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Abstract 

This paper describes scalability issues of Evolutionary- 
driven automatic synthesis of electronic circuits. The article 
begins by reviewing the concepts of circuit evolution and 
discussing the limitations of this technique when trying to 
achieve more complex systems. The paper continues by 
describing techniques developed by the authors to partially 
overcome the limitations of evolution, such as the use of 
domain knowledge, design re-use and the development of 
hardware accelerators, such as stand-alone board-level 
evolvable system (SABLES), which was built to speed up 
the evolutionary design of electronic circuits. We also 
propose new directions of research that address scalability, 
such as: 1)  evolutionary compilation of descriptions from 
behavioral Hardware Description languages (HDL) to 
structural HDL (for both the case of digital and 
analogmixed signal) 2) evolutionary synthesis, converting 
from synthesizable analog HDL to circuits and 3) 
hardware-software partitioning (co-design) for CPUFPGA 
hybrids. 

1. Introduction 

Evolution-driven automatic synthesis of electronic 
circuits has been demonstrated for simple circuits, yet its 
efficiency in obtaining complex electronic circuits 
operating under real-world conditions is still to be proven. 
Complex circuits are often associated with large circuits. 
Even a simply formulated requirement on which a circuit 
can easily be evaluated (e.g. a 12 bit analog to digital 
converter) may require a complex circuit solution. 
Complexity may also be in the requirements (often hard to 
formally specify, and which can translate in complicated 
evaluation tests for each individual) even if the resulting 
solution circuit is quite simple/compact. In certain cases it 
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may be useful to observe the distinction between the two 
aspects of complexity and treat them differently. 

Evolutionary synthesis has been mainly a bottom-up 
approach. The components used in most demonstrations of 
evolutionary circuit synthesis were primitive elements, for 
example device-level (transistor, capacitor, resistor) for 
analog circuits, or gate level for digital circuits. For any 
complex system the number of components used may be 
relatively large, leading to many ways of interconnecting 
them, and consequently to a very large and irregular search 
space. 

In addition to the challenge of sampling a large search 
space, there is also the problem that evaluations in 
simulations may take long, and what is worse, scale badly 
with increasing complexity of the design. For example, in 
automated analog circuit design it is known that the SPICE 
analysis/simulation scales badly with the number of nodes 
of the circuit. Thus it appears natural to try to reduce the 
number of evaluations and to speed-up 
simulations/evaluations. 

This paper is organized as follows. Section 2 reviews the 
concepts of evolution-driven automatic circuit synthesis. 
Section 3 describes techniques to address the scalability 
problem, including the use of domain knowledge, building 
block encapsulation, Mixed Model Search and the 
development of a hardware accelerator in the form of a 
stand-alone board-level evolvable system (SABLES). 
Section 4 proposes new techniques to address this problem, 
such as using structural descriptions when evolving from 
higher level specifications. Section 5 concludes the paper. 

2. The Evolutionary Search . 

The evolutionary/genetic search is tightly coupled with 
a coded representation that associates each circuit to a 
"genetic code" or chromosome. The simplest representation 
of a chromosome is a binary string, a succession of Os and 
Is that encode a circuit. The status of the switches (ON or 
OFF) determines a circuit topology and consequently a 



specific response. Thus, the topology can be considered as 
a function of switch states, and can be represented by a 
binary sequence, such as “101 I ...”, where a ‘ I ’  is 
associated to a switch turned ON and a ‘0’ to a switch 
turned OFF. 

First, a population of chromosomes is randomly 
generated. The chromosomes are converted into circuit 
models for evaluation in SW (extrinsic evolution) or into 
control bitstrings downloaded to programmable hardware 
(intrinsic evolution). Circuit responses are compared 
against specifications, and individuals are ranked based on 
how close they come to satisfying them. In preparation for a 
new iteration, a new population of individuals is generated 
from the pool of best individuals in the previous generation. 
This is subject to a probabilistic selection of individuals 
from a best individuals pool, followed by two operations: 
random swapping of parts of their chromosomes, the 
crossover operation, and random flipping of chromosome 
bits, the mutation operation. The process is repeated for 
several generations, resulting in increasingly better 
individuals. Randomness helps to avoid getting trapped in 
local optima. Monotonic convergence (in a loose Pareto 
sense) can be forced by unaltered transference to the next 
generation of the best individual from the previous 
generation. There is no theoretical guarantee that the global 
optimum will be reached in a useful amount of time; 
however, the evolutionarylgenetic search is considered by 
many to be the best choice for very large, highly unknown 
search spaces. The search process is usually stopped after a 
number of generations, or when closeness to the target 
response has reached a sufficient degree. One or several 
solutions may be found among the individuals of the last 
generation. 

