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Abstract 
The upcoming missions to Mars planned by NASMJPL 

in 2009 and 2013 are more ambitious than any 
previouslyjlown. Included in these missions are extended 
multi-kilometer traverses, and autonomous rover 
rendezvous with science targets and man-made 
structures such as landers. This paper reports some of 
the ongoing work at JPL in the areas of autonomous 
sensory fusion of both raw and derived inputs for better 
localization during long traverses, precision rendezvous 
operations with both IabeIed (man-made) and unlabeled 
(natura[) targets, and precision manipulation of targets. 
We also present the results of some experimental studies 
done in laboratory and external environments. 

1. Introduction 
The sensor suites on the JPL technology prototype rovers 
such as FIDO (Field Integrated Design and Operations) 
and SRR (Sample Return Rover) shown in Figure 1 span 
a wide range of spectral bands, stereo baselines, and 
fields of view. Traditionally, these sensor suites have 
been used in isolation for such tasks as Dlanetary surface 

Figure 1. JPL technology prototype rovers: left -Sample 
Retum Rover (SRR); right - Field Integrated Design and 
Operations (FIDO). 

traversal. For example, although distant obstacle 
information is known from the narrow FOV navigation 
camera (NavCam) suite on SRR or FIDO, it is not 
explicitly used at this time for augmentation of the wide 
FOV hazard camera (HazCam) information for 
localization. Such augmentation coupled with internal 

state sensors such as gyros/accelerometers and sun- 
sensors can greatly improve the localization of the rovers 
and enable precision autonomous operations. Due to the 
long round-trip time delay for communication with Mars 
during a mission (up to 45 minutes), teleoperation is not 
a control option in such cases. 

During the past six years, members of the Planetary 
Robotics Laboratory (http://prl.id.nasa.pov) at JPL 
in Pasadena, CA have been developing and field testing a 
suite of algorithms that run onboard rovers to address 
performance issues with respect to rover localization and 
manipulation capabilities. In this paper, we report on a 
technique for improving rover localization that fuses the 
results from a map registration technique, that yields a 
measure of the change in rover's pose (position and 
orientation) from one stereo frame to another, with rover 
wheel odometxy, IMU data, and sun-sensor measurments 
via an extended Kalman filter framework. 

Precision navigation from relatively great distances 
(-125-200 meters) to rendezvous points such as a lander 
for operations during the upcoming 2013 Mars Sample 
Retum (MSR) mission, as well as from shorter distances 
to science targets prior to instrument placement on the 
upcoming 2009 Mars Science Laboratory (MSL) 
mission, is key to a successful completion of the science 
objectives. The main differences between the lander and 
the science target rendezvous operations are the types of 
targets (man-made vs. natural), and the relative 
localization of the targets (possible unknown vs. selected 
from imagery). We have developed a multi-feature 
fusion algorithm suitable for long-range rendezvous 
operations that integrates the outputs of horizontal line 
and wavelet-based visual area-of-interest operators [9] 
that fuses horizontal, vertical, and diagonal texture 
characteristics at multiple scales for detection of a man- 
made target such as a lander and rendezvous with the 
same from distances greater than 125 meters. This 
technique is coupled with 3D visual terminal guidance 
algorithms that extract and utilize cooperative features of 
the lander to accurately, iteratively estimate structure 
range-and-pose estimates, and then steer the rover to the 
rendezvous position. For the shorter range science target 
rendezvous operations, we have developed a technique 
that fuses the relative rover pose returned from a multi- 
target tracking algorithm with the current onboard 
camera model output to update the location of the 
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science target relative to an approaching rover in natural 
terrain. 

After navigating to the designated science targets, the 
primary science objective of the rovers is the robust and 
reliable acquisition of data using instruments mounted on 
the end of an instrument arm. The baseline approach for 
this manipulation task is the localization of the science 
target with respect to the manipulator arm via the hazard- 
avoidance stereo cameras located on the rovers. Once the 
science target has been identified in the image plane of 
one of the stereo cameras, the 3D range to the target is 
determined via stereo correlation and triangulation. From 
this 3D range information, the joint rotations that take 
the manipulator to the appropriate location in 3D space 
are determined using the arm's inverse kinematics. 

