
MANAGING FLIGHT SOFTWARE COST RISK

Jaims M. Hihn
Karen Lum

Hamid Habib-agahi
Erik Monson

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 109

Abstract-In 1999 a study was conducted at NASA’s Jet Propulsion Laboratory to identify the
root causes of reported significant flight software cost growth on a number of its major missions.
The results of the 1999 study were reported in two papers. The first paper identified the root

causes of the observed flight software cost growth [l] and the second paper described a set of
proposed strategies and policies to reduce software cost growth on future mission [2]

This paper reports on the results of a follow up study conducted on 7 JPL missions completed
or near launch since 1999. The objective is to determine to what extent the recommendations
were implemented and whether they have had any impact.

INTRODUCTION
NASA’s Jet Propulsion Laboratory (JPL) has a long record of successful deep space missions
from Explorer to Voyager, to Mars Pathfinder, to Galileo to Mars Odyssey, to name but a few.
Its experience and success as with the rest of the aerospace industry is built upon hardware and
system level expertise. Throughout the nineties software became more important in its
contribution to spacecraft risk, integration and overall workforce. During the late nineties, this
change was magnified when a number of missions managed by JPL experienced significant flight
software cost growth. In addition, several of the missions had exhibited software related
schedule slips that impacted or threatened the planned launch dates. This occurred in software
developed in-house as well as those that were contracted. In response, JPL funded a study in
1999 to identify the systemic causes and to develop a set of recommendations to reduce the cost
risk in flight software development activities. The results of this study are reported in [l, 21.

This paper summarizes the final results of a follow-up study of seven current flight projects that
launch from the summer of 2001 to 2005, in order to identify what has changed since 1999.
Particular attention is paid to missions in which previous recommendations were implemented.
Issues relating to such factors as inheritance, staffing, cost estimation, system engineering and
management are identified and explored in an attempt to better comprehend the complex
interrelationships between software tasks and the project as a whole. In order to provide proper
context for interpreting the results of the current study, the next section provides a summary of
the causes and recommendations that were identified in the 1999 cost risk study.

BACKGROUND: 1999 SOFTWARE COST RISK STUDY SUMMARY

Projects in either development or operations were selected for the 1999 study, based on the

following criteria:

Cost growth to exceed 20% of plan at Preliminary Design Review (PDR) in last three
years, plus one mission that was within budget
One project must be a ground system
Includes a mixture of in-house and system contracted projects

Data was gathered using a multiple step approach incorporating interviews, focus groups, multi-
voting, and workshops:

1. Interviews
a. Using Protocol Analysis, an Unstructured Interview was performed to obtain self

reports of what happened on specific missions.
b. A follow-up Structured Interview was used to identify how self reports had been

categorized and to identify missing information
2. A Focus Group / Workshop was used to brainstorm underlying causes of software cost

growth based on interim findings from the initial interviews
3. Multi-voting served to identify top cost risk categories
4. A second Workshop was used to review and finalize JPL strategic software policy

recommendations

The eight selected missions were chosen from a pool of twenty-four that were currently either in
development or operations, yielding six flight software systems and two ground systems. The
mission with no cost growth was used as a “control” or to assist in verifying that projects with
the identified cost risk factors did indeed exhibit higher rates of cost growth. Of the seven
missions that experienced cost growth, the cost increased approximately 50% on average, with a
range of 25% to 180%. The characteristics of the missions used in the study are described in
Table 1.

Table 1: Mission Characteristics

Based upon a categorical analysis [3] of the data, a number of key risk areas were identified.
These areas include: Experience & Teaming, Planning, Requirements and Design, Testing,
Software Inheritance, Staffing, and Tools & Methods.

Table 2 contains a summary of the top five different risk areas identified in the study, the
frequency with which each risk area was reported, and the sources of cost growth pertaining to
each particular area. Based on the results of the multi-voting, process and focus group
discussions, the participants identified the most significant risk areas as Planning, Requirements
& Design, and Experience & Teaming.