3. Techniques for Scalability 

3.1 Use of Domain Knowledge 

One possible way to reduce the search space (possibly 
eliminating large regions of the search space) is through the 
use of domain-knowledge. The incorporation of domain- 
knowledge is sometimes implicit in the choice of 
representations, restriction or bias of possible 
configurations. For example, in one experiment it was 
difficult to use evolved logic gate circuits as building 
blocks for more complex designs, because the evolved gate 
was not able to drive similar gates. This was addressed by 
restricting inputs only to connect to transistor gates and not 
to drain, source or substrate; as a consequence higher input 
impedance solutions and better loading characteristics were 
implicitly obtained, and the building-block became 
reusable. 

In the current state of our research this technique was 
only applied to enforce that evolved building blocks could 
be cascaded to build complex circuits. However, it is not 
yet proven that the enforcement of human design guidelines 
might aid the Evolutionary Algorithm to synthesize 
complex circuits only from primitive components, i.e., 
without cascading simple evolved circuit building blocks. 

Evolutionary Algorithms can also rediscover classic 
human designs, as shown in Koza et al. ( 1  999). They have 
more chances to infringe on existing patented circuits if the 
representation is constrained by allowing only usual 
connections among components. This is usually the case of 
developmental approaches, in which user guidelines to 
build the circuit from the chromosome are used. 

3.2 Building Block Encapsulation 

It appears natural to say that the search space can be 
reduced if one keeps an acceptable scopelfocus, increasing 
level of abstraction e.g. through the use of increasingly 
higher level building blocks. The method proposed is based 
upon encapsulation and design re-use and one example is 
the evolution of a 4-bit Digital to Analog Converter (DAC). 
It has been observed that evolution had difficulty in solving 
this task using low-level components (such as transistors, 
resistors and capacitors) as building blocks. For instance, 
the literature reported that a total of 45,000,000 circuits had 
to be evaluated to achieve the solution for the 3-bit DAC 
problem using Genetic Programming (Bennett et al. 1999). 
The objective of our experiment was therefore to overcome 
this limitation and synthesize a 4-bit DAC hierarchically. 
At first, a 2-bit DAC was evolved from scratch, e.g., using 
only MOS transistors as components for evolution. This 
circuit was then employed as a building block for evolution 
to synthesize a 3-bit DAC, which was subsequently used as 
building block for the synthesis of a 4-bit DAC. Figure 1 
depicts the evolved circuit schematic and Figure 2 shows its 
response. In this particular experiment, the design re-use 
was not only limited to previously evolved DAC circuits 
(building blocks), but also employed other well-known 
building blocks, such as current mirrors. 

The experiment took less than one minute in a SPARC 
Ultra 2 Sun workstation evaluating about 200,000 
individuals. The dramatic reduction in time compared to 
other experiments is due to the fact that the DC operating 
point of encapsulated building blocks had already been 
defined, and their behavior was simulated using a high- 
level description language. For further details on the 
experiment refer to Zebulum, Stoica and Keymeulen 
(2001). 
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Figure 1: Hierarchically evolved 4-bit DAC. 



MN. A simulator simulates the physical behavior of each of 
the models M 1 through MN in response to a predetermined 
stimulus. The responses of each model are compared to a 
desired response and a fitness function is produced for each 
model, namely the fitness functions F1 through FN. A 
standard search process determines the next search points 
based on this information. 

In the proposed Mixed Model Search each one of the 
candidate circuit C 1 through CN is modeled by both a high- 
resolution model and by one (or more) low-resolution 
models. Thus, for the N candidate circuits C1 through CN, 
there are N pairs of models M1, ml through MN, mn. 
There are N high-resolution models M and N low- 
resolution models m. The pair of highhow resolution 
models (e.g., M2 and m2) (family model) representing a 
particular candidate circuit (e.g., C2) produces a pair of 
fitness functions (e.g., F2 and E). A combiner combines 
each pair of fitness functions to produce a combined score 
for the corresponding candidate circuit. For example, the 
combiner may compute the average of the two fitness 
functions as the combined fitness function or score. The 
combined score for each candidate circuit is provided to a 
search process that controls the simulator. The average 
may be a weighted average in which, for example, the 
fitness function of a higher resolution model is given more 
(or less) weight than that of a lower resolution model. 
Alternatively, the average may be unweighted. 

