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Optical Landmark Detection for Spacecraft Navigation 
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Optical landmark navigation using craters on the surface of a central body was first used 
operationally by  the Near Earth Asteroid Rendezvous (NEAR) mission. It has proven to 
be a powerful data type for determining spacecraft orbits above the target for close flybys 
and low altitude orbiting. Tracking individual landmarks, which are small craters, enables 
orbit determination accuracies on the order of the camera resolution or several meters. 
This exceeds the accuracy that can be obtained from radiometric data alone. Currently, 
most of optical landmark navigation operations, such ;IS crater detection, tracking, and 
matching etc, are done manually, which is extremely time consuming. tedious and 
sometime unmanageable. Because of the lengthily operation time and the deep-space 
communication delay, manual operation cannot meet the requirements of rapid and 
precise spacecraft maneuvers such as close orbiting, fast tlybys and landing. Automating 
this operation can greatly improve navigation accuracy and efficiency and ultimately lead 
to an on-board autonomous navigation capability. In this paper, a new crater detection 
algorithm is suggested. Experimental studies show that this new algorithm can achieve 
sub-pixel accuracy in position, its detection rate is better than 90% and its false alarm rate 
is less than 5%). These good characteristics indicate that i t  is an ideal crater detection 
algorithm foi- spacecraft optical navigation. 

IN'I'RODUCTION 
Craters are landforms commonly found on the surface of planets, satellites, asteroids. and 
other solar system bodies. A crater, in general, is a bowl shaped depression created by 
collision or volcanic activities. Because of their different geological ages and magnitudes 
of impact, craters may have a wide range of appearances. For instance, younger craters 
may have sharper and regular rims while aged craters might have very vague rims. 
Spatial densities of craters also form the primary basis for assessing the relative and 
absolute ages of geological units on planetary surfaces. 

Besides their geological and astronomical interests, craters are ideal landmarks for 
spacecraft navigation [ 1-71. Optical landmark navigation using craters on the surface of a 
central body was first used operationally by the Near Earth Asteroid Rendezvous 
(NEAR) mission. It has been shown to be a powerful data type for determining 
spacecraft orbits about the body for close flybys and low attitude orbiting. In the 
navigation filter, manually detected and identified craters were combined with Deep 
Space Network (DSN) radio metric tracking (Doppler and range) to estimate both orbital 
and asteroid physical parameters. The crater locations were also estimated in this 
process. The direct benefit of optical landmarks in the NEAR navigation solutions has 
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been enhanced navigation performance; i.e., increase orbital position accuracy in the 10 
to 20 meter range, faster estimate convergence after maneuvers, and better solutions for 
dynamical parameters such as spacecraft non-gravitational accelerations and Eros gravity 
perturbations. Another benefit of using landmark tracking has been the rapid 
determination of poorly know physical parameters of Eros which affect navigation such 
as spin pole direction and spin state [4]. In NEAR mission, only a few dozens small, 
isolated and sharp craters out of thousand craters were used directly in orbit 
determination and the rest of them were'used for contextual identification purpose. 

Currently, most of optical landmark navigation operations, such as crater detection, 
identification, and matching etc, are done manually, which is extremely time consuming, 
tedious and sometime unmanageable. Usually, thousands of craters could be found on a 
small planetary body such as Eros. To identify and categorize them manually from 
thousands of images is a forbidding task. In addition, the manual operations lack 
consistency and large geometrical en-ors (position and shape) can be easily introduced. 
Furthermore, the long data processing time and the communication delay cannot satisfy 
many requirements of special spacecraft maneuvers such as fast flybys or small body 
landing. Finally, manual operation cannot be used for on-board autonomous navigation. 

The navigational and scientific significance of craters have generated a lots of interests in 
autonomous crater detection algorithms. Because of their relative simple and regular 
geometries, the Hough transform constitutes the primary approach for crater detection. 
Olson [S][9] suggested a constrained Hough transform with a randomization technique 
yielding an algorithm with a worst case complexity of O(n) where tz  is the number of 
edge pixels in the image. This algorithm is able detect relative simple geometric feature, 
such as straight lines and circular curves. However, when applying these techniques to 
conic curves with many degrees of freedom, such as an ellipse ( 5  degrees of freedom) a 
large number of trials are needed to achieve a useful detection ratio. The large number of 
trials makes this approach too expensive. 