Risk Area

Management
and System
Engineering
Planning

Percent of
Missions Summary of Reported Issues

Reporting
43% Management and system engineers lacked software experience

Poor teaming between HWI SW and systems/SW team
Software team lacked mission experience

71% Poor planning and estimation practices

Requirements 57%
and Design

Planned inheritance never happened
Insufficient reserves for SW
Software staff not included in early planning and decision
making
Lack of good architecture and system partitioning
Systems decisions made without accounting for impact on
software
SW requirements solidify late in the life cycle and are very

During the interviews, participants were also asked to provide preliminary recommendations to
help mitigate cost growth risk in flight software projects based on personal ‘lessons learned’.
Recommendations that were mentioned at least 50% of the time include:

Project managers & systems engineers must have a better understanding of software
More detailed planning and tracking of software similar to hardware is required
Software must have an early presence even in pre-Phase A and be part of an integrated

The software development process must deal with evolving requirements & assume that
the unexpected will occur

Plan

Testing
Software

The final step was to translate the initial recommendations into specific JPL software policies
that could be implemented by managers of future missions and supported by JPL policies. The

volatile
Testbeds; too few, too late, not validated, lacked capability 57%

43% Inherited code did not behave as advertised, was poorly
Inheritance

Tools etc.

Staffing

- -
documented, and required more modification than expected.
(5 of 8 missions attempted to inherit software. Of these, 4
reported major problems.)

86% Poor test result analysis tools

inheritance.
71% High turnover in software staff

SW team not included in early stages of planning
Integration and SW teams not available to support ATLO

Purchased COTS tool never used. Not included in SW

following recommendations were finalized during the second workshop:

Recommended JPL Organizational Policy

1. Require all projects to have a software system manager with budget authority and
responsibility over flight and ground SW and reports directly to the project manager. (The
same as the spacecraft and instrument managers.) The software system manager's other
responsibilities include:

Preparation of software cost estimates, plan, and budget
Development of software architecture by PDR
Ensure consistency of software architecture and the system architecture
Ensure that software is considered in all design trades
Supporting subsystem managers in planning, development, integration, test, operations,
and maintenance.
Coordination of operations, flight software, and ground software.
Determine how software will be managed within the project and integrated within the
overall project implementation structure.

Recommended JPL Product Policies

2. Require the development of a system architecture supported by a software architecture
that clearly documents an integrated hardware and software design prior to PDR.

3. Require the development of a management plan that addresses software including a risk
management plan with reserve and contingency allocations based on estimated risk prior
to PDR.

4. Require the development of a test strategy and plan prior to PDR.

Recommended JPL Process Policies

5. Require a Software Inheritance Review similar to the Hardware Inheritance Review
(when appropriate) prior to PDR and Critical Design Review (CDR).

6 . Require that software be reviewed at the Non-Advocate Review (NAR).

7. Require that the software architectural designs be reviewed at PDR and updated at CDR.

8. Require that a Risk Management Plan be reviewed at PDR and updated at CDR.

9. Require Test Plans and status be reviewed at PDR and updated at CDR.

FOLLOWING THROUGH

' Over the past four years, JPL has been redefining how software is integrated into its missions.
The initial push has been to get key software positions defined and established in all projects. To
date, the implementation of product and process policies has been approached more informally to
allow projects to deal with unique issues and software issues in a project-specific basis. This will

begin to change in the next few years, as there will be required software document reviews as
part of the major project milestone reviews. The two main changes have been the creation of the
Project Software Systems Engineer position to give voice to software issues at the project-level
and the Flight Software Manager who is responsible for all spacecraft software and interfaces
with the instruments and the ground data system. In addition, these positions are being staffed
much earlier in the life-cycle than in the nineties. Therefore this study focuses primarily on how
these positions have been implemented, and to a somewhat lesser extent, on the maturity and
stability of the key software products and activities at system-level PDR, software and systems
design stability and integration, risk management plan existence, and whether a software
inheritance review was conducted. These are analyzed in the context of the observed cost growth
and the previously identified risk areas.

METHODOLOGY AND DATA SUMMARY

Methodology Comparison

The selection criteria for a project to be included in the follow up study were much simpler than
in the 1999 study. In this case a study of overall mission cost growth was being funded by the
JPL Costing Office and it was decided to take advantage of this opportunity to update the
software cost risk study. Of the missions identified for the mission-level cost growth study,
many were outsourced to contractors that did not have contacts easily available who could
answer the detailed software-level questions. To compensate for this, software from several
major instrument projects were also included to expand the size of the data set. Table 3
summarizes the methodological differences between the 1999 study and this current study. .

