Introduction to Golden Gate

This document contains Caltech/JPL confidential information.

Copyright 2002, by the California Institute of Technology. ALL RIGHTS RESERVED. United States Government Sponsorship Acknowledged. Any commercial use must be negotiated with the Office of Technology Transfer at the California Institute of Technology.

This document may be subject to US export control laws and regulations. By accepting this document, the user agrees to comply with all applicable U.S. export laws and regulations, including the International Traffic and Arms Regulations, 22 C.F.R. 120-130 and the Export Administration Regulations, 15 C.F.R. 730-744. User has the responsibility to obtain export licenses, or other export authority as may be required before exporting such information to foreign countries or providing access to foreign persons.

1/28/03
Project Golden Gate Team

<table>
<thead>
<tr>
<th>JPL</th>
<th>Sun</th>
<th>Carnegie Mellon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Dvorak</td>
<td>Greg Bollenga</td>
<td>Virgil Champlain</td>
</tr>
<tr>
<td>Vanessa Carson</td>
<td>James Gosling</td>
<td>Brian Giovannoni</td>
</tr>
<tr>
<td>Alex Murray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenny Meyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kirk Reinholtz (MDS Staff)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Complimentary skills sets (Industry, Research, and Domain)
 - JPL
 - Domain Knowledge / OOP
 - Sun
 - RTSJ / Java
 - Carnegie Mellon
 - Embedded real-time
 - Java / Industry J2ME
- Highly motivated open door for new technologies: Java, RTSJ, Linux
 - Aerospace is traditionally conservative
History of JPL/Sun Relationship
It all started back in ‘98

- November ‘98: MDS met with Sun Microsystems and WindRiver Systems to discuss the use of Java for flight software.
- February ‘99: JPL and Sun signed a Confidential Disclosure Agreement
- April ‘99: JPL, Sun and WindRiver engineers met at JPL to discuss technical details of using Java for flight software.
- May-September ‘99: JPL conducted an Java evaluation with support from Sun. The whitepaper was completed in early September ‘99
- September/November ‘99: Recommendations and white-paper delivered to Project and Institutional management
- November ‘99 thru Oct ‘02: JPL ran low-level Java Evaluation task
- June 2000: Real-time spec (JSR-1) published
- January 2001: JPL provided rover to Sun for CES
- Winter/Spring 2001: RTSJ test suite discussions (Sun/JPL/AFRL/Boeing)
- April-June 2001: Sun and JPL meet to discuss Strategic Alliance

From the preface...
“We thank all those, but especially Kirk Reinholdz of NASA’s Jet Propulsion Laboratory ...”
History of JPL/Sun Relationship
It all started back in ‘98

- August 2001: Sun and JPL pitched DARPA for MDS in Java
- Fall/Winter 2001-02: MDS engineers briefed Sun Labs and Architecture Tech Group
- March 2002: Letter of Intent signed, MDS/MSL topic in Gosling’s Java One Keynote (Video clip)
- April 2002: JPL names Gosling and Bollella Distinguished Visiting Scientists
- July 2002: McNealy sends letter to McNealy, Baltimore, and Elachi
- September, 2002: MOU signed

Letter to Sean O’Keefe
from Scott McNealy (CEO, Sun Microsystems)

July 12, 2002
The Honorable Sean O’Keefe
Administrator
National Aeronautics and Space Administration
Washington, DC 20546-0001

Dear Sir:

I want to be certain you know about an important technical alliance underway between our organizations. For the past year, engineers from Sun Labs have been collaborating with engineers from JPL to create technology that will greatly benefit the rest of our industry.

“...Golden Gate is among the most significant projects at Sun Labs.”

“We believe this will be a major turning point in the history of space software.”

Sincerely,

Scott G. McNealy
Chairman, President and Chief Executive Officer

scm@sun.com

cc: James Gosling
Greg Bolella

COPY

1/28/03
MDS selected as HDCP Testbed
High Dependability Computing Program

- **Current focus**: Development of dependable systems
- **Areas of interest**:
 - HDCP: MDS System Engineering, MDS architecture, MDS component technology, MDS development methods, MSL technology infusion
 - JPL: HDCP verification methodologies, component technology, cost modeling, defect modeling, formal methods, others
- **Sponsor**: NASA Code R, closely associated with NSF’s HDSCCR Program
- **Collaborating organizations**:
 - Active: CMU, USC, Fraunhofer, Hawaii
 - Potential NSF-funded collaborations: Stanford, Berkeley, MIT, others
- **Significant active projects**:
 - USC SCRover Project, MDS-based generic-rover testbed for research, Barry Boehm PI
 - CMU/Sun Goldengate Project, MDS in Java, James Gosling & Greg Bollella, PIs
 - SEI dependability cases, MDS risk reduction, John Goodenough PI (Chief Technical Officer of the SEI)
 - CMU software architecture, MDS component technology, David Garlan PI
 - Hawaii process improvement, MDS processes, Philip Johnson PI
 - Goal-Question-Metric verification, MSL verification, Vic Basili PI