Leroy et a1 [ lo]  suggested a tensor voting based crater detection algorithm. The edges are 
extracted by applying to the image to an edge detection algorithm. The tangent direction 
associated to each edge point in computed using the tensor voting technique. The 
curvature at each input site is estimated. All pixels considered belonging to the same 
crater is grouped together. Finally, an ellipse fitting algorithm is applied to delineated the 
crater. However, this technique only had a very limited success. Its false alarm ratio and 
omission ratio are still too large for spacecraft navigation purpose. 

h4al-k Burl et al [11][12] have suggested an automated volcano (crater) detection 
algorithm, which classifies the candidate regions by the correlation with synthesized 
feature templates. Preliminary test showed performance comparable to trained human 
observers. Since this technique was designed for catalog inventory purpose, the 
geometrical property such as shape and position of the  craters has not been well 
addressed. In addition, the false alarm rate is still too high [ l l ] .  For example, when the 



detection rate is about 80 and 90%, the false alarm rate is about 100% and 1000% 
respectively. Such a high false alarm rate really cannot be used for any navigation 
application. Furthermore, the method of Burl et al. cannot accommodate elliptical craters 
that ai-e often genei-ated by oblique viewing directions and the 3-D shape of small bodies. 

For the navigation application, i t  is highly desirable that the crater detection algorithm 
achieves a high positional accuracy (sub-pixel), high tolerance to large variations in 

crater appearance (e.g. lighting and viewing angle, image types and crater types), real 
time operation and a low false alarm ratio. In following section, such an algorithm IS 
presented. 

2 CRATER DETECTION 
Because of the different geological ages and magnitudes of collision impacts, craters may 
have very wide range of variation. For example, some might have very fuzzy rim (Fig 1 
b) and others might have broken rims (Fig 1 c) etc. To make an algorithm work well 
across the wide range of crater appearances is not easy. However, a typical crater in an 
image has an elliptical rim and a bright to dark shading pattern, which is dictated by the 
lighting azimuth and elevation as well as its own topography. These distinguishing 
characteristics were used extensively in the crater detection here. 

Figure 1: Craters appear very differently from image to image. 

The crater detection algorithm is broken down into six steps: 
1 .  Edge detection: This step detects all edges including rim edges from a given image; 
3. Crater anchor point detection: This step selects all probable crater edges from the 

edge database. 
3.  Rim edge grouping: This step groups together edges considered belonging to the 

same crater. 
4. Ellipse fitting: This step fits grouped crater edges into an ellipse. 
5 .  Ellipse refinement: This step adjusts the detected crater’s geometry directly on the 

image domain to remove any error introduced in the edge detection and the ellipse 
fitting. 

6. Crater confidence evaluation: This step evaluates the quality of each detected crater. 

2.1 Edge Detection 
The edges of an image are extracted by applying the Canny edge detection algorithm 
[ 141. In order to extract both sharp and fuzzy rims, two rounds of edge detection are 
executed. In the first execution, a smaller kernel (< 5 )  is used, which aims to detect small 
and sharp edges. In the second round, a large kernel (-9) is used to detect large and less 
sharp edges. Experimental study shows this strategy i s  very effective when image quality 
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is poor such as NEAR imagery. 
extracted. Both data sets are stored separately for the future usage. 

The image gradient (gv, g,) of each edge pixel is 

2.2 Rim Edge Grouping 

- 2.2.1 Crater Topography Constrains 
After the edge detection algorithm detects indiscriminately all edges from an image, we 
have to pick up those belonging to rims. Here some topographic constrains are used for 
the crater edge selection process: 

0 The angle between the lighting source direction and gradient vector of crater rim 
should be less than 90 degrees (Fig. 2 a) .  In order to reduce false alarm ratio, we only 
select the edges whose gradient vectors are less the SO degrees off the lighting source 
direction as 
( f i t s ,  +g,S, ) / (s :  + g ; ) ' ' '  >0.64 ( 1 )  

Where g, and g\, are the gradients of the image. S., and S,, are the lighting direction on the 
image. 

