. The cardinality of B1
and B2 is the same. There are two tokens in the difference.
Clearly, one token has changed from one version of the mod-
ule to another. There is one fault.

Now let us suppose that the new problem introduced by
the code in statement (2) is that the order of the operations is
incorrect. It should read:

(3) a = c - b;
The new bag for this new line of code will be B3 = {<a>,
<=>, <c>, <->,). The bag difference between (2) and
(3) is B2 - B3 = { 1. The cardinality of B2 and B3 is the
same. This is a clear indication that the tokens are the same
but the sequence has been changed. There is one fault repre-
senting the incorrect sequencing of tokens in the source code.

Continuing the example above, let us suppose that we are
converging on the correct solution however our calculations
are off by 1. The new line of code will look like this.

This will yield a new bag B4 = {<a>, <=>, <I>, <+>, <c>,
<->, }. The bag difference between (3) and (4) is B3 -
B4 = {<1>, <+>}. The cardinality of B3 is five and the car-
dinality of B4 is seven. Clearly there are two new tokens.
By definition, there are two new faults.

It is possible that a change will span multiple lines of
code. All of the tokens in all of the changed lines so spanned
will be included in one bag. This will allow us to determine
just how many tokens have changed in the one sequence.

The source code control system should be used as a vehi-
cle for managing and monitoring the changes to code that are
attributable to faults and to design modifications and en-
hancements. Changes to the code modules should be dis-
crete. That is, multiple failures should not be fixed by one
version of the code module. Each version of a module repre-

(2) a = b - c;

(4) a = 1 + c - b ;

/

- ., sents should represent exactly one enhancement or one fail-
ure repair.

Metric

6. The Measurement Baseline
The first step in the measuring the evolutionary devel-

opment of a software system will be to establish a baseline
reference point in the build process. When a number of
successive system builds are to be measured, we will choose
one of the systems as a baseline system. All others will be
measured in relation to the chosen system. Sometimes it
will be useful to select the initial system build for this base-
line. If we select this system, then the measurements on all
other systems will be taken in relation to the initial system
configuration.

As a software system changes over time, it is very diffi-
cult to understand and measure the effect of the changes.
We would like to be able to describe, numerically, the way
that each system increment, or build, is different from its
successor and its predecessor. This is a very complex prob-
lem in that we are obtaining twelve measures on each pro-
gram module. For any one build, there are tens of thousands
of metrics collected on our target system.

Software systems grow and mature just as do biological
organisms. We would not think to measure a child at birth
and think that we know all there is to know about that child.
Measurement is an on-going process. We must, therefore,
come to understand that our software systems change rap-
idly over time. Whenever they are changed, them must be
re-measured. To understand what a software system is to-
day, we must have current measurement data on the system
together with data on its evolution. We know that faults are
removed over time. Modules that have not changed very
much are likely to have had most of their faults removed.
Modules that have changed a lot are very likely to have had
new faults introduced into them. Hence, understanding
change activity is vital to our understanding where the prob-
lems in the system might be.

From the first build of each such system to the last build
the differences may be so great as to obscure the fact that it
is still the same system. We would like to be able to quan-
tify the differences in the system from its first build, through
all builds to the current one. Then and only then will it be
possible to know how these systems have changed.

A complete software system generally consists of a large
number of program modules. Each of these modules is a
potential candidate for modification as the system evolves
during development and maintenance. As each program
module is changed, the total system must be reconfigured to
incorporate the changed module. We will refer to this re-
configuration as a build. For the effect of any change to be
felt it must physically be incorporated in a build.

As program modules change from one build to another,
the attributes of the modified program modules change.
This means that there are measurable changes in modules
from one build to the next. Each build is numerically and

Domain Mean Stdev
1 1 2 1 3

measurably different from its predecessor with respect to a
particular set of metrics. Thus, there is no such thing as
measuring a software system but once. Many software de-
velopers who profess to be deeply committed to measure-
ment are still tempted to represent a system by a set of meas-
urements taken at one point in a system’s evolution. The
truth is, measurement is a process. Whenever changes are
made to a system, those system elements that have changed
must be re-measured.