A computational savings may be realized by employing 
only one model for each candidate circuit during any single 
iteration of the evolution process. With each iteration of the 
evolution process, a different resolution level model is 
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Figure 2 - Response of the of the circuit shown in Figure 1. 

Building block encapsulation is a promising path to the 
evolutionary synthesis of complex circuits. In the context of 
the experiment described in this section, however, more 
investigation is needed to refine the representation. 
Although it seems natural to employ simpler DACs to 
evolve higher resolution ones, the circuit size gets very 
large comparing to classic human design. Even though it is 
straightforward to evolve a n-bit DAC using (n-1)-bit DACs 
as building blocks (leading to large circuits), it is still a 
difficult task for evolution to synthesize a n-bit DAC using 
(n-2)-bit DACs or simpler building blocks. 

Instead of using evolution as a tool for automatic 
composition of useful modules, these building blocks can 
also be selected using domain knowledge. One example is 
the use of Operational Amplifiers (OpAmps) in the 
evolution of analog circuits. OpAmps are standard building 
blocks for analog processing systems, being therefore 
natural candidates for the evolution of a regular analog 
design. The use of OpAmps as higher level building blocks 
enabled the hardware evolution of filters and signal 
separators, as discussed in section 3.4. 

3.3 Mixed Model Search 

Increasing the level of abstraction by using simpler models 
also speeds up simulations. Once a building block has been 
“encapsulated”, one can for example replace back-to-back 
transistors that form a switch with resistors, leading to 
circuits that simulate faster. From this point of view 
developing coherent equivalent models may be an efficient 
approach. Building coherent equivalent models of various 
levels of abstraction is made possible using the JPL- 
introduced concept of mixtrinsic evolution (Stoica, 
Zebulum and Keymeulen 2000). In mixtrinsic evolution 
models of various nature, or models of same nature but of 
different levels of resolution are used part of the search 
population. 

A set of candidate circuits C1 through CN is defined by 
a set of “chromosomes” that are fed to a high-resolution 
model to produce N high-resolution models M1 through 

assigned to each (or at least many) of the candidate circuits. 
As a result, after a number of iterations, each candidate 
circuit has been modeled with all levels of resolution. Such 
assignments may be carried out in a random fashion. For 
example a model could be considered for each candidate 
circuit, different candidate circuits being modeled with a 
model of a different resolution level. The first two 
candidate circuits C1 and C2 could be modeled with a high- 
resolution model (Ml, M2 respectively) while the third 
candidate circuit C3 is modeled with a low-resolution 
model (m3). The simulator produces data that would lead 
to a fitness function from each model (Fl, F2, f3, etc.) 
which is provided to the search decision mechanism. 

3.4 SABLES 

As previously stated, one drawback of sampling large 
spaces for circuit evolution is the simulation time when the 
circuits are evaluated in SW (extrinsic evolution). An 
altemative way to speed up evaluation is the w e  of 
reconfigurable devices, possibly as emulators, accelerating 
the evaluation. A stand alone board level Evolvable System 
(SABLES), developed for autonomous portable 
experiments integrates a Field Programmable Transistor 
Array (FPTA-2) and a DSP implementing the Evolutionary 
Platform (EP). The system is connected to the PC only for 
the purpose of receiving specifications and communicating 
back the results of evolution for analysis. 



JPL has developed the concept and has experimented 
with a new generation of reconfigurable devices, called 
Field Programmable Transistor Arrays (FPTA) (Stoica et al. 
200 1). The lack of evolution-oriented devices, in particular 
for analog, has been an important stumbling block for 
researchers attempting evolution in intrinsic mode (with 
evaluation directly in hardware). The FPTA has transistor 
level reconfigurability, supports any arrangement of 
programming bits without danger of damage to the chip (as 
is the case with some commercial devices). Three 
generations of FPTA chips have been built and used in 
evolutionary experiments. The latest chip, FPTA-2, consists 
of an 8x8 array of reconfigurable cells. Each cell has a 
transistor array as well as a set of other programmable 
resources, including programmable resistors and static 
capacitors. The FPTA-2 cell consists of I4 transistors 
connected through 44 switches and it is able to map 
different building blocks for analog processing, such as two 
and three stages OpAmps, logarithmic photo-detectors, or 
Gaussian computational circuits. Figure 3 shows the details 
of the FPTA cell for the first and for the latest version of 
the FPTA chip. 