A rim edge should be a convex curve (Fig. 2 b). The shaded side of rim should be 
facing the lighting source and lit side should be facing the opposite direction. 
Inside a crater, the image intensity profile along lighting direction should be an 
monotonously decreasing function. 

(4 Ibl (4 

Figure 2: Crater topography constrains help in crater edge selection. 

2.2.2 Convex Analysis for Long Edges 
If a given edge ( E )  is part of a crater rim, we would like to know whether i t  lies on lit or 
shaded side of the crater. For a large crater, because its rim edge is preserved fairly well, 
i t  can be determined just based on its convex orientation. In order to do so, we have to 
detect two anchor points, the furthest point (pt)  and closest point (p,.) on the edge to the 
lighting resource (Fig. 3. a): 

( ~ ( u x ,  + by, + c = min) 
i f ( a ~ ,  + h y ,  + c  = max) p ,  

Where (n, h,  c )  are the coefficients of a baseline, which is perpendicular to lighting 
direction and lies outside of the images. 
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Figure 3: Convex analysis will figure out an edge belonging to either shaded or lit 
side of a crater. 
Two straight lines passing through the anchor points and perpendicular to lighting 
direction and another two straight line passing the two end points of the edge and parallel 
to the lighting direction form a rectangular. This rectangular is divided into two regions 
by the edge E and the area ratio of the two regions indicates the convex orientation as 

lit .side i f ( A /  B > 1.0) 
Shnde Side otherwise 

2.2.3 Convex Analysis for Short Edges 
Because of relative large kernel of edge detection operator, the shapes of smaller craters 
(.: 20 pixels) are note well preserved. In this case, the method in 2.2.2 becomes 
ineffective. In this case their convex orientation here is detected by their image gradients. 

Assume the middle point of an edge is P,,, and two end points ai-e P I  and P: and their 
gi-adients are G, and G?. Therefore. The edge is on li t  side of a crater if 

Otherwise, i t  is on shaded side (Fig. 3 b). 

2.2.4 Edge Grouping 
All candidate edges are labeled as either lit or shaded side of craters by the methods in 
section 2.2.2 and 2.2.3. Now we will group them up into lit and shaded pairs. Several 
constrains are used to perform this task: 

The ratio between the lit and shaded edge lengths should be close to 1 as: 
l l t  < ( I ,  / I , )  < t ; where I ,  and I,,  are the length of lit and shaded side edges and t is 
the threshold greater than 1 .O; 
The image intensity profile between the two edges should be a monotonously 
decreasing function. We fit the image intensity profile by a straight line and its 
slope is used to test its decrement. 
The distance between the edges (the distance between two anchor points) should 
not be too close or too far. In this algorithm, the distance must be less than twice 
the length of the longer edge and Iai-ger than the half-length of the shorter edge. 



111 order to speed up the edge grouping process, we combined of vector and raster data 
search scheme. All marked edges' IDS are mapped to an integer 2-D array. For a given 
edge, the search area is a 30 degrees conic area on the opposite direction of the edge 
convex orientation. The size of search area is dependent on the desired crater size 
specified by users and the length of current edge. Any edge found in the search area will 
be tested using the three constraints listed above. If they pass the test, the pair of edges 
will be used to fit an ellipse. 

Figure 4: The edge grouping algorithm searches an edge on other side of a crater in 
a 30 degree conic area. 