The difficulty associated with this approach is that 
sources of error tend to accumulate in the stereo system 
and the manipulator kinematics that ultimately reduce 
the ability to accurately place the manipulator's end- 
effector at the desired location. Such error sources 
include stereo calibration and stereo ranging errors that 
can yield a range uncertainty of 1.5 cm at 0.75 meters 
from the stereo pair used on the rover. Errors are also 
associated with accurate knowledge of the 
transformation between the stereo reference frame to the 
base reference frame of the manipulator as well as 
kinematic errors such as link length uncertainties and 
joint position uncertainties. Finally, degradations andor 
changes in the system configuration due to 
environmental factors such as launch and landing 
vibrations and thermal expansion will also effect the 
ability to accurately position a rover-mounted 
manipulator at a target of interest. We have developed a 
precision manipulation technique called HIPS (Hybrid 
Image Plane Stereo) that fuses the visual feedback from 
the rover stereo camera pair with manipulator arm joint 
angles for the robust and reliable positioning of the rover 
manipulator's end-effector. 

Section 2 describes the improved rover localization 
technique for autonomous long-range navigation. Section 
3 describes the suite of algorithms for long-range 
rendezvous operations. Section 4 presents the multi-step 
algorithm for precision rendezvous with natural targets. 
Section 5 describes the HIPS algorithm for precision 
manipulation. This is followed by an experimental 
studies section, and finally a summary section including 
current directions. 

2. Fusion of Range Map and Internal State 
This section describes the development of a state 
estimation approach for surface rovers that derives the 
pose transformation between two range maps of the 
terrain, and then fuses this information with wheel 
odometry, inertial measurement sensors, and a sun 

sensor to generate accurate estimates of the rover's 
position and attitude. A linear Kalman filter is used to 
estimate the rate sensor bias terms associated with the 
inertial measurement sensors and then these estimated 
rate sensor bias terms are used to compute the attitude of 
the rover during a traverse. The estimated attitude terms 
are then combined with the wheel odometry to determine 
the rover's position and attitude through an extended 
Kalman filter approach. Finally, the absolute heading of 
the vehicle is determined via a sun sensor which is then 
utilized to initialize the rover's heading prior to the next 
planning cycle for the rover's operations. A more 
detailed discussion of this technique can be found in 
papers by Hoffnan, et al. [13] and Baumgartner, et al. 

2.1. Range Map Registration & Motion 

Significant errors may occur in rover localization when 
executing obstacle avoidance maneuvers during a long 
traverse. In such cases, 3D registration of successive 
range maps can be used to estimate rover motion. 
Previous work in this area includes maximum likelihood 
estimation of motion coupled with a Kalman filter update 
of rover position [19, 201. A recent method using 
probabilistic map matching based on a maximum 
likelihood map similarity estimator was developed by 
Olson [22, and references therein] for rover localization. 
His studies, which only included translations in the 
environment, indicated that sub-pixel accuracy within a 
discretized pose space was achievable. The only concern 
raised was that of scaling for pose determination from a 
totally unknown state, which usually wouldn't be an 
issue due to other sensors onboard the rover. 

We use a range map registration technique that blends 
Zhang's Iterative Point Matching (IPM) [42] and the 
surface interpolation of Besl and McKay's Iterative 
Closest Point (ICP) [6]  algorithms to compute a 3D 
rotation and translation which aligns one set of data 
points (SI) with another (Sz). Initially, the data points in 
S1 are transformed according to estimated rover motion 
taken from the commanded movement. Next, the 
algorithm constructs a k-dimensional (or k-D) tree for 
the points in S2,  then alternates between two phases: 
closest-point computation, and estimation of the 
transformation between corresponding points. The k-D 
tree enables efficient determination of the closest point in 
the data set [25]. 

In the first phase, the algorithm uses the k-D tree to 
compute the closest point p2 in the fwed point set Sz to 
each point p1 in the data set being transformed SI. 
Triangular faces are then created, with each face 
containing pz and two neighbors in the data set. If the 
distance between p1 and the closest point on the 
interpolated triangles is less than a threshold, then p1 and 
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the closest point are added as a pair to a list of point 
correspondences. We use ICP's closest-point-on-surface 
approach, rather than using p2 as the corresponding point 
for pl. 