The evolutionary algorithm was implemented in a DSP 
that directly controlled the FPTA, together forming a board- 
level evolvable system with fast internal communication 
ensured by a 32-bit bus operating at 7.5MHz. Details of the 
EP were presented in (Ferguson et al. 2002). Over four 
orders of magnitude speed-up of evolution was obtained on 
the FPTA chip compared to SPICE simulations on a 
Pentium processor (this performance figure was obtained 
for a circuit with approximately 100 transistors; the speed- 
up advantage increases with the size of the circuit). The 
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evaluation time depends on the tests performed on the 
circuit. Many of the evaluation tests performed required 
less than two milliseconds per individual, which for 
example on a population of 100 individuals running for 200 
generations required only 20 seconds. The bottleneck is 
now related to the complexity of the circuit and its intrinsic 
response time. SABLES fits in a box 8” x 8” x 3”. 

The following experiment illustrates an evolution on 
SABLES (Stoica et al. 2002). The objective of this 
experiment is to synthesize a half-wave rectifier circuit. The 
testing of candidate circuits is made for an excitation input 
of 2kHz sine wave of amplitude 2V. A computed rectified 
waveform of this signal is considered as the target. The 
fitness function rewards those individuals exhibiting 
behavior closer to target (using a simple sum of differences 
between the response of a circuit and target) and penalizes 
those farther from it. After evaluation of 100 individuals, 
they are sorted according to fitness and a 9% portion (elite 
percentage) is set aside, the remaining individuals 
undergoing first crossover (70% rate), either among 
themselves or with an individual from elite, and then 
mutation (4% rate). The entire population is then 
reevaluated. In this experiment only two cells of the FPTA 
were allocated. 

Figure 4 displays snapshots of evolution in progress, 
illustrating the response of the best individual in the 
population over a set of generations. The first caption 
shows the best individual of the initial population, while the 
subsequent ones show the best after 5 ,  50 and 82 
generations. 

Figure 3: FPTA cell topology as used in two FPTA chips (FPTA-0 in the left and 
FPTA-2 in the right. 
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With SABLES enabling rapid evolvable hardware 
experiments, the focus has shifted from the hardware 
platform to algorithms. More specifically the focus 
became overcoming problems related to the formulation 
of requirements in a way that facilitate evolutions, and the 
translation of target specifications into the language of 
evolution, including representations, fitness function and 
parameters of the algorithm. 

Other experiments were performed on SABLES, such 
as the evolution of oscillators and signal separators 
(Zebulum et al. 2003). SABLES has been a successhl 
platform for quick (less than 5 minutes) on-line automatic 
synthesis of simple circuits building blocks, such as 
rectifiers, filters, oscillators and logic gates. However, we 
were not able to synthesize complex circuits using this 
system yet. Although we have a powerful tool for 
evolution, we still have to find how to use it so as to 
explore its full capacity. In order to keep the search space 
manageable, we have restricted most of our experiments 
to use only a small fraction of the chip, usually two cells 
out of 64. The search space to be sampled when using all 
cells in the chip is about 25000 (5,000 configuring bits) or 
IOi5Oo. Assuming that we can evaluate lo4 circuits per 
second and leave an experiment running for one month, 
we are only able to sample 10'' individuals, a negligible 
fraction of the search space. One approach to circumvent 
this problem is to constrain the cells to behave as 
OpAmps as discussed earlier and evolve only the cells' 
connectivity, thereby reducing the search space. This 
method was tried with partial success in the evolution of 
signal separators using 10 cells of the chip (Zebulum et al. 
2003). 

4. Future Approaches and Challenges 

4.1. Evolving from high-level specifications 

- From behavioral HDL to circuit through synthesizable 
HDL. 

response of the best individual of generation a) 1, b) 
final solution is illustrated on the right. 