A conic polynomial could represent an ellipse, hyperbole or parabola. An equality 
constraint 4u ,a3  - a ;  = 1 will force F(A, X) to be an ellipse for any case. We rewrite this 
i n  a matrix form u'cu = 1 ,  where c is a 6 by 6 sparse matrix, in which c l i  = c,, - 

and all other entries are zero. 
-cl, = 1 - 

Once the candidate rim edges are selected, the ellipse should be satisfy 

We have implemented the Least-Median-Square regression [need reference] and iterative 
reweighting techniques [12] for ellipse fitting and found that the later one has better 
performance in term of accuracy and convergence speed. In this case, the maximum 
likelihood estimators is 

(6) E=IIa'xII'=min& a'cu = 1  

E = MI, 1 1  (1 '  .I I[= min & ( i ' u i  = 1 

C V )  = I / ( ]  +(lli) 
Where d, is the distance of an edge pixel to the computed ellipse. 

(7) 

2.4 Crater Refinement 
The crater detection algorithm described in the previous sections provides relatively 
successful crater detection. However, i t  cannot achieve sub-pixel positional accuracy 
because it relies solely on edge pixels for ellipse fitting. It is well known that edge 
detection often introduces unwanted artifacts. These artifacts will introduce errors into 
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the geometry (position and shape) of detected ellipse. The crater refinement algorithm 
removes the artifacts. 

Let's represent an ellipse by five parameters. its center xg, vo, malor axis ci, minor axis h 
and orientation to The equation of the ellipse under this parameterization is 

(8) 
x ( t )  = LI  cost cost,, - b sin t sin to + xo 
y ( t )  =cicostsint,,  +hsinrcostcr+ yo 

If the lighting direction is given, the image of the crater should satisfy a merit function M 

Where g is the image gradients at (x, y ) ,  s is the lighting direction vector and n is the 
customized unit  normal of crater rim as. 

x, = -a sin t cos to - h cos t sin t i , 
y ,  = -a sin t sin t,, + hcos t cos t,, 

x,, = -u cos t cos t,, + b sin t sin t,, 
y,, = -a cos t sin t,, - b sin t cos t i ,  

By adjusting the five parameters to maximize the merit function (9) will eventually 
remove the error and lead to locking on the crater rim precisely. At here, we assume the 
image gradient direction and rim normal directions are very close each other. (son) in 
Equation (9) is a weight factor, which reaches its maximum(1) when s = n and its 
minimum (0) when s l n .  

111 order to do so, we rewrite Equation (9) into a discrete form. In this form the 
denominator is omitted because i t  is a constant here. 

M = C / I ( g . r z ) ( s . n ) ~ ~ = C ( r z ~ R , s ,  + ? 2 , ? 2 , ( < q , S \  + g , s J + n : g , s J  (12) 

To perform the maximization, we use a multidimensional iterative nonlinear 
minimization algorithm based on conjugate gradient [15]. This algorithm requires 
computation of the partial derivatives of M with respect to the five parameters in 
Equation (12). These are relative straightforward to compute using the chain rule. For 
ex ample, 
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x,,, = -sin tcost,, 

x,~, = -cos t sin t,, 
x = u sin t sin t,, - h cos t cos to 

‘fll 

v,,, = -sin t sin t,, 
y,/, = cos t cost,, 
y,/(, = -a sin t cos t,, - h cos t sin t,, 

XI,,,  = -cos t cos t 
.xrrb= sin tsin t,, 

x,~,,, = LL cos t sin t,, + b sin t cos t , ,  
y,,,, = -cos t sin t,, 
y,(,, = - sin t cos t 

y,,,, = - ( I  cos t cos t ,  + 0 sin t sin t,, 

n ,,, = -sin t 2:: sin to ,  I r - H ,  r,, I r’ 

IZ,,, = sin t ::: sin to ,  I I’ - n ,  r,, I r’ 

( n  ::’ ,s) > o 
otlzerwise 

r,, = (1  ‘1: sin’ t I r’ 

In order to improve the convergence and avoid local maximum, we decompose the 
optimization problem into two groups. First we will try to find the best location of crater 
by maximizing equation (12) with respect to XU and yo. Then we will try to determine the 
best ellipse shape by maximizing equation (12) with respect to a, b and to. This 
intei-lacing approach is repeated several times until a threshold is reached. When we are 
dealing with large and regular object at closer range, such as Moon, Mars, the lighting 
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direction on an image is fairly consistent. However, when we are working on the small 
and irregular shape object, such as Phobos, Eros etc. the lighting direction in an image 
varies due to the local surface normal and viewing direction. In order to precisely locking 
on the craters, the local lighting direction will be determined as 

A new lighting direction is recomputed between two iterations 

An experimental study has shown that the crater refinement algorithm can tolerate up to 
30% translation, 10% scale and 30 degrees of rotation error. These bounds easily contain 
the largest error generated by the crater detection algorithm from the previous section 
(Fig. 5 ) .  