The second phase is performed after the 
correspondences have been computed. The dual number 
quaternion method 1381 computes a rotation matrix and 
translation vector which minimize the sum of the squared 
distances between corresponding points. Our previous 
studies using this technique have shown that the rover's 
change in heading and lateral position can be accurately 
estimated, while the estimates of the rover's change in 
forward position are not as accurate [13, 151. 

7.2. Kalman Filter 
The rover localization approach is based on the work 
presented in Baumgartner and Skaar [2]  and Yoder et al. 
[41] that describes a time-independent extended Kalman 
filter formulation for the determination of the rover's 
state estimates. Many researchers have also studied the 
problem of integrating inertial measurement units on 
mobile robots for improved rover state estimation. These 
researchers include Barshan and Durrant-Whyte [ 11, 
Vaganay, et al. [37], Goel, et at. [ll], and Chung, et al. 
[8]. The IMU modeling approach presented in this paper 
closely matches the techniques described by Goel, et al. 
[ll] and Chung, et al. [8]. 

For the IMU sensor, the attitude of the vehicle is 
described by the roll, pitch, and the yaw (heading) angles 
where the yaw angle (#) is defined as shown in Figure 2, 
and the roll and pitch angles are specified relative to the 
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Figure 2. Local rover coordinate system with X aligned 
with true North, and Y aligned with true East, and yaw 
angle Q defined as the angle between the lateral axis of 
the rover and true North. 

local gravity vector about the rover's local X and Y 
coordinate frame axis, respectively. The roll and pitch 
angles of the rover are determined by the 3-axis 
accelerometer and the heading of the vehicle during 
motion is determined using the yaw gyroscope rate 
sensor. When the rover is stationary, the IMU rate sensor 
bias terms are estimated via a linear Kalman filter. When 
the rover begins its motion, the rate sensor bias estimator 
is deactivated and the most recent rate sensor bias term is 
then used to integrate the yaw rate sensor measurements 
in real-time to determine the heading of the vehicle 
throughout the rover's traverse. 

3. Multi-feature Fusion 

The nature of features that can be extracted from visual 
imagery for goavtarget-based navigation has a strong 
dependence on the finite resolution of the sensors on a 
mobile platform. In addition, the types of information 
required will vary depending on the relative distance of 
the platform to the target. At longer distances only 
heading information will be required, but as the rover 
approaches closer to the target, rough relative pose and 
orientation and finally precision alignment information is 
required. We have developed a suite of algorithms that 
derive distance and heading information from visual 
images acquired during a 3 phase approach to a man- 
made target, in this case a lander (shown in Figure 3). 

For the long distance approach phase, fine details on 
the target are difficult to distinguish and target signatures 
oftentimes are masked by the surrounding terrain 
features. In the majority of cases for planetary rover 
operations, a distinctive texture measure of the target 
(lander) can be defined for discrimination. We have 
previously defined a wavelet-based texture signature 
operator that has been used successfully for automatic 
target recognition [9 ] ,  generation of semi-sparse range 
maps based on texture analysis [13], and closed loop 
science instrument deployment [16]. A horizontal line 
detection algorithm that localizes possible lander 
candidates based on detection of the lander deck is used 
to constrain the texture signature extraction to a local 
window of the wavelet coefficient space for each of the 
lander candidates. The multi-feature fusion algorithm 
eliminates the false positives in this process arising from 
features in the surrounding terrain. 

The wavelet-based texture signature is derived from 
the horizontal, diagonal, and vertical coefficients that are 
generated from the wavelet transform of an image. An 
example for an image of a lander taken during an 
approach is shown in Figure 4, where the transform has 
been taken to three levels. The texture signature uses the 
strength of the wavelet coefficients in local windows that 
are sampled at each of the levels, with a normalization 





algorithm is applied, followed by straight-line segment 
extraction. In order to find the stripes, we first look for 
the ramps, which are defined by a set of long straight and 
nearly parallel lines. 