One way to approach the scalability problem is to first 
admit that what we address is an open problem for both 
analog and digital (and for system design in general). The 
perception in the evolvable hardware community exists 
that the digital automated desigdsynthesis problem is 
solved by current techniques and tools. What is missed is 
that only structural VHDL (Verilog) is synthesizable, 
while behavioral VHDL is not. The reason is simple: 
structural VHDL offers a problem decomposition! Thus 
the tools only have to deal with implementation of a 
simpler block, and also the set of library elements offers 
easyldirect matches. (The boundary between behavioral 
and structural depends on the vendor supported 
language/extension and size of IP library, etc). However, 
evolutionary design is behavior-oriented and poorly- 
specified in form of response curves instead of using 
standard language such as HDL. In this context the 
following two research directions appear promising: 
a) Evolutionav-based compilation of behavioral HDL to 
structural HDL (analog ortand digital). Force 
specifications to be in a standard behavioral language. 
b) Evolutionary-based synthesis of structural AHDL. 
Structural AHDL may be the required first step to 
automatic analog synthesis. The building blocks may be 
sufficiently small to allow evolution to find optimal 
solution. 
We believe that by decomposing the problem first into a 
functional to structural translation and then a structural to 
primitives one, the chances of evolution to approach 
complex system are much improved. 

-Hardwarehofiware evolutionary co-design for 
FPGAICPU hybrids and other Systems-on- a-Chip 
This direction is especially timely in the context of the 
embedded systems industry rapidly moving toward 
integration of programmable and reconfigurable devices, 
with a powerful convergence toward hybrid FPGNCPU 
architectures. Ultimately these will use flavors of on-chip 
hybrids such as the new Xilinx Virtex I1 Pro chip. There 
are no tools allowing designers to go from system level 



specification, e.g., in Matlab/Simulink and convert it to an 
efficient hardwarelsoftware allocatiodpartitioning. 

4.2 Complexity in Functional Descriptions 

A remaining largely unaddressed challenge is related 
to increased complexity in functional descriptions. Even 
in the case of the simple halfwave rectifier experiment 
previously described, providing a complete set of 
specifications is not so obvious. The operational range of 
the evolved rectifier in the frequency domain is one 
potential pitfall, since in principle the circuit behavior 
should be evaluated for the overall frequency domain in 
which it is expected to work. In that particular case, the 
circuits were only tested at 2kH2, and it has been verified 
that the solutions only worked in the decade 500Hz-5kHz. 

The need for upfront complete specifications is also 
reflected in the evolution of a logic gate. An example 
described in Stoica et al. (2002) evaluated a circuit 
targeted as NAND gate providing input stimulus (using a 
SPICE transient analysis) with changes in the 
microsecond range. The correct behavior for this 
timescale was quickly achieved by evolution. However, 
an incorrect behavior was observed when the same circuit 
was simulated in the timescale of seconds. Conversely, 
when the circuit is evaluated at a large timescale 
evolution often led to slow gates. The method applied to 
correct this situation was a derivative of the mixed model 
search described previously in this paper. In this case the 
different models are subject to different analysis. A two- 
transient analysis for each candidate circuit was 
performed during evolution, the first on a small timescale 
and the second on a larger timescale, solving the problem. 
For each circuit, the combined fitness measure was 
chosen to be the worse between the two evaluations, so 
that the genetic algorithm was driven to achieve a correct 
behavior at both timescales. However, in order to speed 
up evolution, we can assign the candidate solutions to one 
model or another during successive generations and thus 
letting evolution remove solutions that do not behave well 
on both models. 

5. Conclusions 

New approaches are needed in order to reach the full 
potential of evolvable systems. Scalability and 
completeness of specifications are primordial. In order to 
sample more efficiently the large search space generated 
in circuit design problems, techniques such as use of 
domain knowledge and building blocks encapsulation are 
currently being used. These techniques still have to be 
refined to allow the evolution of complex circuits that are 
competitive with human design. Another important issue 
is to find the right balance between reducing the search 
space while keeping the power of Evolutionary 
Algorithms to find novel solutions. 

It is proposed to approach these problems through 
hardware description languages, formulating the 

requirements1 specifications in HDL. It is also proposed 
to use intermediate, structural level representation, and 
thus employ evolution in two phases: behavioral to 
structural, and structural to circuits. Evolution proved 
efficient in the design of circuits satisfying multiple 
constraints. 
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