: 3. Data and Methodology Differences

0 Must have both in-house Projects participating

Projects that were ne

1999 Study Current Study

and contracted SW Mission-level study
represented

launch
220% growth from PDR to

At least 1 ground project
1 project with no cost

launch

erowth
8 I 7

4 Flight (1 in-house,
contracted, 1 mixed)

house)

2 Ground (2 in-house),
6 Flight (3 in-house,
contracted)

Data Collection Methodology
Data was collected through interviews, which lasted approximately 60-90 minutes each. Two to
three persons conducted the interviews: one interviewer functioned as the main interviewer, the
second as a scribe, and the third as backup to reduce the likelihood that information could be lost
or misinterpreted. Interviewers met to compare notes taken during the interviews in order to
identify discrepancies. Follow-up interviews were scheduled when further explanation was
needed. Informal phone conversations and electronic mail were also used for further
clarification.

The interview forms consisted of the following questions:
(1) basic identification (name, current position, and project)
(2) budget at PMSR (the earliest milestone representing the gate between phase A and phase

(3) budget at PDR (the milestone representing the gate between phase B and phase C)
(4) budget at completion or launch or if not completed yet, then the estimate at completion
(5) description of software development and any issues or problems that arose
(6) various questions related to recommendations from the previous study, inclading roles

Although their roles may not have been software-specific, all of the participants in the study had
extensive software experience. The interviewees held positions that included Technical
(cognizant) engineer, software manager, software system engineer, and flight project manager.
The interviewees typically supported their responses to the questions with descriptions of specific
events or behaviors that illustrated their issues or concerns.

B)

and responsibilities of the software manager.

After the interviews were completed and transcribed, the responses were reviewed and
systematically grouped into the risk areas identified in the 1999 study as well any new risk areas
identified in the current study.. Based on this, a table of the causes of flight software growth was
constructed and then the projects in the study were also assessed to determine how many of the
recommendations from the previous study were implemented.

Data Summary

The current study examines software development cost on seven current JPL projects - four
flight projects and three instrument projects - that have launched or have completed CDR. Three
out of four flight software projects were contracted out or were partially contracted out. All three
instrument software projects were developed in-house. Table 4 provides an overview of the
missions included in this study and summarizes their basic characteristics. See Table 1 for
comparisons to the 1999 study.

Table 4. Data Summary
I I I

Table 5 presents a summary of the cost growth of the projects included in this study as compared
to the cost growth in the 1999 study. The average software cost growth from PDR to Launch has
not changed significantly (from 51% to 49%) since the 1999 study. The mean software cost
growth in Table 5 excludes growth due to major external factors. As an example, one of the
missions included in the study was seriously impacted by the Mars 98 mission failures and
ultimately had to relinquish its launch opportunity to another mission (not included in this study)
that had a tighter launch window. Although the range of growth appears smaller, there were too
few projects in the study for the range to be significant. It is important to note that unlike the
1999 study the software systems included in the study were not selected because they exhibited
cost growth so there is no apriori reason to expect an upward bias. Furthermore, this is likely to
be an underestimate as three of the projects are not completed yet and may grow more than
estimated.

Table 5. SW Cost Growth (Percent of SW Budget from
PDR to Launch)

1999 Study vs. Current Study
1999 Study I Current Study (all projects)

Mean
51%

*Excludes the percentage growth due to external factors; mean
would be 53% if external factors were included

Range Mean Range
0- 180% 49%" 8-100%

RESULTS AND ANALYSIS

Understanding Cost Growth and its sources

The reported causes of cost growth were mapped into the risk areas identified in the original
study: Experience & Teaming, Planning, Requirements and Design, Testing, Software
Inheritance, Staffing, and Tools. Table 6 provides a summary of the issues reported along with
the frequency with which issues were reported in each risk area.

The results shown in Table 6 indicate that there has been little change since the late nineties with
respect to the causes of cost growth. The issues reported are very similar and frequently identical
to those reported in 1999. In all but one risk area, the frequency is off by plus or minus one
response between the two studies. The only exception to this is in the area of tools and methods.
In the 1999 study, this was the most frequently reported risk area but in the current study it is the
least reported. One interpretation is that in the nineties, under the severe budget pressure of FBC,
software engineers frequently went looking for a 'silver bullet', assuming that it would help
reduce cost, however it often did not work and even increased cost development cost. Today
there appears to be more concern with using basic, mature tools that are well-known in order to
get the job done.

Table 6 reveals that the most frequently occurring risk area is Planning, with almost all projects
in the study reporting planning issues. Planning was one of the top risk areas identified in the
1999 study with 7 1 % occurrence. Planning issues included having insufficient reserves or
resources for software, incorrect scoping, and poor planning and estimation practices, such as
optimistic assumptions, overestimation of productivity, and short phase A or B.