In order to describe the complexity of a system at each
build, it will be necessary to know the version of each of the
modules that was in the program that failed. Each of the pro-
gram modules is a separate entity. It will evolve at its own
rate. Each build of the system will unify a set of program
modules. Not all of the builds will contain precisely the
same modules. Clearly there will be different versions of
some of the modules in successive system builds. This com-
plex process is described in detail in [Muns03 1.

We must be careful to standardize the metric scores in a
way that will not erase the effect of trends in the data. For
example, let us assume that we were taking measurements on
LOC and that the system we were measuring grew in this
measure over successive builds. If we were to standardize
each build of the system by its own mean LOC and its own
standard deviation, the mean of this system would always be
zero. Thus, we will standardize the raw metrics using a base-
line system such that the standardized metric vector for the
ith module m:on the j th build would be

I Exec I .041) .03d .1521 1.511 4T331
NonExec I .I121 .06q -.0671 3.991 5.3

Nl I -.2061 .19q .331) 4.4d 16.6

When we have identified a target build, B, to be the
baseline build we will then compute the three constituent
elements of the baseline. These elements are TB the trans-
formation matrix for the baseline build, the vector of metrics
means for the baseline build z:, and a vector 6i of stan-
dard deviations for this build. For the purposes of this
study, the July 1, 2001 build was chosen as the baseline
build. Table 3 shows the actual baseline that will be used to
compute the derived metrics used in this study.

B

7. Measuring Change Activity
A complete software system generally consists of a large

number of program modules. Each of these modules is a
potential candidate for modification as the system evolves
during development and maintenance. As each program
module is changed, the total system must be reconfigured to
incorporate the changed module. We will refer to this re-
configuration as a build. For the effect of any change to be
felt it must physically be incorporated in a build.

In order to describe the complexity of a system at each
build, it will be necessary to know the version of each of the
modules was in the program that failed. Each of the pro-
gram modules is a separate entity. It will evolve at its own
rate. Consider a software system composed of n modules as
follows: mI,m2,m,;..,mn. Each build of the system will
unify a set of these modules. Not all of the builds will con-
tain precisely the same modules. Clearly there will be dif-
ferent versions of some of the modules in successive system
builds.

We can represent the build configuration in a nomencla-
ture that will permit us to describe the measurement process
more precisely by recording module version numbers as
vector elements in the following manner:
v' =< v' 1 9 vi 2 , vi 3 , . . . V I m > . This build index vector will allow us
to preserve the precise structure of each for posterity. Thus,
vln in the vector V" would represent the version number of
the i fh module that went to PI build of the system. The
cardinality of the set of elements in the vector V" is de-
termined by the number of program modules that have been
created up to and including the nt* build. In this case the
cardinality of the complete set of modules is represented by
the index value m. This is also the number of modules in
the set of all modules that have ever entered any build.

The management of the configuration of each of the pro-
gram modules is one aspect of the software management
process. Another vital piece is the build index vector. It is
the only record of the module version that went to each
build. This build index vector must be maintained in some
type of a build management database. There are many sad
stories in the software maintenance community about soft-
ware systems that have been delivered to a customer without
such a record. It is almost impossible to interpret trouble

th

reports from customers if the structure of the build that the
customer is using is not known.

A natural way to capture the intermediate measurements
for each build would be to incorporate the measurement tools
within the configuration management system. Just as code
deltas are maintained for each program module, so should
deltas for the code attributes also be kept by the configuration
management system.

The prime objective of this discussion is to demonstrate
the measurement process for measuring successive stages of
an evolving software system. Thus, we will be able to assess
the precise effect of the change from the build represented by
V' to V"' or even V' to or v'-~. These data will
serve to structure the regression test activity between builds.
Those modules that have the greatest change in complexity
from one build to the next should receive the majority of test
effort in the regression test activity.

When evaluating the precise nature of any changes that
occur to the system between any two builds i, and j , we are
interested in three sets of modules. The first set, is the
set of modules present in both builds of the system. These
modules may have changed since the earlier version but were
not removed. The second set, kf;', is the set of modules
that were in the early build, i, and were removed prior to the
later build, j . The final set, kf?, is the set of modules that
have been added to the system since the earlier build.

As an example, let build i consist of the following set of
modules.