1/28/03
Carnegie Mellon University

- Collaborators
 - SEI (DoD FFRDC)*
 - Fraunhofer Institute (University of Maryland-base Research Center with ties to NASA)
 - Robotics Institute (Strong ties to DARPA)
 - Sun Microsystems
 - Other Silicon Valley companies (Oracle, Amazon, Microsoft, Intel, etc)
- Agreements: NDA, Use-licenses pending, MOU pending

"[The research agenda] has initially focused on... working with Sun Microsystems and the California Institute of Technology’s Jet Propulsion Laboratory (JPL), to create a Java version of JPL’s architectural framework for mission-critical, real-time control systems."

— CMU Founder’s Day Press Release (12/20/02)

- Opportunities:
 - MDS master’s program
 - Participation in MSL V&V effort
 - MDS education program for NASA and industry

* SEI developed and maintains CMM & CMMI

1/28/03
Progress to Date

- Summer 2002: MDS in Java design meetings with Gosling and Bollella
- September, 2002: SunNetwork keynote. (Video clip)
- October, 2002: Goldengate kickoff
- June 2003: JavaOne demo

Related Activities

- Open Forum kicks “Mission Critical/Safety Critical” profile effort
- Participation in JSR-50.

Project Goldengate

Sun Labs and NASA JPL (Jet Propulsion Laboratory) scientists are working together on a project to implement JPL’s Mission Data System software architecture using the Real-Time Specification for Java development platform. MDS implemented in RTSJ is targeted for the Mars Smart Lander mission, launching on October 25, 2009.

Physical devices (vehicles, spacecraft, manufacturing equipment, etc.) are currently being designed with the assumption that software will play a much larger part of the device’s control aspect. Traditional design of these devices has relied primarily on analog electrical, hydraulic, and pneumatic control structures but various trends have caused current designs to depend more on software for control. Many organizations have begun with the help of the software community, to create software architectures for these next generation devices and are looking for the most advanced software development platforms capable of supporting the rigorous physical, temporal, and complexity demands necessary for device control.
Golden Gate Goals:
Retire the Technology Risk

- Performance measurements
 - CPU usage
 - Throughput
 - Real-time response & timing jitter
 - Cache hit ratio
- Maturity of RTSJ and Linux/RT technology
- Multi-language development
 - How do Java and C++ work together?
- Application development effort
 - Time to development
A Few of the Attractions of Java

- Software Reliability / Maintainability
 - Currently used languages (C, C++) are complex and ‘dangerous’.
- Simple Object Model
- Significant programmer productivity
 - Leverage tools and API
 - Standard class library includes collections, threading, networking and all other commonly needed capabilities.
- Automatic Memory Management
 (no memory overwrites, no dangling pointers)
- Highly Portable
 - Development can be done on many platforms
 - WORA
A Few of the Attractions of RTSJ

- Determinism
 - Spacecraft require strong deterministic guarantees and/or control for thread scheduling, synchronization overhead, lock queuing order, class initialization, maximum interrupt response latency, and GC characteristics.
 - real-time model for threads and async events
 - interfaces for scheduling parameters and feasibility analysis
 - support for hard-real-time tasks

- High-resolution time management

- Device Driver Portability
 - RTSJ provides access to OS resources
A Few of the Attractions of Real-Time Linux

- Highly reliable operating system
- Much more advanced than VxWorks
- Excellent real-time response
- Memory protection among processes
Approach

- Evaluate real-time Java against FSW demands
- Use MDS framework/code as a test bench
 - Same rover functionality as MDS/C++/VxWorks
 - Side-by-side performance comparison
- Leverage Distinguished Visiting Scientists
 - Dr. James Gosling, creator of Java, Sun Microsystems
 - Dr. Greg Bollella, lead of RTSJ, Sun Microsystems
Plan

- FY 2003:
 - Install Linux/RT and RTSJ JVM on Rocky7
 - JavaOne Demo
 - Run AFRL/Boeing test suite for RTSJ
 - Prototype, run, and measure major MDS components
- FY 2004:
 - Extend to run full MSL test scenario on Rocky7
 - Compare performance to C++/VxWorks version
 - Complete evaluations on latest product release