The next most frequently identified risk area relates to requirements and design. Only one
project out of seven had unstable software architecture. However, five out of the other six
projects that reported stable software architecture still experienced requirements volatility,
improper design documentation, or their software architecture was not integrated with the
hardware architecture.

Summary of Reported Issues
from Current Study

Poor teaming between HW/SW and
systems/SW team
Weak communication between project mgmt
and software team
Insufficient reserves or resources for SW
Poor planning and estimation practices -
optimistic assumptions, overestimate
productivity, short phase A or B
Scoped incorrectly
SW requirements solidify late in the life cycle
and are very volatile
Design not fully documented1 not properly
CM'ed
HW/SW architecture not integrated
Requirements immaturehot well definedhot
baselined
New system and software architecture
Testbeds late/unreliable
Testbeds only had partial functionality required
Planned inheritance was less than expected
Inherited code not the same class as other code
Inherited code was treated as if it were new
code due to poor documentation

m Test tools late
Test tools ?? Lacked functionality
Loss of staff to other projects/High turnover in
software staff; training new people takes time
Insufficient workforce

m Funding profile forced us to release team and
then attempt to rehire at a later date.

Experience & Teaming

Planning

Ftaffing

Requirements and Design

Testing

Software Inheritance

Tools/Methods

6. Reported R
1999 Study

Percentage of
Missions

Reporting
Responses in

Risk Area

71%

71%

57%

71%

57%

86%

71%

k Area Freqi
hrrent Stud
Percentage oi

Missions
Reporting

Responses in
Risk Area

57%

86%

86%

57%

43 %

29%

71%

The next frequently identified risk area is staffing. Staffing was a commonly identified risk area
in the 1999 study and remains a highly identified risk area in this study. However, the specific
staffing issues have changed. While in the 1990s, integration and software teams not being
available to support ATLO was an issue reported multiple times, this appears to not be an issue
in the projects in this study. Shortage or loss of staff to other projects was often an issue reported
by many projects. The participants expressed their concern that training new people consumes
more time and money when the turnover is high.

Risk areas that had similar frequencies to the 1999 study include experience and teaming, testing,
and software inheritance. Although poor communications between software teams and the rest
of the flight project appears to an issue, experience does not appear to be an issue, as it was for
the projects in the 1999 study. While the same testing issues arose in this study as in the 1999

study, the projects that experienced late testbeds reported that once the testbeds arrived, they had
adequate access. Four out of seven projects in this study had software inheritance, of which four
projects reported issues with their software inheritance. The project that did not have issues with
software inheritance was the only project to hold software inheritance reviews.

Flight Software
Mean Range

64%(55%*) 23-84%
17% 0-67%

The cost growth summary in Table 7 breaks down the results software category (flight versus
ground) and by growth from PMSR versus PDR. The results suggest that instrument software
has higher average cost growth than flight software. In addition, it appears that flight software
has a smaller growth range than instrument software. However, given the small amount of data
and that several projects are not yet completed, this may not be significant.

Instrument Software
Mean Range
81% 52-100%
14% 0-42%

$DR - Launch

Project
Project A
Project B
Project C

Launch PMSR-PDR PDR-Launch
Growth Growth Growth

31% 0% 31%
80% 0% 80%
84% 67% 10%

44%(36%*) 1 10-80% I 67% 1 8-100%

Project E
ProjectF

*Adjusted mean excludes growth due to externally caused launch slip

92% 0% 92%
100% 0% 100%

Table 8 presents a breakout of cost growth by project. Here, it can be seen that only 2 out of 7 of
the projects show any change in their estimate by PDR (Projects C and G). In both cases these
two projects have also experienced smaller cost growth from PDR to launch than the other five
projects.

LProject GI 52%

Table 8. Software Cost Growth Summary
1 PMSR- I

~~

42% 8

IYroiectUI 23% I 0% I 23% I

This raises the question: what makes these two projects different? In both of these cases, there
was significant attention paid to software prior to PDR on both projects. As a result, the projects
were able to identify that the PMSR budgets were underestimated, communicate this problem to
the project, and finally adjust the budget accordingly.

Is The Way JPL Builds Software Changing?

At the time of the 1999 study, virtually all flight software was developed in an unintegrated

manner under its respective hardware-oriented subsystems. As a result, the software cognizant
engineers lacked budget authority and did not even have a separate account. Over the past three
to four years there has been a shft to create higher-visibility software positions with greater
authority. The current study probed to determine what software positions actually existed on the
project and to what extent they were able to fulfill the recommended job role. The nine
recommended job roles are displayed in Table 9.