Figure 5: The crater refinement algorithm can tolerant large errors. The green 
circles are the initial craters and the red circles are the final craters. 

2.5 Crater Confidence Evaluation 
Our confidence metric is derived from Equation (9). N points are evenly selected on both 
sides of a crater. No point is selected at the lit and shaded transition area (30 degrees on 
each side) because of large ambiguity in image gradients around those areas. The 
confidence of a crater is computed by 

2 KI c - 1 = I  

N 

(12) 
Where 1 2 ,  is the customized normal of ellipse (equation (10)) and g, is the gradients at 
point i. 
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11' a ci-ater's confidence is greater than a threshold, i t  will be added to the crater database 
and the edges associated with this crater will be removed from the edge database and the 
2-D edge ID array. 

The crater detection algorithm is composed of the steps described in sections 2.1 to 2.5. 
Fig. 6 shows some intermediate and final results of this algorithm. 

Figure 6: Some intermediate and final results of the crater detection algorithm. (a) 
The original image; (b) The edge image by Canny edge detection; (c) The edge 
image after edge filtering and convex analysis. The black edges are the edge on 
shaded side and gray edges are the edges on lit sides; (d) The detected craters. 

3 CRATER DETECTION VALIDATION 
The following sections describe results on images collected in the lab for accuracy 
assessment and images from various deep space missions. 

3.1 The Geometric Accuracy Assessment 
Because a benchmark does not exist for real imagery, the accuracy assessment was 
conducted in a carefully arranged laboratory sitting. Six craters of difference sizes were 
created on a sand bed and eight fiducial marks were laid around the craters. A total 23 
images were taken from different angles and distances. The eight fiducial marks are 
extracted manually from every image and they are used to construct homography 
transforms between any two images: 

111, t + / / l l )  + 1/11 
X =  .Y = 

n / , x  + P l l h  y + I 
I l l ,  k + / I f  v + I l l h  

m,x + n / * y  + I 
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Figure 7: Total 23 images were taken in different angles and distances. The center 
image is the base image. 

1 
2 

In order to remove the scaling uncertainty, an image with finest resolution is chosen as 
the base image (Fig. 7 and Table 1). The craters detected in  the base image, using our 
detection algorithm, are transformed to the other images using the homography 
transforms. These “truth” craters are then compared to the craters detected locally. Four 
statistics are extracted from this study: positional error (dx, d-y) and geometrical (major 
and minor axis) errors (du, dh) (Table 2 and 3). 

209.96 120.50 5.6524 5.4096 238.18 
308.63 138.36 8.9467 7.8952 201.12 

Tablel: The six craters were detected from 
the base image. To is in degree and the rest 
are in pixel. 

I I D I  x I V I  A I  b 1 TO I 

3 I 260.88 154.41 I 20.496 I 18.363 I 201.30 
4 I 202.12 1 173.51 I 8.2422 I 7.7153 I 204.31 
5 I 244.83 1 199.97 I 7.0682 I 6.8220 I 186.53 
6 I 282.48 1 215.32 I 7.1588 I 6.3692 I 214.11 
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ID E(dx) 
1 0.2421 

std(dx) E(dy) Std(dy) 
0.2410 0.1119 0.2586 

I I 

14 I -0.0165 I 0.1299 I -0.0499 I 0.1719 I 
2 
? 
-3 

-0.095 1 0.1442 0.0455 0.1420 
0.0034 0.2438 0.1278 0.2153 

The RMS error of position is less than 0.3 pixel and the RMS error for the shape is less 
than 0.5 pixel. It indicates that this crater detection algorithm is able to achieve sub-pixel 
accuracy. In addition, the table 2 and 3 indicate that RMS error for each crater is not 
significantly different between different sizes of crater. We also have conducted some 
study on the effect of the lighting and viewing direction to the crater error and found out 
that their contribution to geometric errors was negligible. 