With a single detected stripe in the image, a linear 
affine transformation is constructed based on the four 
comers. If this match is correct, the transformation is 
used to find other matches. Because there are relatively 
few stripes (six on the ramps) an exhaustive search is 
used to pick up the best match. Once the matches are 
found, the pose and orientation are estimated by fusing 
the estimates from the outside corners of all detected 
stripes. A minimum of four stripes is used for safe 
navigation. 

4. Multi-view, Multi-feature Fusion 

The previous section described algorithms that exploited 
the man-made aspects of something like a lander using a 
single view fusion of information from derived features. 
The lack of fiducial marks on natural targets obviates the 
need for autonomous generation of interest points in the 
images, coupled with tracking of these points between 
views for the recovery of 3-D information during the 
traverse to the science targets. Such techniques have 
been used previously for updating rover localization 
information in the absence of a specific goal during 
traverses [23, 241 and for the approach to and 
manipulation of science targets [16, 181. Both of these 
previous efforts used short range sensor information 
derived from the HazCams on the rovers and thus are 
limited in use to a range of less than 4-5 meters. We have 
developed a multi-step algorithm based on images from 
the mast mounted NavCams (range of 20-50 meters) that 
the scientists use for initial target selection, an example 
of which is shown in Figure 5 .  

Figure 5. Sample NavCam panorama used for selection of a 
science target for instrument placement operations. Labeled 
target is about 5.9 meters away. 

The navigation and tracking portion of the precision 
rendezvous algorithm consists of an iterative application 

of multi-feature extraction [lo, 331 followed by stereo 
range determination of the features [21] that have been 
matched using a fusion of maximum likelihood cross 
correlation [23, 241 and homographic transformation 
[I21 estimates of position before and after each leg of the 
traverse. Since obstacle avoidance is active during the 
approach, it is not guaranteed that the rover will be 
facing the target after each leg of the traverse. A 13 step 
algorithm for this process has been developed and tested 
in the field [ 161. We previously reported on a continuous 
approach sequence with target tracking but without 
obstacle avoidance running on two rovers transporting an 
extended container [31,32]. 

The camera models for the first and second image 
pairs are transferred to the global coordinate frame 
according to the mast joint angles, rover attitude and 
position prior to the application of the F6rstner interest 
operator [IO] in a pre-defined region about the center of 
the initial left stereo image taken before the rover moved. 
The initial position of the science target in the global 
coordinate frame was given to the system by the ground 
operator (derived from stereo NavCam images). Since 
both sets of stereo pairs are in the same global coordinate 
frame, each point retumed by the interest operator can be 
used to project a strip of the first image along its epipolar 
line to the second image based on the first and second 
camera models and range. A strip is projected rather than 
a single line in order to mitigate small uncertainties in 
the newly derived camera models. The rough location of 
the point in this strip in the second image is determined 
using maximum likelihood cross correlation [23, 241, 
followed by the derivation of homographic transform 
parameters [I21 between the two images along this strip 
to determine the precise location of the feature point in 
the second image. The range of the feature point is then 
recomputed at the finest level in the stereo pyramid [21]. 
All of the features ranges are fused in a least square error 
sense with outlier rejection to determine the rover pose 
relative to the target, and the relative position of the 
target is corrected giving the new drive target and mast 
pointing parameters for the next leg of the traverse. 

5. Hybrid Image Plane Stereo (HIPS) 

We have developed a vision-based manipulation 
technique known as Hybrid Image-Plane/Stereo (HIPS) 
manipulation that addresses the issues raised in the 
introductory section with respect to pointing precision. 
This technique is an extension of the work by Skaar, et 
al. [7, 341 which has been come to be known as Camera 
Space Manipulation (CSM). In the CSM approach, 
widely separated cameras are utilized to determine the 
direct relationship between the joint rotations of a 
manipulator and the image-plane (or camera-space) 



appearance of a "cue" located on the manipulator's end- 
effector. The inverse problem is then solved to determine 
the joint rotations that drive the end-effector to a 
particular image-plane target location in the participating 
cameras without regard to any physical reference frame. 
This method achieves excellent terminal pointing 
precision (sub-millimeter) when the participating 
cameras are spaced nearly perpendicular to each other. 
Unfortunately, widely-spaced cameras on a rover 
platform is difficult to achieve due to the finite size of 
the rover and due to the use of existing rover cameras 
which are configured as stereo pairs for rover navigation 
needs (i.e. the addition of manipulator-specific cameras 
is unattractive due to mass, volume, power, and 
complexity issues). 

