Estimation Module

Dan Gaines Stergios Roumeliotis Issa Nesnas

Initial estimator implementation by:
Ashitey Trebi-Ollennu Eric Baumgartner

Overview of Current Estimator
. Role: Provide 3DOF pose estimation for rover (x, y heading)

Input:

e wheel encoders
o Inertial Measuring Unit (IMU)
— currently using only one gyro (yaw rate)

Tier 1

. . . L
Design: Two-tier Kalman Filter yaw o il I
Kalman Filter 1 bias wn dr'T’] e

dh

Tier 1: while stationary u S

IMU {4

froy

Tier 2

e uses IMU yaw rate yaw rate

e estimate IMU yaw rate bias using KF
Tier 2: while moving

e uses corrected IMU yaw rate and wheel encoders

e fuse IMU yaw rate and encoder estimations within KF

e estimate change in rover x, y and heading

e integrate x, y and heading to keep track of 3DOF pose

—

Kalman Fiiter 1

Y

dx
dy

dh

T

Overview of Kalman Filtering

sensor measurements

control + noise nois
— System (noisy)

unknown state

System model predicts next state
Measurements give evidence about state
Both sources of information are noisy

Kalman Filter fuses information to provide optimal state estimate

— estimated state minimizes the mean-square estimation error
— keeps track of uncertainty in state estimate

Kalman Filtering Algorithm

Propagation Update
system model sensor model(s)

Propagation:

® using: current state, system model

e produce: estimate of next state

® system model: how state changes as a function of dynamic / kinematic
model and control input

Update:

e using: measurements and sensor models
e produce: updated state based on sensor readings
e sensor model: given a state, what sensor reading(s) are expected

Covariance Matrix

P11 ... DPin
Pmi1 --- DPmn
e Ak.a. state uncertainty matrix

e Estimated by Kalman Filter

e Element Di;: variance of state variable 4

e Element p;;: correlation between state variables i and j

Design of Current Estimator

Overview of Two Tier Design

Rover Pose
Virtual Sensor

Tier 1 Tier 2
dti
dtr
Locomotor turn_mode
Kalman Filter 1 aw rate bias Kalman Filter 2 ™
dy
IMU Relative dh
Heading
Tier 1 Tier 2
Locomotor
yaw rate dtl
. bi
Kalman Filter 1 as dtr
turn_mode
I — _
IMU e Al + - »| Kalman Filter 1

ay

dh

X
y
h

KF Tier 1: Estimating Yaw Rate Bias

Linear Kalman Filter

— runs when rover is stationary

System model when bias is stationary: next state (i.e. bias) is same as
previous state

dbias(t)

e 0 + wp;,5(Process noise)

Sensor model: if yaw rate is b, expect yaw rate measurement b

Zhias = bias + up;,(measurement noise)

Assumption: rover moves in short increments so the bias estimate s
valid during move

Computing IMU Relative Heading

e While rover is stationary

— estimate yaw rate bias

e While rover is moving

— sample yaw rate
— subtract estimated yaw rate bias
— heading += yaw rate * sample interval

Vehicle Kinematic Model — Arc or Straight Driving

A

X (North)

Y (East)

e Define virtual middle wheel with parameters:

a = M velocity
d6,=deo,
u = __d9§+d0r angle
e State equations:
J i %x—) R(cos¢)a
X(a> _ dl;(a) _ R(sinqb)oz
_ do A B

Vehicle Kinematic Model — Turn In Place

A

X (North)

Y (East)

e Define virtual middle wheel with parameters:

a = gﬁ;dﬁ velocity
e State equations:
" dX(0) 0
dx(a) _ % B
e i %l | 5O

10

KF Tier 2: Estimating Delta X, Y and Heading

Extended Kalman Filter

— runs when rover is moving
System model: see previous slides

Sensor model: relates rover pose to IMU relative heading

— if delta heading is 0, expect IMU relative heading to be 6

11

Rover Pose Virtual Sensor

While rover is moving

get IMU relative heading

get wheel encoder deltas and move mode from locomotor
propagate/update Kalman Filter

get delta pose (delta x, delta y, delta heading) from Kalman Filter
pose += delta pose * interval

12

Implementation of Current Estimator

13

Current Estimator Implementation

Navigator Locomotor_State

pose_estinfator yaw_bias_estjmator
Implements Kalman Filter

Estimator H StateSpaceDynamics

KalmanFilter LinearDynamicModel FidoPositionModel

R8_Estimator Thread Model

4 Rover Pose Threac?

if moving

get IMU heading
get encoder deltas
get move mode
run KF T2
integrate rover pose >

/lMU Heading Thread\

if stationary
run KF T1
(Integrate heading)

-

e Each thread runs at its own frequency

— keeps track of computation time of each iteration
— sleeps if it has extra time at end of iteration
— Issues warning message if it runs late

15

Estimator / Locomotor Interface

Estimator uses the following info from locomotor

— wheel base
— wheel radius
— wheel encoder delta positions

— move mode (i.e. arc drive, straight line drive, turn in place, . . .