5 
6 

3.2 The detection rate and false alarm rate 
The analysis of the omission and emission errors was conducted on real deep space 
mission imagery including MGS, NEAR, Voyager etc. It performs well on all the test 
images. Again, because benchmarks did not exist, the craters missed (omission error) or 
misidentified (emission error) by this algorithm were manually identified. For the missed 
crater category, we only accounted craters missed by our algorithm but still having 
navigational value. The craters, which were too large, too small, broken, or partially 
occluded, were not included. Most misidentified cases happen when multiple craters 
overlap or are close to shadow edges. Table 4 shows the results on four images (Fig. 8). 

-0.1972 0.1742 -0.2184 0.2193 
0.0629 0.2010 -0.0359 0.2341 

Table 4: Some statistics of the crater detection algorithm 
I I m : ! I K  I C  IT I N  IM IF  I 

1 
2 

470 830 92.91 163 6 7 
691 640 17.25 23 1 1 

3 I 518 [ 558 170.24 1 119 I 8 [ 4 
4 I 500 I 1280 160.19 1 100 1 2 I 0 

I I 

Where R and C is the number of rows and columns in the input image; T is the wall 
clock execution time (s) on a SUN Ultra 10 workstation; N is the number of detected 
craters, M is the number of missed craters, and F is the number of misidentified craters. 
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This experimental study indicates that the detection rate of this algorithm is better than 
90% and the false alarm rate is less than S%, which are adequate for spacecraft 
navigation. 

Ph oh os  (irn ag e4:) 

Figure 8: Some results of the crater detection algorithm. 

13 



4 3-D CRATER MATCHING 

In order to determine the position of the spacecraft with respect to the asteroid, we use 
geometrical recognition techniques that perform matching between the craters that have 
been extracted from an image of the asteroid and a crater database containing the 3D 
locations of the craters on the asteroid surface. This problem is closely related to pose 
estimation of 3D objects from 2D image data. The basic algorithm that we use is an 
efficient method for pose estimation from points in such data [19]. Each crater is treated 
as an attributed point corresponding to the center of 
the crater, where the attributes are the radius and orientation of the crater. The efficiency 
of the basic methodology is improved by two means. First, the crater attributes are used 
to remove matches that are incompatible. Second, an initial estimate of the spacecraft 
position is used to filter matches that are not feasible. The following subsections describe 
this method in more detail. 

4.1 Point Matching 
Given a set of 3D objects points, the pose of the object can be determined from a 2D 
image of the points, with most of the points missing and also with many spurious points 
using a technique based on the Hough transform. 
The basic idea is to compute the pose(s) that bring small sets of ob-ject points into 
alignment with image points. If the sets contain three points each, then each match yields 
two poses that bring the points into alignment under a weak-perspective model [IS]  (and 
up to four under full  perspective [lb]).  Therefore, the sets of matches map into points in 
the six-dimensional pose space. After some number of matches are examined, the correct 
pose will correspond to a cluster of points in  the pose space, since each correct match 
should yield at least one pose that is close to the correct pose. 

We use an efficient implementation of this idea that examines several trials of somewhat 
simpler problems [19]. In each trial, we select two image craters and two database 
craters that must match for the trial to succeed. Since we don't know which craters will 
match in advance, not every trial will succeed. A randomization technique is used to 
ensure that enough trials are examined such that the probability of them all failing is very 
I ow.  

For each trial, we  consider each additional match between a single image crater and a 
database crater. Since each such match gives us three overall (with the two were 
previously selected for the entire trial), we can determine the poses that bring the crater 
centers into alignment and determine if there is a large enough cluster in the pose space. 