The HIPS manipulation technique makes use of the 
basic idea underlying the CSM method - the generation 
of camera models using visual sensing of the 
manipulator's end-effector and the use of these camera 
models to drive the end-effector to a target location 
without regard to any "real" physical reference m e .  In 
HIPS, the calibration of each of the stereo cameras is 
conducted using a visual "cue" located on the 
manipulator's end-effector. This is implemented by 
positioning the end-effector throughout a set of joint 
rotations that span the workspace of the manipulator as 
well as the image plane of each of the stereo cameras. 
The 3D location of the end-effector at each joint rotation 
set is computed using the nominal arm kinematics. Once 
this data set has been collected, the parameters in the 
stereo camera models y e  determined. It is important to 
note that the camera model developed may or may not 
have any relationship to the camera model generated 
using an accurate calibration fixture. However, the 
camera models generated do accurately reflect the 
relationship between the position of the end-effector 
(known via the manipulator's forward kinematics) and 
image-plane appearance of the end-effector in each of 
the stereo cameras. 

Once these manipulator-generated camera models 
have been determined as described above, a target in the 
image plane is selected and these camera models are 
utilized to solve for the 3D location of this target via 
stereo correlation and triangulation. Again, the actual 3D 
location of this target may be quite different from the 3D 
location determined by the manipulator-generated 
camera models. The important point is that the 3D 
location determined by the manipulator-generated 
camera models is accurate with respect to the 
manipulator which is the means by which the end- 
effector positioning will be realized. Thus, with the 3D 
location of the target known, the nominal inverse 
kinematics are used to solve for the joint rotations of the 

manipulator that places the end-effector at the desired 
target location. 

This approach addresses the systematic errors that are 
present in the baseline technique (separate camera 
calibration and manipulator kinematics), however, 
stochastic errors that occur due to finite image-plane cue 
detection precision, inaccurate knowledge of joint 
angles, etc. are not necessarily accounted for using the 
HIPS manipulation technique. Therefore, the 
manipulator-generated camera models are updated 
throughout the trajectory that takes the end-effector to 
the target by identifying the image-plane location of the 
visual cue on the end-effector and by using this 
additional information to re-compute the parameters in 
the camera model. In this way, the manipulator- 
generated camera models are refined such that they are 
quite accurate in the vicinity of the terminal target 
location. 

6. Experimental Studies 

This section reports on a number of experiments that 
have been run to test the algorithms described in the 
previous sections. These experiments have been done 
using the SRR and FIDO technology platforms, shown in 
Figure 1, in both laboratory and field environments. 
SRR is a four-wheel drive, independently four-wheel 

steered rover platform with a split differential and 
independently-controlled shoulder (or rocker) joints. 
FlDO is a six-wheel drive, independently six-wheel 
steered rover platform with a rocker-bogie suspension 
system. FIDO has a 4-degrees-of-freedom (DOF) mast 
that extends to 1.94 m when deployed. The mast-head 
houses a stereo PanCam (panorama camera), a stereo 
NavCam (navigation camera), and an Infrared Point 
Spectrometer (IPS). The NavCam is a low spatial- 
resolution (640X480), monochrome, wide field-of-view 
(45') stereo imaging (25 cm baseline) system used for 
traverse planning. In addition to the mast, FIJlO has a 4- 
DOF Instrument Arm with a color microscopic imager 
mounted on the end-effector. SRR has a 3-DOF 
manipulator arm that is used for manipulation and 
doubles as a sensing mast using the same NavCam stereo 
setup as FIDO. FIDO has two other sets of wide field-of- 
view (1 12O), narrow baseline (15 cm) stereo cameras, the 
Front HazCam and the Rear HazCam. The HazCams are 
used to provide range data for autonomous hazard 
avoidance algorithm for obstacle detection during rover 
traverses. The front HazCam is also utilized to choose 
science targets for in-situ instruments mounted on the 
Instrument Arm. SRR has a single front HazCam system 
with the same parameters as FIDO. Both rovers carry a 
commercial Crossbow three axis accelerometer and 
gyroscope IMU package The computing platform on 



both rovers is a PC/104 266Mhz, Pentium-class CPU 
with a VxWorks 5.4 real-time operating system. 