I Table 9: Recommended Software Manager Remonsibilities
Management Responsibilities

1. Budget authoritv
2. Preparation of software cost estimates, plan, and budget
3. Determine how software will be managed within the project and integrated within the

overall project implementation structure.
4. Supporting subsystem managers in planning, development, integration, test,

operations, and maintenance.
5. Coordination of oDerations. flight software. and ground software.
6 . Manage Ground Software

Design ResDonsibilities
7. Development of software architecture by PDR
8. Ensure consistency of software architecture and the system architecture
9. Ensure that software is considered in all design trades

In Table 10 is displayed a summary of the responses to the survey questions that related to the
implementation of the recommendations documented in the original study which, in different
forms, have been advocated by various JPL senior managers. Note that the instrument projects
have not been asked to follow these recommendations at the present time. These instrument
projects are included in order to evaluate to what extent they fulfill the recommendations
informally and to determine if the underlying causes of cost growth are the same across flight
systems and instrument software.

Percent of
Project Recommended

Percent Cost Software Role Performed
Growth Software Systems by SW Mgr Reqs/Design

Project PDR-Launch Manager Engineer and/or PSSE Stable at PDR

Project A

Project B

Project C

Project D

Software Risk
identified and
documented a

PDR
Flight Projc
Yes. But

insufficient

ts

56%

56%

83%

67 %

31% 1 At contractor 1 authority.
I NotatSCSS 1

Arch. Yes
Reqs. No

Major Arch.
elements not

stable.
Reqs No

Arch. Yes
Reqs. No

Arch and Reqs
Stable

level and
authority

diffused over
80%

9.7%

23 %

Yes but
insufficient

several people. authority
Function

JPL SW Mgr had fulfilled by
budget authority. JPL SW Mgr.

Functon
partially

fulfilled by
JPL SE and

contractor SW
At contractor Mgr

Project E

Project F

Project G

--I--
92%

100%

8%

SW CogE at too
low of a level
and no budget

authority
SW CogE at too
low of a level
and no budget

authority
SW CogE at too
low of a level
and no budget

authority

No

Partial

Yes

Yes

Function

performed by

Function

partially

Partial Partial

partially
performed by

Function
partially

performed by

Arch. Yes
Reqs. No Yes

Arch. Stable, but
not well

integrated No

The percentage cost growth from PDR to Launch is included in order to compare differences in
cost growth between projects. The next two columns summarize whether a software manager
and/or project software systems engineer (PSSE) existed on the project, whether they existed at
the appropriate level, and whether they had sufficient authority to do the job. Here it can be seen
that three out seven of the projects have a software manager with budget authority who reports
directly to the flight system manager or instrument manager. However, only one of these
projects has such a manager at JPL. The other two projects to have a flight system manager or
instrument manager are at the contractor, Project C. In addition, three of seven projects have
someone fulfilling the project software systems engineer (PSSE) role. In Project C the software
manager fulfilled this role, which was found to be very effective (based on cost growth rate and .

percentage of recommended role). In Projects A and B the PSSE primarily fulfilled a review and
advisory role which made it difficult for them to be as effective as they might have been. The
fourth column shows the percentage of the recommended functions that were performed by the
software manager and/or PSSE (see Table 9). It appears no project has implemented all of these
functions as originally recommended. For example, none of the studies in the survey had an
integrated flight ground software manager. However, all four of the flight software systems and
even the three instrument projects included in the study implemented at least 50% of the
recommendations. The last two columns indicate whether the software requirements and
architecture were stable by PDR and whether the software risks were formally documented in
either at the project level or in a software risk management plan. As before, software
requirements are not stable at PDR - which will likely always be the case for JPL given the
nature of its business. On the other hand, significant progress has been made in establishing a
stable software architecture by PDR. While there is greater inconsistency, progress is also being
made in identifying and tracking software risks and in establishing a software management plan.

In Table 10 it can be seen that Project C was the only project that had a JPL flight software
manager at JPL with budget and technical authority. Project C scored the highest with 7.5 out of
nine (83%) of the recommended roles being fulfilled. A half point was given when a role was
partially fulfilled. Of the Flight Projects, Project C also has the lowest cost growth from PDR.
While this is only one observation among four of our twenty to thirty current flight missions, this
is highly suggestive that the recommendations are on track. This is illustrated by the graph

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

displayed in Figure 1.