4.2 Crater Filtering 
Given an initial pair of matches, our algorithm considers each possible additional match 
between an image crater and a database crater, yielding triples of matches. Not all such 
triples are viable. Prior to computing the poses that bring all three crater centers into 
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alignment, we filter pairs of matches using visibility constraints and using the ratio of the 
crater radii. After computing the poses, we filter further matches by checking the crater 
orientation and the ratio of the major and minor axes lengths in the image. 

- 4.2.1 Crater pairs 
For each crater detected in the image, the major axis of the ellipse detected corresponds 
to a cross-section of the crater. The ratio of these axes in the image must be the same as 
ratio of the crater radii in  the database (modulo image noise and detection error). We 
eliminate pairs of craters if the ratio is not within 50% of the correct ratio from the 
data bas e. 
We set this threshold to filter only those craters that are clearly wrong, since other filters 
will also eliminate many cases. An experiment indicates that approximately 12\% of the 
crater pairs are filtered with this test. 

In addition, each pair of craters must be mutually visible from some viewpoint. We filter 
any pair of craters that has more than a 60 degree difference in orientation. While this 
constraint will filter a few more crater pairs than necessary, those that are filtered are less 
likely to yield good results, since at least one crater will be considerably foreshortened in 
the image. Approximately 26% of the crater pairs are filtered with this test. 

4.2.2 Crater triples 
If a11 three pairs of matches in the triple pass the previous test, we compute the poses that 
bring the crater centers into alignment using the method of Huttenlocher and Ullman 
[ 181. We can do further pruning on these poses. For example, if the pose requires that one 
or more of the craters is on the wrong side of the asteroid to be seen. We check to see 
whether the pose specifies that one of craters has an orientation greater than 75 degrees 
away from the camera. If so, then the pose is filtered, since the crater would be either on 
the wrong side of the asteroid or extremely foreshortened. This test filters 32% of the 
remaining poses. 

The estimated pose also tells us what size the crater should be in the image, what the ratio 
of the major and minor axis lengths should be, and the orientation of the crater in the 
image. 
If the size or the ratio of axis lengths is not within 50% of the correct size, we filter the 
pose. Finally, if predicted orientation of the crater from the axis lengths in the image is 
not within 40 degrees of the orientation predicted by the pose, we also filter the pose. 
These tests remove 31% and 20% of the poses, respectively. 

4.3 Pose filtering 
If we have an initial estimate of the spacecraft position and an error covariance matrix, 
the pose estimation process can be made much more efficient by pruning the matches that 
are not consistent with the position estimate. 
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We represent the spacecraft orientation using a quaternion q and the position with a 3- 
vector t ,  so the overall spacecraft position is represented by 7 values (4 for the quaternion 
and 3 for the position), although only 6 are independent. Given the error covariance 
matrix, with values c,, , for lG , j  5 7, we can use covariance propagation methods to 
project the error covariance into an ellipse in the image space centered at the position 
given by the projection of the database crater according to the estimated spacecraft 
position. 

Let p be the vector [0 p], so that we can use quaternion multiplication to rotate the vector. 
The equation that takes points from the asteroid frame of reference to the spacecraft 
camera frame of reference is: 

p =qpq f t  (14) 
If we view the point from the spacecraft camera with focal length f ,  the image 
coordinates are: 

The position covariance is propagated into the image coordinates through linearization by 
taking the partial derivatives of this equation with respect to the pose parameters (i.e. the 
Jacobian). 

Now, the error covariance matrix in the image space is given by C, =JCpJT where C, is 
the covariance matrix in the pose space. Now, we want to decide if an image crater is 
close enough to the estimated position of a database crater, so we calculate the error 
vector: 

e = p ,  -qP,Y + t  
where p ,  is the center of the crater in the image and pd is the center of the crater in the 
database. If the errors yield a multi-variate normal distribution around the estimated 
point in the image, then we get a chi-squared test statistic (with 1 degree of freedom) 
using: 

(16) 

y = (17) 

If th i s  test statistic is above a threshold (we use 3.841), then the crater is eliminated from 
consideration. 