The first series of experiments was done to test the 
rover localization algorithms discussed in Section 2. To 
test the IMU rate sensor bias estimation technique, data 
was collected from the FIDO's IMU for approximately 
10 minutes while the rover remained stationary. Nine 
separate data sets were collected on different days at 
different times so that the temperature of the IMU varied 
for each of the data sets. The bias estimator operates on 
the.IMU data at 200 Hz (the same rate as the IMU 
sampling). Results from two of the nine data sets are 
shown in Figure 6. In these two data sets, the filter 
converges rapidly within 0.5 seconds from the start of 
the run. Also due to the collection of the data sets at 

Figure 6. Estimated yaw angle results from two data 
sets out of nine acquired during different times of day 
for a stationary FIDO rover. The yaw angle is plotted 
vs. time in secs over a 10 minute time frame for each 
data set. The horizontal line in each plot is the Kalman 
corrected yaw angle and the sloped line is the 
uncorrected yaw angle. 

different days and times, the rate sensor bias terms 
converge to different values (approximately 0.0 1 degrees 
per second for the first case and -0.02 degrees per second 
in the second case). Despite the different values for the 
estimated rate sensor bias terms, the estimate of the yaw 
angle remained quite stable when compared to the rate 
sensor integration without bias estimation. 

The second study tested the fusion of the motion 
information derived from matching of range maps 
between successive views as described in Section 2.1 
and the wheel odometry and IMU readings using an 
extended Kalman filter described in Section 2.2. This 
study was done indoors and thus the sun sensor was not 
used as an input. A birds-eye-view of the experimental 
runs is shown in Figure 7. The results for these runs 
indicated the mean localization error was decreased by a 
factor of 4 (mean error of 1.38 m for dead reckoning vs. 
0.4 m for Kalman filtered) over a series of 12 meter runs. 
Further details can be found in Hoffinan, et al. [ 131 and 
in Baumgartner, et al. 14, 51 for the FIDO rover in field 
trial situations. 

The next series of experimental studies field tested the 
long range rendezvous sequence shown in Figure 3 in the 
Arroyo Seco at JPL. A representative image from the 

Figure 7. Aerial view of experimental laboratory runs for 
comparison of dead-reckoned and Kalman-filtered 
approaches to a designated goal. 

sequence taken at 25 meters from the lander is shown in 
Figure 8, where the texture signatures in a localized 
window about the lander for the first three levels of 
wavelet decomposition are illustrated. The average error 
in placement for the rover in relation to the ramps over 
15 runs was 1.8 cm in the lateral and 2.4 cm in the 
longitudinal directions, with a average heading error of 
2.7". Representative images of the rover taken at the 
long, mid and close range offsets to the lander are shown 
in Figure 9. 

The next series of experimental studies tested the 
multi-view, multi-feature precision rendezvous with 
natural targets using FIDO in the Arroyo Seco at JPL. A 
series of 11 NUS was done with a target remotely 
selected with NavCam images under the WITS (Web 
Interface for TeleScience) interface that is used for 
training of the 2003 MER (Mars Exploration Rover) 
science team. Some representative NavCam images 
taken mid-way through the autonomous traverse with 
feature points shown as white crosses are shown in 
Figure 10. Over the 11 runs, there was an average 
instrument arm placement error of 7.5cm (1.3%) and 
RMS of 2.5cm with an average autonomous approach of 
5.9 meters. The spread of errors on the science target is 
shown in Figure 11, where crosses mark the end-effector 
placement position, and a 1 cm radius circle gives the 
desired range of accuracy around the nominal target 
point. 