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Percent of Recomended Software Roles on Project
-

Figure 1 Spacecraft Flight Software Cost Growth vs. Software Manager Roles and Responsibilities
While more data is needed to verify this relationship, the initial results from this limited follow-
up study support the importance of having visibility of software at the project level and a strong
software manager with budget and technical authority. These positions also need to be filled well
prior to PDR and if there is any hope of cost growth from PMSR these positions need to be filled

prior to PMSR.

CONCLUSIONS

The bottom line is that JPL needs to make a greater effort to catch cost growth prior to PDR, in
order to eliminate extensive software cost growth after the commitment review. The results of
this follow up study support the initial set of recommendations as being very important to
reducing software cost growth. While more data needs to be collected to further verify these
results, it is not counterintuitive that greater visibility and discussion of software earlier in the
lifecycle will get problems identified more realistic budgets defined earlier which will decease
cost and schedule growth.

ACKNOWLEDGEMENT

The research described in this paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

REFERENCESS
[l] Hihn, J and Habib-agahi, H. Identification and Measurement of the Sources of Flight
Software Cost Growth, Proceedings of the 22nd Annual Conference of the International Society
of Parametric Analysts (ISPA), 8-10 May 2000, Noordwijk.

[2] Hihn, J and Habib-agahi, H. Reducing Flight Software Development Cost Risk: Analysis and
Recommendations, 2000-5349, Proceedings AIAA Space 2000, 19-2 1 September 2000, Long
Beach, CA

[3] Simon H. and Ericson, K., Protocol Analysis: Verbal Reports as Data, MIT Press, 1993.

Jairus Hihn has a Ph.D. in Economics with principle application areas in econometrics and
mathematical economics. He has been developing estimation models and providing software
and mission level cost estimation support to JPL’s Deep Space Network and flight projects for
the past fifteen years, Jairus is currently the lead for the SofhYare Quality Improvement Project’s
Measurement and Estimation (M&E) Element, which is establishing a laboratory wide software
metrics and software estimation program at JPL. M&E’s objective is to enable the emergence of
a quantitative software management culture at JPL.

In a previous incamation, Jairus was on the Faculty at UC Berkeley in the Department of
Agricultural and Resource Economics where he co-developed a new statistical technique based
on the semi variance of a probability distribution for use in estimating agricultural production
and income risks; was the co-author on several papers which fomally applied catastrophe
theory to the analysis of political instability in third world countries using both non-parametric
and maximum likelihood methods. He has extensive experience in simulation and Monte Carlo

methods with applications in the areas of decision analysis, institutional change, R&D project
selection cost modeling, and process models.

Karen Lum is involved in the collection of software metrics and the development of sofhvare
cost estimating relationships at the Jet Propulsion Laboratory. She has a MBA in Business
Economics and a Certificate in Advanced Information Systems from the Califomia State
University, Los Angeles. She has a BA in Economics and Psychology from the University of
Califomia at Berkeley. She is one of the main authors of the JPL Software Cost Estimation
Handbook. Publications include Best Conference Paper for ISPA 2002: “Validation of
Spacecraft SofhYare Cost Estimation Models for Flight and Ground Systems. ’’

Hamid Habib-agahi has a PhD in mathematical economics and a B.S. in electrical engineering
from Purdue University. He joined JPL in 1979 as a member of technical staff in Section 311,
Systems Analysis. The focus of his work has been on developing and improving technology
assessment, cost estimation, new system analysis methodologies and tools to estimate project
cost and identifjl project cost risk areas.

He has been the Group Supervisor in section 31 1 for the past 18 years, providing leadership and
consulting to JPL senior management and NASA HQs in the areas of cost estimation and systems
analysis. More recently (during the past 5 years), Hamid has been working and managing tasks
to support the JPL Costing Ofsice, Strategic Systems Technology Program Office, Mars Program
Ofice, and New Millennium Program OfJice to design and develop systems engineering tools for
cost estimation, risk analysis, and technology assessment, and also to provide altemative pricing
policy to assist JPL flight projects in efsicient utilization of resources.

Prior to joining JPL, he was in academia as Associate Processor in Mathematical Economics.

Erik Monson is involved in supporting cost estimating activities at the Jet Propulsion
Laboratory. He holds a Master of Business Administration degree from Claremont Graduate
University and a BS in Computer Information Science from Lock Haven University. Previously,
Erik was the lead software developer for a Silicon Valley startup where he developed an
application using network-layer packet sniffers and automated knowledge bases to track
inappropriate usage on large distributed networks.

