
Java for Flight Software
by Eddie Benowitz

Abstract :

We discuss how we apply several design patterns to real-time Java. Both design patterns
and real-time Java are part of the open literature. We will not discuss any control or
scheduling algorithms. We discuss how to use existing Java features to check
measurement units. We do not discuss past or existing flight software. We will discuss
our technology infusion approach for real-time Java, including the use of standard Java
language features, to provide more maintainable flight-like software.

0
)

0

0

S

c

0

a,
I-

b
c
.

C

s
Lo
d
-

cy)
S

0

+

0

N

0

S

a,

U

W

-c
I

.- 3

m

a,
-

- 0 a,
v
)

E 6 U C m n m 4
3

a

2
tj S

#

#

a,
z

.- 3

i:
0

#

8- L
+

a,
7

a,

m
5

c
.

a,
Q

m

u, r m

U

a,
U

K

3

LL
0

Agenda JPL

Motivation
Advantages of Java
Real-time Java
Architecture
Software

a Real-time layer
p Scheduling
p Memory management

a Attitude Control
a Units
a Fault Protection
a Other infrastructure

p Logging
Dynamic class loading

Accomplishments
Future Work

2

Motivation JPL
High maintenance = High cost

Current flight software is difficult to maintain
a Lack of strong type-checking and parameter-checking
a Lack of pointer and array safety allows

0- Easy corruption of memory
0- Silent failures

a Cannot express pluggable components
- c

a Global variables
a No encapsulation

Q c++
2 Multiple inheritance problems exist
a "friend" breaks encapsulation

a Completely manual memory management
z Units not explicit

Q Disastrous consequences

z No use of modern Integrated Development Environments and debuggers
a Low-level concurrency primitives - Concurrency not part of the language

Concurrency issues are difficult to reproduce

a Error-prone switch statements and preprocessor directives
a Globally shared namespace

3

Task Summary JPL
0 bject ive:

Perform technology infusion of real-time Java for spacecraft control software

Develop a flight-like Java software prototype
Real mission design (DSI)

Flight-like platform (PPC)
Explore and promote the advantages of Java

Approach:
Prototype the Attitude Control System performing a detumble maneuver using:

Pure Java system
Existing spacecraft simulation
Closed-loop control

Best practices in Object-Oriented development
Design Patterns

Demonstrate the advantages of Java by using:

4

Advantages of Java (1 of 3) JPL

Maintainability
71 Java eliminates the most common programming errors with

w Stronger type-checking at compile-time and run-time
w Automatic memory management

Array-bounds checking
w Va ria b I e- i n it i a I i za t i o n check i n g

71 Java provides single inheritance / multiple interface inheritance

71 Java has strong encapsulation

Extensibility
71 Java allows dynamic class loading
71 Java facilitates an Object-Oriented approach

5

Advantages of Java (2 of 3) JPL

Readability
71 Interfaces
71 Exceptions
71 Packages
71 Language support for multiple threads and synchronization

Middleware

People
71 Large standard class library

71 Huge community
71 Short ramp-up time for developers

6

Advantages of Java (3 of 3) JPL

Source: National Institute of Standards and Technology (NIST)

Java's higher level of abstraction allows for increased programmer
productivity.
Java is easier to master than C++.
Java is secure by keeping software components (including the VM
itself) protected from one another.
Java is highly dynamic, supporting objecvthread creation at run time.
Java supports component integration and reuse.
The Java language and platform support application portability.
The Java technologies support distributed applications.