— check if locomotor is moving / driving

16

Estimator / CMU Locomotor Interface

e Locomotor Model

— has wheel_radius

— need to compute wheel_base

— Wheel Locomotor has accessor to get
Locomotor Model

e Wheel Locomotor

— need accessor for motor_delta_pos
*x may be part of Wheel?
— has is_moving() / is_driving()
— uses DRIVE_COMMAND to talk to
Vehicle Interface
— DRIVE_LCOMMAND has MOVE_MODE
— need accessor to MOVE_MODE from

Wheel Locomotor

Wheel Locomeoto

J

Vehicle Interface

3o

comotor Model Wheel

43 7

Fixed Contact Mod | Steerable Wheel

4’-\

RS Vehicle Modell | RS Steerable Wheq

s
i

[Ctrl Moto

0..1

From Chris Urmson's presentation

17

Estimator / Navigator Interface

Navigator

Locomotor_State

J

Locomotor_Estimator

+ void get_loc (Locomotor_State &ls)

J

R8_Estimator

18

Level 1 Milestone Schedule

o Sept 27: test IMU sampling with heavy CPU load

e Sept 30: test locomotion with pose estimation

e Oct 2: test pose estimation w/ visionless GESTALT load

e Oct 4: test locomotion, imaging, stereo processing, pose estimation
e Oct 11: test navigator, locomotion, stereo and pose estimation

e Oct 15: test DL, communications, FL

19

Overview of Proposed Design (in progress)

20

Design Goals

e Make it easier to add new estimators

e Explicitly represent System and Sensor Models and
e Explicitly represent virtual sensors

e Enforce periodic task frequencies

e Clean up inheritence structure of current estimator

21

' | Class Diagram

Navigator Location

<<type»>

Translates the
vector state representation from
an estimator to a Location
object.

Location_Estimator Periodic_Mode_T

+final CONTINUOUS: int = 0

+get_loc(): Location +linal POLLED: int = 1
Periodic_Task
A virtual sensor that
IMU_Heading_vS
—readng. - L over IMU
+sat_frequency(freq: int): void < P~ yaw rates to keep track
+set_mode(mode: Periodic_Mode_T): void . of heading. !
R Uses an Estimator to
#process(): void estimate IMU yaw rate bias
+client_process(): void
+suspend(). void
Lrremove(): void
Calls update at specified frequency -
(or only when client calls it (POLLED mode).
Provides hooks for what to do at update. Classes that implement this interface
Each subclass must implement update. R translate sensor readings into a vector
Estimator form for use with an Estimator
T
<<Interface>> P 6): voic 0.* <<Interface>>
Control Measurement
0.1 +get_state(): Vector
+got_control(): Vector +get_mz(): Vector
Zﬁ +is_data_available(): boolean
T T \
1 1
Will not ba i Bayesian_Esti Maximum_Likliehood_Esti IMU_Yaw_Rate_Adapter | | Sun_Sensor_Adapter | | IMU_Heading_VS_Adapter
in first version. Just an

example of a different
type of estimator.

Q

<<Interface>>

Each Kalman Filter must have

Ny : 0.* <<Interface>>
. Kalman_Filter_Estimator
——— Kalman_Filter_System_Mode! o —
exactly one System Model. Fier_System. é——o Kalman_Filtar_Sensor_Model
It is used during propogation. ,
+do_state_transition(x (old state): Vector, u {control): Control): Vector #update(): void +do_mz_model(x (state): Vector): Vector
+get_state_transition_jacobian(): Matrix A Kalman Filter has zero

+propogate_state(): void or more Sensor Models.
+get_process_noise_covariance(): Matrix +update_mz(): void These are used during
update.

+get_mz_model_jacobian(): Matrix

T +get_mz_noise_covariance(): Matrix

+get_mz_noise, '%cobianQ: Matrix

' |)
A " 1 1
+final CONTINUOUS: int = 0 [

'

1

i

'

+get_process_noise_jacobian(): Matrix

+sel_state_transition_type(type: State_Transition_Type): void
+get_state_transition_type(): State_Transition_Type

<<types>

State_Transition_Type

IMU_Heading_Model Sun_Sensor_Model IMU_Model MU
+final DISCRETE: int = 1

[
1
1
i
1

E.g. estimate IMU
This may be the CMU proposed

Vehicle_Model or a class that uses
the CMU Vehicle_Model.

yaw rate bias

Vehicle_Model IMU_Bias_Model 41

Sun_Sensor

It needs to:

compute values for a virtual wheel
(uses Locomotor for this)

usa virtual wheel to implement state transition

Locomotor 2 2

Sequence Diagram 1: IMU Heading

N

el B) B

Nl
—— : *ﬂl
6t_mz_noise_covariance () 4’—
model (x))
__ L
get.mz() >._
olyaw. { 4’ F L
G [T Uty & KR]
I S | BSOS]
I
1<
—<
—e

23

Sequence Diagram 2: Rover Pose

[

J L g I g VS

do_stale_transition (x, u}
 got_estimatino_inputs () o
k : motor_pos, turn_mode H
: get_state_wansition_jacobian () » |
CA
: gel_process_noise_jacobian ()
—.< -
lnte w
get_process_noiss_covariancs {)
dal ilable
< - I =
get_mz_model_jacobigh)

24