Between build i and j module m3 was removed giving. Thus,
M' = (m, , m2, m,, m4, m, 1

M J =Mi u M ' * J -M:J

= {m, , m2, m3. m,, ms Iv { I- {m3 I
={m,,m,,m,,m,)

Then between builds j and k two new modules, m, and ma are
added and module m2 is deleted giving

Mk = M I uML.'

= (4 9 m*,m49 112s E. {m,,m, I- {mz I
= {MI, m4, m,, m7, ma I

With a suitable baseline in place, it is possible to measure
software evolution across a full spectrum of software metrics.
We can do this first by comparing average metric values for
the different builds. Secondly, we can measure the increase
or decrease in system complexity as measured by the changes
in the domain metrics, or we can measure the total amount of
change the system has undergone across all of the builds to
date.

The change in domain score in a single module between
two builds may be measured as the absolute value of the
difference in domain scores on these two builds. We will call

this code churn measure domain churn. In the case of code
chum, what is important is the absolute measure of the na-
ture that code has been modified. From the standpoint of
fault introduction, removing a lot of code is probably as
catastrophic as adding a bunch.

Let difl" represent the iIh domain score of the arh module
on build j baselined by build B. The new measure of do-
main churn, x , for module m, is simply x~~ = I ~ : J - d$k(.
That is, the domain churn may be established by computing
the baselined domain scores for any two builds and then
find the absolute difference between these values. This
represents the relative amount of change activity that there
has been on each of the three domains between any two
builds.

Now we wish to characterize, or measure, the complete
change to the system over all of the builds from build 0 to
build L. Many modules, however, may have come and gone
over the course of the evolution of the system. We are only
interested in the history of the survivors; those modules that
are now in the final build L.

It is now possible to compute the total domain change
activity for the aggregate system across all of the system
builds. The total domain change activity of the system for
module m, on domain i is the sum of the domain churn for
this module from the point of its first introduction to the
final build L is given by

j=O

The value of the domain churn XL for each module is, of
course, dependent on the referent baseline build B.

Let us also observe that if module m, were not present
on builds j and j + i , then &+' = 0. Also, if module ma

had been introduced on build j + i then x$+;'f' = d B I+' . I I
8. The Relationship Between Software Faults

and Change Activity
As a software system evolves through a number of se-

quential builds, faults will be identified and the code will be
changed in an attempt to eliminate the identified faults. The
introduction of new code however, is a fault prone process
just as the initial code generation was. Faults are introduced
during this evolutionary process.

Code does not always change just to fix faults. Some
changes to code during its evolution represent enhance-
ments, design modifications, or changes in the code in re-
sponse to evolving requirements. These incremental code
enhancements may also result in the introduction of still
more faults. Thus, as a system progresses through a series
of builds, the domain scores of each program module that
has been altered must also change. The rate of change in
these domains should serve as a good index of the rate of

fault introduction. That is the conjecture that we wish to
explore

To this end, we computed domain scores all of the builds
of the MDS system. These domain scores were baselined
relative to the July 7, 2001 build of the system, a build more
or less intermediate in the sequence of builds. In general, it
is not a good practice to use an initial build as a baseline
build. This initial build is generally quite incomplete. Many
of the modules, for example, will only be stubbed out.

The next step in this investigation was to compute the
fault count for each program module. The driving force be-
hind this measurement process was the Internal Anomaly
Report (IAR). All changes to the software were tracked un-
der the CCC Harvest version control system (now incorpo-
rated into Computer Associates' CM systems - see [CA02]).
Each change to a program module was made either as an
enhancement or in response to a particular IAR. If a module
code delta was attributed to an IAR, then the faults attributed
to that change were calculated using the token bag difference
methodology described earlier. Thus, for each module ver-
sion after the initial version, it was possible to track very
precisely the change activity to that module and a very pre-
cise count of the fault tokens.

Once the fault count had been established for each incre-
mental module version, the fault counts were accumulated so
that by the final build a cumulative fault count was available
for each module in the final build. The fault counts for mod-
ules not in the final build, of course, vanished with the mod-
ule domain chum values when the modules disappeared from
the evolving builds.