7

Real-Time Spec for Java(RTS4 JPL

Scheduling
71 Periodic threads
71 One shot timers
71 Automatic priority inversion avoidance

Handle signals
High-resolution timing interface
Runs on an Real-time Operating System (RTOS)

8

Real-Time Spec for Java(RTS4 A p L

Access to Physical Memory

Memory Allocation
71 Guaranteed linear-time allocation
71 Scoped memory

71 Immortal Memory
71 Avoid garbage collection pauses

71 Restricted to a specified region

- More general than stack allocation

- At expense of not touching the heap - Less straightforward interaction with heap-using threads

9

Key Architectural Themes JPL

Favor maintainability by
71 Using pluggable technology
71 Taking full advantage of Java features
71 Making extensive use of Design Patterns
71 Reusing COTS technology where appropriate

Optimize the most critical areas methodically

11

Real-Time Layer JPL

Provides real-time services as pluggable components

Allows debugging using the power of

71 Emulation of real-time features provided on a desktop platform

71 COTS Integrated Development Environments (IDE’s)

71 COTS graphical debuggers
Examine logical errors in a modern debugger
Deal with real-time issues in isolation on the real-time Java VM

On a real-time VM, a debugger would interfere, so nothing is lost
71 After logical errors are debugged on a standard Java

12

Scheduler JPL

One-shot
71 Run me after 30 seconds have passed

Periodic behavior
71 Run me once every half second; I will use at most 25% of

the processor
Deadline
71 Run me using 30% of the CPU; I promise to finish in 2 seconds.

Report an error if I miss my deadline

Implementations for both desktop and real-time Java

13

Memory Areas JPL

Standard Java uses heap allocation
71 Automatic memory management
71 Garbage Collector can have a higher priority than application threads

71 Once memory is allocated, it is never freed
3 Never needs to be garbage collected

71 Eliminates excessive garbage generation
71 Many objects can be cleaned up at once

Immortal memory

Scoped memory

Powerful, but potentially tricky

Pluggable
Documented a set of guidelines for memory allocation

a Can run applications on a standard desktop platform

14

Attitude Control Approach JPL

Provide direct mapping between control loop and Objects
Code is more accessible and readable to the control engineer
Use existing JPL control terminology
Employ “State” Design Pattern
Treat sensors and compensators are pluggable components
Implementation leverages units framework which
2 Reduces debugging time
2 Improves correctness

15

Core Systems: ACS and FP JPL

Top Level Use Case

Fault Handler Body Compensator

Command Processor

16

Solar Control System

Units Approach JPL

Past practice
71 Measurement units were not explicitly declared in code

71 Had disastrous consequences

Checking measurement units explicitly at compile time
71 Ensures proper unit arithmetic
71 Finds bugs earlier in the development cycle
71 Implemented with units as Interfaces
71 Reused COTS frameworks underneath

UCARS units - Vector/Matrix/Quaternion from Java3d

18

Units JPL
+value : f ina; double tabs 0 : EngineeringScalarValue
+variance: f l n a l doub e tnegatel) : EngineerinqScalarValue

tscale
+scale (by;UnltlessValue) : EngineeringScalarValue
ttostrins0 : Strinq

tgetcomponents 1) : EngineeringScalarValueil
tgetDimensions 0 : int
rnegacc 11 ; E n r / l r c r r : r l V e c r 3 r i ' a l u o
tscalr1by:doublel: E n q r n e 2 r l n g V r . c r u r ' / d l u e
-scale rbv:Uni tlaSsVdlull : F~gineTringl'ectorV~l ud

tscale 1by:double) : EngineeringScalarValue

AngularAcceleration

1
I

<<interface>>
AngularThirdTimeDerivative 1

<<interface>

r
<<interface>

Force

Moment

<<interface>

tabs 0 : EnqineeringScalarValue
taetComDonentS 0 : E n o i n e e r i n g S c a l a r V a l u e i l