Our final experimental study tested the HIPS 
algorithm for precision manipulation. The experimental 
testbed in the Planetary Robotics Lab at JPL is shown on 
the left in Figure 12, where the target cues are the 



blacvwhite circular decals on a mockup of a taskboard 
with a circular grip point. The end-effector cue is the 
same type of target. On the right side of Figure 12, a 
graph displays the experimental results. The preplanned 
cue predictions are shown throughout the workspace as 
light colored circles, and the preplanned cue samples are 
shown as dark colored circles. These are used to calibrate 
the system as described in Section 5. A sample trajectory 
is shown as a connected path with the predictions and 
samples shown as small and larger circles respectively. 
There was an average error of 1.5” in lateral offset 
and 1 mm in distance for 15 tests. 

7. Summary and Conclusions 

We have described the development and testing of a 
number of sensory fusion algorithms for planetary 
surface robotic operations that would be common to 
upcoming NASNJPL missions in 2009 and 2013. These 
include an extended Kalman filter fusion of range map, 
wheel encoder, IMU, and sun sensor information for 
better rover localization during long traverses, fusion of 
multiple view and multiple feature information for 
precision rendezvous operations, and fusion of visible 
and manipulator joint angle information for precision 
manipulation. Experimental results using the FIDO and 
SRR technology prototype rovers at JPL were presented 
for flight-like operational scenarios. The localization 
results indicated an error of -3% of the distance traveled 
for position, and an error -2-3” in heading [4, 51. The 
heading error is greatly dependent on the availability of 
the sun sensor and time of day [35]. For the long range 
rendezvous with the lander the average error in 
placement for the rover in relation to the ramps over 15 
runs was 1.8 cm in the lateral and 2.4 cm in the 
longitudinal directions, with a average heading enor of 
2.7”. For the short range science target rendezvous, there 
was an average instrument arm placement error of 7.5cm 
(1.3%) and RMS of 2.5cm over 11 runs with an average 
autonomous approach of 5.9 meters. Finally in our HIPS 
manipulation experiments, there was an average error of 
1.5” in lateral offset and Imm in distance for 15 tests. 

Our current research directions include the integration 
of the short range science target rendezvous and HIPS 
algorithms into a system that will reduce the placement 
error (desired accuracy as specified by the Science Team 
for the 2009 Mars Science Laboratory mission is 1 cm). 
This approach combines the accuracy of precision 
placement found in HIPS with the accuracy of precision 
rendezvous found in the multi-view, multi-feature 
navigation algorithm. 
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Figure 8. Example of texture signature values for local window in image of lander taken with mast mounted NavCams from 25 
meters. From left to right: Original image with lander area boxed, Level 0 texture signature values, Level 1 texture signature values, 
Level 2 texture signature values. Gray scale is used to give relative values of texture signature, which is the fused value of the 
horizontal, diagonal, and vertical values for each pixel in the window. The target detail decreases with increasing levels of wavelet 
decomposition (see Figure 3). The total fused value for the texture signature window (see Equation 1) at Level 0 is 0.82, Level 1 is 
0.86, Level 2 is 0.94 as compared to the backmound range of 0.0 to 0.45 in the same sized window. 

Figure 9. Representative images of FIDO rover during long range lander rendezvous sequence in the Arroyo Seco at JPL. From let? 
to right: Range of about 125 meters; range of about 20 meters; rover aligned with ramps at range of 50 cm. 



Figure 10. NavCam view of scene with feature points marked with white crosses and designated target shown with arrow. Left 
image) 3.83 meters h m  tarpet; right image) 2.66 meters from target 

Figure 11. Instrument arm placement results for 11 trials in 
the Arroyo Seco at JPL. &Cam view of the target taken 
from 85 cm away. Crosses are ann end-effector positions 
h m  all trials, and circle is nominal 1 cm radius area around 
designated target. 

RlgM Camera Image Plane 

L U  
350 d s  

Figure 12. HIPS test setup and results. Left Task Board with target and end-effector cues; Right: Experimental results 
plotted in the XIY  image plane. 