We now have, for each module in the final version of the
system, a measure of the number of faults that have been
found in that module to date. We also have cumulative do-
main churn values for each of the three orthogonal domains.
To model the relationship between the fault content of mod-
els and the domain metrics, we now eliminated those mod-
ules whose fault count was zero. There are two very good
reasons for eliminating these modules. First, a zero fault
count for a module on the last build does not imply that there
are no faults in this module. It could very well mean that the
faults have yet to be discovered. Second, approximately 90%
of the modules in the final build have zero fault values. They
would clearly dominate any regression model that was devel-
oped using them.

With the data from the remaining 563 modules, a multiple
linear regression model was developed with the cumulative
fault count as the dependent variable and the domain churn
values as independent variables. The regression ANOVA for
this analysis is shown in Table 4. It is clear from this analy-
sis that there is a significant relationship between the domain
churn and a module's fault burden.

The final regression model is shown in Table 5. Do-
main I-cKdominates this model. Domains 2 and 3 do not
contribute to our understanding of the fault introduction

process. The regression coefficients for these terms are not
significant (j~O.01).

Table 4 - The Regression ANOVA
[Sumof I df 1 Mean I F I Sig. I I Source

Regression
Residual

Total

10091546 3 3363848 293 p<O.OI

16522203 563
6430656 560 11483

(Constant)
Domain 1 Chum 1 21.631 17.31 P<.Ol
Domain 2 Chum I -.5!4 -.31 p>.O1
Domain 3 Churn I .93(.A p >.01

The constituent metrics for Domain 1 were established in
Table 2. The metrics most closely associated with this do-
main were Nodes, Edges, MaxPath, AvePath, and Cycles.
All of these metrics are attributes of the control flow graph
representation of a program module. From this we can infer
that the fault burden attributed to change activity is most
closely associate with the change activity in those modules
that had the greatest change made to their control structure.

Next we want to know something about the relative
quality of the regression model that we have developed. We
will use the R2 statistic as an indicator of the quality of the
model. These data are shown in Table 6. We can see from
this table that the adjusted is approximately 0.61. This
means, roughly, that we can account for approximately 60%
of the variation in the cumulative fault count with the cumu-
lative domain churn for Domain 1. This is a very respect-
able value for the limited metric set that the Darwin tool
currently uses.

9. Discussion and Future Work
We have seen that structural measurements of a system’s

structural evolution can serve as useful predictors of the
number of faults inserted into a system during its develop-
ment. In a very real sense, then, we did meet our objective
in developing a practical method of predicting software fault
content based on the structural characteristics of the MDS
software system. Although the number of measurements
used in this study was rather limited, about 60% of the
variation in the cumulative fault count was explained by this
set of measurements. This is a sufficiently large value for

development efforts to start using these measurements as a
management tool. Software managers should be able to use
these measurements to:

Identify the modules which have had the most faults in-
serted
Determine how many more faults a given module has had
inserted into it than another module.

Future work will involve enlarging the set of measurements
taken by DarwinTM and determining the effect of the enlarged
set on the accuracy of the fault predictors. For instance,
DarwinTM does not currently take any measurements specifi-
cally related to objects (e.g., number of methods, depth of an
object in the class hierarchy). Future versions of DarwinTM
might implement the object-oriented measures proposed by
Chidamber and Kemerer [Chid94].

The DarwinTM network appliance is still in its period of
infancy. It presently incorporates a relatively simple metric
analysis tool. The main issues that had to be solved first in
the measurement process were infrastructure problems. We
are now able, however, to track all aspects of software source
evolution. Mechanisms are in place to measure software
faults very precisely. Mechanisms are also in place to auto-
mate the complete measurement of a rapidly evolving soft-
ware system. As a preliminary report and investigation, the
Darwin measurement system has clearly established itself as
a viable tool for the understanding of the etiology of software
faults and their relationship to software attribute that can be
measured.

To date, we have been able to develop models relating the
cumulative number of faults repaired to the cumulative meas-
ured structural change. For fbture work, we would like to be
able to model the fault insertion rate as a function of the
amount of structural change that occurs between the insertion
of faults. In order to do this, we must be able to identify the
version of the module in which a fault first appeared. CVS,
the configuration management system used in the DarwinTM
appliance, allows us to do this. CVS can generate reports
identifying the version in which each line was inserted into
the system. A fragment of this type of report is shown below
in Figure 1. The leftmost numbers indicate the version in
which each line was inserted. We will use this capability to
determine the version into which each fault was inserted.
Since we have a complete history of a system’s structural
evolution, we will be able to compute the amount of change
that occurred between each group of faults inserted into that
module, and thereby determine an empirical distribution of
the number of faults inserted per unit change.

