
Intelligent Generation of Candidate Sets
For Genetic Algorithms in Very Large Search Spaces

Julia R. Dunphy Ph.D.
Jose J. Salcedo M.S.

Keri S. Murphy

Julia.Dunphy@,ipl .nasa. QOV

Jose. Salcedo@,jsl.nasa. gov
Keri .Murphy@jpl.nasa. gov

Jet Propulsion Laboratory, California Institute Of Technology, Pasadena, California USA

1 .O Introduction

For several years we, at JPL, have been working on how to select safety measures for

space missions in an optimal way. The main limitation on the measures that can be

performed is, of course, cost. There are often hundreds of possible measures which may

be taken, ranging fiom simple inspections to using complex environmental simulators.

cacn measure has ai associated cost ziid ziii cffiztivzness that describes its p t e ~ t i d to - .
reduce the risk to the mission goals. Making the trades between measures is still mostly

manual and often human biases show up in the final selected. The DDP (Defect

Detection and Prevention) project is an attempt to take the human bias out of the process

and make all selections of safety measures as optimal as possible. However, using a

computer search of such an enormous search space is not practical if every combination

is evaluated. It was therefore decided to use an evolutionary algorithm to improve the

efficiency of the search. A ndive approach might be to take random combinations of

measures as candidates, evaluate the utility of each combination, and then use genetic

algorithm methods based on high efficiency and low cost. However, this would lead to

many sets of solutions which were wildly expensive and so unfeasible. In fact, this

method is quite likely to yield a best 100 solution set without any members that could

come in within the assigned budget. So we decided to try and generate only candidates

that were affordable from the outset.

2.0 The DDP Model

A PACT erevention, Analysis, Control or Test) is a way of reducing the likelihood of

one or more Failure Modes (FMs) occurring. Each requirement is given an arbitrary

weight of importance to the proj.ect and an FM, if it occurs, reduces the total recovered

requirement weight (i.e. the percentage of the requirement weight that is likely to survive

the FMs)

Problem statement

How do we choose the PACTs that are the most cost effective? There are typically

hundreds of PACTs that might be employed with complex intemal and external

interactions. So since a typical solution to the problem may involve 20 to 30 PACTs, the

number of combinations is enormous. Even after the constraint that the cost goal be met,

the number of possible combinations that do not exceed budget allocation is still large but

tractable.

3 .O Sifting the combinations

NaTve searches of all possible candidate sets for those that meet the cost constraint is not

practical. We are now actively investigating evolutionary techniques such as genetic

algorithms to rank the solutions. The subject of this paper, however, is to describe the

methodology for creating the candidate sets. We plan to publish our results concerning

the efficiency of the algorithm later.

Binning strategy

To make the problem tractable, each PACT is assigned to a cost bin that can roughly be

thought of as “Low Cost ,Inexpensive, Median, Expensive, and Very Expensive”. The

division into five bins is quite arbitrary and later we may try a larger number of bins.

The lowest and highest cost extracted from all the PACTs are used to determine the cost

limits for each bin. After the bins limits are calculated, the individual PACTs are each

assigned to a bin based on their cost.

bl b2 b3 b4 b5

Ave($k) 5.0 15 25 35 45

Max/Av 10 4 2 2 1

Example keys for a $360k budget (using average values for each bin):

(0,0,0,8,2}
(20,8,4,1,0}

8 X 35 + 2 X 45 = 370
20 X 5 + 8 X 15 + 4 X 25 + 45 = 365

Candidate solutions for the evolutionary algorithm are first identified by a key such as

(4,1,6,3,2) indicating how many of each kind may be chosen. This key does not define

the actual candidate solution but only the number of PACTs that can be extracted from

each bin in tum to achieve the cost limit. We use integer arithmetic so that the actual cost

of the candidate is only roughly equal to the maximum cost. The round-off errors can

prodllce quite .igEif;,cm devi2tims f i Q E the m2ximnm cost ifthey nc.c,?!r in the high

value PACTs. The methodology ensures that we won’t discard a solution that exceeds

our coast maximum by some small amount. It is often possible to get a budget increase if

significant increase in safety is achieved by a relatively small cost increase. The actual

candidate then is extracted by another tuple that includes the actual indices within each

bin such as {3,0,5,2,0). Each value in the second tuple must, of course, be less than the

value in the key.

Because of the fact that the costs are unrelated, it is quite possible that some bins have no

members. If this is the case, we eliminate the bin but keep the cost limits in the other

bins the same. It is also possible that the number of PACT combinations that meet the

cost limit is very small. This may be due to either the cost limit being too high or too

low. If the cost limit is so high that it can only be achieved by a very few candidates we

automatically lower the cost limit. If the cost limit is too low, we declare that the

evolutionary search is not possible. If the cost limit is low enough to leave about 1000 to

10000 possible candidates we replace the evolutionary search algorithm with a simple

exhaustive search using the sequential mode defined below.

Each actual candidate solution is extracted by means of an iterator as described in the

next section.

lterator

New candidate solutions are created by the iterator. The iterator is created each time a

new key is employed. The iterator can work in a random or sequential mode. In

sequential mode the iterator will cycle through all the lowest cost PACTS (those in bin 1)

and when all combinations that meet the key signature have been exhausted, it will

change the selection from bin 2 by one member and then cycle bin 1 again. This is

similar to the way normal counting works (e.g. units exceeding nine create a carry into

the tens). This mechanism ensures that all possible candidates will have been generated

eventually and each candidate will have roughly (but not exactly) the same cost. A

complete candidate PACT set is then composed of a set of subcandidates, one each from

each bin whose count in the tuple is not zero. In random mode, however, the iterator will

generate subcandidates randomly in each bin. The iterator is programmed to make sure

that each candidate is different by keeping track of those previously created.

A sequential iterator can completely encompass every combination within the bin if

called a sufficient number of times.

Genetic AI g o ri t h m

The candidates are assembled into a population. Because of the selection method they

are guaranteed to have roughly the same cost. They are rated by their total Recovered

Requirement ability (as a percentage of total requirements in failure free environment)

Mutations

Generation to generation transformation is based on the work of Colin Williams at JPL

on Quantum Computing Circuits. Normal Genetic Algorithm mutations, crossovers etc

are employed with some new ideas. We use the tuple idea one more time to improve the

efficiency of the algorithm. In our application it is possible to substitute an entire

subcandidate at mutation time if desired. We therefore carry both normal (single PACT)

substitution and subcandidate substitution. In either case, we are ensured that the cost

boundary will he loosely obeyed.

4.0 Testing

We are now testing but have few if any results to report yet.