This filtering procedure is used every time we consider a match between a particular 
image crater and a database crater. Over the course of the algorithm, matches are often 
considered several times. We further improve the efficiency by maintaining a look-up 
tiible for matches that have been previously considered, so that the computations need not 
be performed again. With a diagonal covariance matrix, with values of 
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0.2 for the position variables and 0.0001 for the quaternion values, this test eliminates 
98.S\% of the crater matches from consideration. 

4.4 Clustering 
In this method, we need to be able to detect whether a cluster of points is present in the 
pose space for each trial. We perform this operation using a simple accumulator method, 
where there pose space is divided into bins and each possible pose votes for bins in this 
space. 

First, note that since each trial fixes two matches between craters in the image and in the 
database, we have four constraints on the six-dimensional pose space (two for each 
match). This means that the poses considered in each trial are constrained to lie on a two- 
dimensional manifold of the six-dimensional pose space. We parameterize this manifold 
using the scale of the projection (which is linearly related to the distance of the spacecraft 
from the asteroid) and the rotation angle around the center of the two database craters 
used in the initial match for the trial. 

We discretize the two parameters coarsely. Given these values, each pose that passes 
through the filters described above votes for nine bins in the pose space - the bin that the 
pose falls into and its 8 neighbors (to account for noise). A vote corresponds to 
incrementing the appropriate accumulator. 

Once each pose in some trial has been considered, we look through the accumulator to 
determine if any bin has accumulated sufficient votes to correspond to the spacecraft 
position. In practice, this is performed by maintaining the score of the best position 
found so far and comparing against this score. When a high scoring bin is found in the 
accumulator, a new score (bounded by the count in the accumulator) is computed to more 
accurately reflect the quality of the pose. The new score is computed by determining 
how well each of the crater matches that contributed to poses in  the bin is brought into 
alignment. Each match is given a score between 0 and 1 that encompasses position, 
scale, and orientation information. The sum of the scores is used as the score for the bin. 
There is also a question as to which pose should be used to test each bin with a large 
score. To ensure that a good pose is not missed, we test each of the poses that fell into 
the bin and keep the pose with the best score. 

We must now decide how many random initial pairs of image craters should be examined 
by the algorithm. We can derive this value using some assumptions about the number of 
database craters detected in the image [ 191. 
If we assume that some minimum number c of the database craters are detected (for 
example, three), then we can estimate the probability that none of k trials will examine a 
pair that are from the database: 

where n, is the number of image craters detected. 
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Setting p to be below some small threshold o(for example, O.OOOl),  we can estimate the 
number of trials necessary as: 

For a problem with 18 image craters and 955 database craters, this algorithm requires 
approximately 2 seconds on a 333 MHz Sun Ultra 10. This example is illustrated in Fig. 
9. 

Figure 9: Example result using NEAR imagery of the Eros asteroid. (a) Crater 
detected. (b) Pose of asteroid computed after crater matching. Matched craters are 
shown in green. Unmatched craters are shown in yellow. 

5 CONCLUSIONS 
In this paper, a crater detection and crater match algorithms have been presented. By 
fusing multiple types of information, this algorithm is able to extract craters at very high 
detection rate (> 90%) and low false alarm rate (<%IS). With the crater refinement 
algorithm, the sub pixel accuracy in term of position and shape can be achieved. The 
crater match algorithm presented in section 4 is able to match crater detected from an 
image to a crater database containing the 3D locations of the craters on the asteroid 
surface and compute the spacecraft pose. With these good properties. these algorithms are 
excellent tools for spacecraft optical navigation for both onboard and ground operation. 

Additional work is needed in  two directions. First, an autonomous method to construct 
3D crater database is needed. When a large number of images have been taken around a 
central body, it is possible to reconstruct the craters’ 3D positions and shapes. In order to 
do so, the same crater from different images has to be positively identified. Some 
techniques, such as affined geometry, conic invariance etc can be used to perform this 
task. Once all craters are positively matched across images, the crater positions and 
shapes can be determined by triangulations. The second direction of this research will be 
to fuse this algorithm to real navigation software and apply to a real mission such as 
DAWN and messenger mission. 
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