We have developed a definition of software faults that can
be applied to source code. The definition allows faults to be
unambiguously measured at the level of individual modules.
Since faults are measured at the same level at which struc-
tural measurement are taken, it becomes more feasible to
construct meaningful models relating the number of faults
inserted into a software module to the amount of structural
change made to that module. Because of the way in which

faults are defined, the task of counting faults is easily auto-
mated, making it much more practical to analyze large soft-
ware systems such as those developed to support NASA
flight missions. In other words, the faults may be quantified
by a software tool that can analyze the deltas in code mod-
ules maintained by the configuration control system and
measure those changes specifically attributable to failure
reports.

1 28 inm 21-Mar-011. in1 wakher D B ~ B w m d ~ whom (char * amd -. - - , . - .
1.28 iim Zl-Mar-Oli(
1.28 ljim 21-MarOl): RUatOfRBuf'option% PThe separatsdoptmr. 'I
1.28 (jim 21-Mardl): RLialORBufEnby * optbn.entry; / *An entry in lhe list of optim. ' I
1 31 (man 04-Mayor): RLislOiR&If * o p l i n ~ a r t . ; I' O W entry broken M o name and value. 'I
1.28 (jim 21-Msr-01). RLislORBufEnlry'option_nsme. r The Name Of Ihe wrrenlo$bn. *I
1.28 (iim 21-Mar-01): RLislORBufEnlw * omon_val; I' Tlw Valw C i app!k.abW of the

1.28 him 21-Ma&):
1.35 (m y 2s~sn-02): ophm = rslr_spli (arga. *:", 0);
1.28 uim 21-Mar-01): command-line = waldler_wnfig_get_mmmand_firm 0:
1.28 iiim 21-Mar-011:
1.28 iim 21-Mar-01 j: RLIST-FOREACH (opdcms. optm_entrv)
128 Oim 21-MarOl): {
1.35 (wry 23-Jan-02):
1.28 Oh 21-MarOl):
1.28 Oim 21-MarOl):
1.28 liim 21-Mar-01)

oplion_plt. = huf-spld (option-entry->buf. '=I. 1):
o w - n s m e = rlistnlh (ophn_prIs. 0):
optb-val = rlistnth (option-pa*. 1);

1.31 [man MMay-01):
1.29 (iim 23-Mar-01): if (rtwf-esual-slr (option-namerbul. 'allwnodrivs~*)l
1.28 Gim 21-MarOl): (
1.28 (iim Zl-MarOl): rWrsndlwillwant1obeabletoslartwatcherupbefweany
1.31 (man 04-MayOl):
1.29 (lim 2SMarOl).
1.28 (j i 21-Mar-01):

*dnvemare inatallad. ' I
mode-aiv@-slr (mmmand-line. 'anwnodnvsra~, 'true');
p'nff r Will allowslarM%! withwl drivers..\n");

I ,PI ,iim ?,.U..."l\. I .._" V.... - " ._ . I . ,
1.29 fiim 23-Mar-01):
1.28 ljim 21-Mar-01). (
1.28 (j i 21-Mardl):

else 1 (rbul_equaCslr (option-namwbuf. "only-lranspon'))

P Wren& wan& to dart watcher with only lhe d f i e d lra~wrt
1 31 ?man M-May-01):
t .31 (mau 04-May-01):
1.28 (jbm 21-MarOl):

1 29 ljim 23-Mar-01):
1.31 (man W a y - 0 1) :
1.28 ljim 21-Mar-Ol): break;

* (m, mod likely a unix socket or smeming. lo send it mmmandr
* wimout I!yiyina lo mnwn to any GUls) *I

(prinff ('oniylranspott requirf5 a va1ue.W).

1 (NULL=- oplion_val)
1.28 (Jm 21-MsrO1):

wellJmed = FALSE;

There may be uncontrolled sources of noise which we
intend to address in future work. For example, developers
might be making enhancements to the system at the same
time they are responding to a reported failure. In this case,
the enhancements would be counted as repairs made in re-
sponse to the failure. Addressing this issue will involve
selecting an appropriate subset of the reported failures and
interviewing developers about the changes made in response
to those failures. We will be careful to select representative
failures from all system components to control for the noise
inserted by each development team. We will also select
reported failures from different times during the develop-
ment effort, to determine whether the number of enhance-
ments reported as fault repair changes over time.