f

<<interface>>
EngineeringMatrixValue

tgetRows 0 : int
tgetColumns0 : int
ttranspose 0 : EnqineerinqMatrixValue

I

ForceMatrix MomentumMatrix

ccinterf ace>> I I AnaularAcceleratimVector
1 1 - J

<<interface>>
AngularMomentum Vector

uincerface>>
AngularThird TlmeDerivative Vector

Distancevector

Timevector
~

Time

19

Units Implementation JPL

<<interface>>
Engineering Vectorvalue

I
<< interface >>

EngineeringMatrixValue Engineering Tensorvalue

((interface >> L2-l
9 -

EngineeringScalarValue

DoubleEngineeringScalarValue I

n

I
DoubleEngineering Vectorvalue

Q
I I

DoubleEngineerin rMatrixValue DoubleEngineering Tensorvalue
A

L

I I InertiaTensorValue

20

Fault Protection Approach JPL

Use Deep Impact’s Fault Protection Engine as the basis
Provide direct mapping between state charts and objects
Hide communication with other threads via the Fagade pattern

Provide re-usable Java classes
71 Fault Protection Engine
71 Threshold component
71 Hierarchical states
ii Composite health and status

21

Fault Protection Use Case

change state, ...
status

JPL

It
System

(ACS forlexample)

It
System

(ACS fodexample)

StatusListener c3
monito ed data I

Fault Protection manager

enabledult, ...

+
A

Commands (from Ground)

22

Fault Protection Terminology JPL
Symptom

Monitor
a Signifies that incorrect behavior is noticed

a After threshold is triggered, notifies a symptom
71 Can be called by healthktatus listener

Threshold
71 Used by monitor to watch values over time

Fault
a The underlying problem which caused a symptom

Response
a How we deal with a fault
71 Based on state chart

Manager
71 Provides a mapping between symptoms, faults, responses
71 Serves as a container

Engine
71 Derived from C++ Deep Impact engine, schedules responses

23

Fa ult Protection Responses JPL

Response
a Contains variables used by the state machine.
a Is responsible for creation of State objects.
a Delegates to states

States
a Are a fundamental Design Patterns observation:

a Eliminate long, unreadable switch statements
- States are Objects

- Gain stronger type checking - Reduce code complexity

- Improved Readability
a Use abstract methods onEntry(), onExit(), during(), providing

Direct correspondence with the state chart

24

I

Logging JPL

General Framework for
3 Diagnostic printing
71 Event reporting
71 Telemetry reporting

Based on design of
3 Java 1.4 logging facility
3 Apache’s logging framework

Pluggable
3 Logging formats
3 Filters

26

Dynamic Class Loading JPL

Dynamic class loading allows
71 Loading new code into a system at run-time
71 Instantiating an object of a given class

e by specifying the class name as a string at run-time

For maintainability, dynamic class loading
71 Replaces the C preprocessor (conditional compilation) - by dynamically choosing classes at runtime

In the long term
71 Uplink a new class file to a spacecraft, dynamically load it without rebooting
71 This is outside of our scope

27

Past Success JPL

On time, low cost
1) Provided closed-loop detumble demonstration

71 Successful
71 Demo provided on Sept 11, 2002.

2) Delivered Test Articles to Nasa Ames (ARC)
71 Successful
71 Attitude Control

71 Fault Protection Engine
- Delivered Sept 23, 2002.

Delivered August 22, 2002.

2%

Accomplishments JPL

71 Provide demonstrations of code running on a Java desktop
platform having DSI -like functionality - Closed-loop detumble - Fault protection

71 Create infrastructure for future Java flight software
development

71 Demonstrate how to use Java to create flight-like code which
is

w Maintainable - Readable - Extensible
w Object-Oriented

29

Future Work JPL

Goal: Prove that Java has acceptable performance on flight hardware
Run on PPC with existing DSI simulator
Perform a detumble

Tasks
Install real-time Java in autonomy lab environment
Test and debug with simulator

Stage 1: Interface to hardware device simulation

Stage 2: Full attitude control

Targeted performance improvements
Measure CPU and memory usage

IMU, thrusters, bus

30

Contact Information JPL

Ed Benowitz
71 eddiebQmail2.jpl. nasa.gov

AI Niessner
71 Albert. F.Niessner@jpl.nasa.gov

31

http://nasa.gov
mailto:F.Niessner@jpl.nasa.gov