As mentioned above, the determination of when a fault
was initially inserted into a component is based on the abil-
ity of the revision control system to identify the version in
which each line first appeared in the module. For faults
whose repair involves removing or modifying a line, deter-
mination of when the fault was introduced into the module
is straightforward. However, if the repair activity involves
adding a line, determining the version into which the fault
was inserted is more complicated. We need to examine the

context in which the repair is made to determine the first ver-
sion of the module in which the absence of the line would
have constituted a fault. As an approximation, we can de-
termine when the lines bounding the repair first appeared in
the module. For instance, suppose that repairing module A
involves adding one line between lines 99 and 100 of version
11. The new line now becomes line 100, and line 100 be-
comes line 101. After committing the change to the reposi-
tory as version 12, we can use the revision control system's
reporting capabilities to identify the first version in which
both lines 99 and 101 appear - we will take this version to be
the one in which the fault originally occurred.

Note that this approximation may not always accurately
indicate the version in which a fault was introduced. Con-
sider 2 modules, A and B. Module A computes a real num-
ber and passes it to module B, which determines the square
root of that number and returns that value. Versions 1-4 of
module A are constrained to return values greater than or
equal to 0, and because of that constraint, module B does not
test the input to determine whether it is less than 0. How-
ever, a change in the requirements removes module A's con-
straint in later versions. Suppose that at the same time that
version 5 of module A is created, version 2 of module B is
created in response to a request to change the formatting of
its output, but that no provision is made to determine whether
its input is less than 0. We later discover that module B does
not respond as expected to inputs from module A, and we
change module B to first test the input value before extract-
ing the square root. In this situation, we see that the fault
was inserted at the same time that version 2 of module B was
created, although the approximation described above would
indicate that the initial version of module B contained the
fault. Only a detailed examination of a selected subset of the
failure reports with which we are working will allow us to
estimate the amount of uncertainty introduced by this ap-
proximation.

The technique described above does not currently allow
us to identify all situations in which a given token has been
replaced by another, which may lead to undercounting the
number of faults that have been corrected. Consider the fol-
lowing example, for which the original statement is:

which is changed during repair to

The six tokens representing (5) is BS = {<a>, <=>, , <+>,
<c>}, and the eight tokens representing (6) is B6 = {<a>,
<=>, , <->, <c>, <+>, <d>}. We see that what has hap-
pened is that <+> in (5) has been changed to <-> in (6), and
that <c>, <+>, and <d> have been added in (6). However,
the bag difference B6 - B5 = {<->, <d>}, indicating the addi-
tion of two new tokens, but failing to indicate that one token
was replaced by another. We are currently developing tech-
niques to resolve this issue.

The technique also does not identify the number of tokens
that have been reordered. Consider again the situation illus-

(5)a = b + c;

(6) a = b - c + d;

trated by comparing (2) and (3). We see that the ordering of
 and <c> has changed from (2) to (3), for which we
could count 2 faults. However, our examination of the bag
difference leads only to the conclusion that at least 1 token
has changed, for which we count 1 fault according to our
definition. In this situation, our definition could again lead
to undercounting the number of faults repaired.

Acknowledgments
The work described in this paper was carried out at the

Jet Propulsion Laboratory, California Institute of Technol-
ogy. This work is sponsored by the National Aeronautics [Muns90]
and Space Administration’s IV&V Facility. The authors
wish to thank the MDS project for the cooperation that
made this study possible.

References

[IEEE93]

[Khosol]

[KhosOla]

[Muns98]

[CA02]

[Chi1921

[Cede931

[Chid941

[Cyla03]

[Dvo99]

[Ghok97]

[HaIlOO]

[IEEE83]

[IEEESS]

Computer Associates, ‘‘AIlFusion Harvest Change
Manager Features, Descriptions & Benefits”, Feb.
1 1,2002, available at: [Muns02]
httu://www3.ca.com/Files/FactSheetfaf harvest cm
fdb.vdf
R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D.
Moebus, B. Ray, M.-Y. Wong, “Orthogonal Defect
Classification - A Concept for In-Process Measure-
ment”, IEEE Transactions on Software Engineering,
November, 1992, pp. 943-946.
Per Cederqvist, “Version Management with CVS for
CVS l. l l . lpl”, available at:
httD:/lwww.cvshome.orddocs/manuall. [Niko98]

S . Chidamber, C. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on
Software Engineering, vol. 20, no. 6, June, 1994, pp.
476-493.
“The Darwin Software Engineering Measurement
Appliance”, Cylant, httu://www.cvlant.com/ [NikoOl]
D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks,
“Software Architecture Themes In JPL’s Mission
Data System”, AIAA Space Technology Conference
and Exposition, September 28-30, 1999, Albuquer-

S. S. Gokhale, M. R. Lyu, “Regression Tree Model-
ing for the Prediction of Software Quality”, proceed-
ings of the Third ISSAT International Conference on
Reliability and Quality in Design, pp 31-36, Ana-

G. A. Hall and J. C. Munson, “Software evolution:
code delta and code chum“, Journal of Systems and
Software 54 (2) (2000) pp. 11 1-1 18
“IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Std 729-1983, Institute of Elec-
trical and Electronics Engineers, 1983.
“IEEE Standard Dictionary of Measures to Produce
Reliable Software”, IEEE Std 982.1-1988, Institute
of Electrical and Electronics Engineers, 1989.

[Muns031

Niko971

que, NM. [SChn97]

heim, CA, March 12-14, 1997 [SChnOl]

“IEEE Standard Classification for Software Anoma-
lies’’, IEEE Std 1044-1993, Institute of Electrical
and Electronics Engineers, 1994.
T. Khoshgoftaar, “An Application of Zero-Inflated
Poisson Regression for Software Fault Prediction“,
proceedings of the 12th International Symposium on
Software Reliability Engineering, pp 66-73, Hong
Kong, Nov, 2001.
T. M. Khoshgoftaar, E. B. Allen, ”Modeling Soft-
ware Quality with Classification Trees”, in H. Pham
(ed), Recent Advances in Reliability and Quality
Engineering, Chapter 15, pp 247-270, World Scien-
tific Publishing, Singapore, 200 1 .
J. C. Munson and T. M. Khoshgoftaar, “Regression
Modeling of Software Quality,“ Information and
Software Technology, Vol. 32 No. 2 March 1990,

J. Munson and A. Nikora, “Estimating Rates Of
Fault Insertion And Test Effectiveness In Software
Systems” Proceedings of the Fourth ISSAT Intema-
tional Conference on Reliability and Quality in
Design, August 12-14, 1998 pp. 263-269.
J. Munson, A. Nikora, “Toward a Quantifiable
Definition of Software Faults”, Proceedings of the
13th IEEE International Symposium on Software
Reliability Engineering, IEEE Press.
J. Munson, Software Engineering Measurement,
CRC Press, 2003.
A. Nikora, J. Munson, “Finding Fault with Faults: A
Case Study”, with J. Munson, proceedings of the
Annual Oregon Workshop on Software Metrics,
Coeur d’Alene, ID, May 11-13, 1997.
A. P. Nikora, J. C. Munson, “Determining Fault
Insertion Rates For Evolving Software Systems”,
proceedings of the 1998 IEEE International Sympo-
sium of Software Reliability Engineering, Pader-
bom, Germany, November 1998, IEEE Computer
Society Press.
A. Nikora, J. Munson, “A Practical Software Fault
Measurement and Estimation Framework”, Indus-
trial Presentations proceedings of the 12th Interna-
tional Symposium on Software Reliability Engineer-
ing, Hong Kong, Nov 27-30,2001.
N. F. Schneidewind, ”Software Metrics Model for
Integrating Quality Control and Prediction”, pro-
ceedings of the 8th International Symposium on
Software Reliability Engineering, pp 402-41 5, Al-
buquerque, NM, Nov, 1997.
N. F. Schneidewind, “Investigation of Logistic Re-
gression as a Discriminant of S o h a r e Quality“,
proceedings of the 7th Intemational Software Met-
rics Symposium, pp 328-337, London, April, 2001.

pp. 105-1 14.

http://httu://www.cvlant.com

