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1 .O Introduction 

For several years we, at JPL, have been working on how to select safety measures for 

space missions in an optimal way. The main limitation on the measures that can be 

performed is, of course, cost. There are often hundreds of possible measures which may 

be taken, ranging fiom simple inspections to using complex environmental simulators. 

cacn measure has ai associated cost ziid ziii cffiztivzness that describes its p t e ~ t i d  to - .  
reduce the risk to the mission goals. Making the trades between measures is still mostly 

manual and often human biases show up in the final selected. The DDP (Defect 

Detection and Prevention) project is an attempt to take the human bias out of the process 

and make all selections of safety measures as optimal as possible. However, using a 

computer search of such an enormous search space is not practical if every combination 

is evaluated. It was therefore decided to use an evolutionary algorithm to improve the 

efficiency of the search. A ndive approach might be to take random combinations of 

measures as candidates, evaluate the utility of each combination, and then use genetic 

algorithm methods based on high efficiency and low cost. However, this would lead to 

many sets of solutions which were wildly expensive and so unfeasible. In fact, this 

method is quite likely to yield a best 100 solution set without any members that could 

come in within the assigned budget. So we decided to try and generate only candidates 

that were affordable from the outset. 

2.0 The DDP Model 

A PACT erevention, Analysis, Control or Test) is a way of reducing the likelihood of 

one or more Failure Modes (FMs) occurring. Each requirement is given an arbitrary 



weight of importance to the proj.ect and an FM, if it occurs, reduces the total recovered 

requirement weight (i.e. the percentage of the requirement weight that is likely to survive 

the FMs) 

Problem statement 

How do we choose the PACTs that are the most cost effective? There are typically 

hundreds of PACTs that might be employed with complex intemal and external 

interactions. So since a typical solution to the problem may involve 20 to 30 PACTs, the 

number of combinations is enormous. Even after the constraint that the cost goal be met, 

the number of possible combinations that do not exceed budget allocation is still large but 

tractable. 

3 .O Sifting the combinations 

NaTve searches of all possible candidate sets for those that meet the cost constraint is not 

practical. We are now actively investigating evolutionary techniques such as genetic 

algorithms to rank the solutions. The subject of this paper, however, is to describe the 

methodology for creating the candidate sets. We plan to publish our results concerning 

the efficiency of the algorithm later. 

Binning strategy 

To make the problem tractable, each PACT is assigned to a cost bin that can roughly be 

thought of as “Low Cost ,Inexpensive, Median, Expensive, and Very Expensive”. The 

division into five bins is quite arbitrary and later we may try a larger number of bins. 



The lowest and highest cost extracted from all the PACTs are used to determine the cost 

limits for each bin. After the bins limits are calculated, the individual PACTs are each 

assigned to a bin based on their cost. 



bl b2 b3 b4 b5 

Ave($k) 5.0 15 25 35 45 

Max/Av 10 4 2 2 1 

Example keys for a $360k budget (using average values for each bin): 

(0,0,0,8,2} 
(20,8,4,1,0} 

8 X 35 + 2 X 45 = 370 
20 X 5 + 8 X 15 + 4 X 25 + 45 = 365 



Candidate solutions for the evolutionary algorithm are first identified by a key such as 

(4,1,6,3,2) indicating how many of each kind may be chosen. This key does not define 

the actual candidate solution but only the number of PACTs that can be extracted from 

each bin in tum to achieve the cost limit. We use integer arithmetic so that the actual cost 

of the candidate is only roughly equal to the maximum cost. The round-off errors can 

prodllce quite .igEif;,cm devi2tims f i Q E  the m2ximnm cost ifthey nc.c,?!r in the high 

value PACTs. The methodology ensures that we won’t discard a solution that exceeds 

our coast maximum by some small amount. It is often possible to get a budget increase if 

significant increase in safety is achieved by a relatively small cost increase. The actual 

candidate then is extracted by another tuple that includes the actual indices within each 

bin such as {3,0,5,2,0). Each value in the second tuple must, of course, be less than the 

value in the key. 

Because of the fact that the costs are unrelated, it is quite possible that some bins have no 

members. If this is the case, we eliminate the bin but keep the cost limits in the other 

bins the same. It is also possible that the number of PACT combinations that meet the 

cost limit is very small. This may be due to either the cost limit being too high or too 

low. If the cost limit is so high that it can only be achieved by a very few candidates we 

automatically lower the cost limit. If the cost limit is too low, we declare that the 

evolutionary search is not possible. If the cost limit is low enough to leave about 1000 to 

10000 possible candidates we replace the evolutionary search algorithm with a simple 

exhaustive search using the sequential mode defined below. 



Each actual candidate solution is extracted by means of an iterator as described in the 

next section. 

lterator 

New candidate solutions are created by the iterator. The iterator is created each time a 

new key is employed. The iterator can work in a random or sequential mode. In 

sequential mode the iterator will cycle through all the lowest cost PACTS (those in bin 1) 

and when all combinations that meet the key signature have been exhausted, it will 

change the selection from bin 2 by one member and then cycle bin 1 again. This is 

similar to the way normal counting works (e.g. units exceeding nine create a carry into 

the tens). This mechanism ensures that all possible candidates will have been generated 

eventually and each candidate will have roughly (but not exactly) the same cost. A 

complete candidate PACT set is then composed of a set of subcandidates, one each from 

each bin whose count in the tuple is not zero. In random mode, however, the iterator will 

generate subcandidates randomly in each bin. The iterator is programmed to make sure 

that each candidate is different by keeping track of those previously created. 

A sequential iterator can completely encompass every combination within the bin if 

called a sufficient number of times. 

Genetic AI g o ri t h m 

The candidates are assembled into a population. Because of the selection method they 

are guaranteed to have roughly the same cost. They are rated by their total Recovered 

Requirement ability (as a percentage of total requirements in failure free environment) 

Mutations 



Generation to generation transformation is based on the work of Colin Williams at JPL 

on Quantum Computing Circuits. Normal Genetic Algorithm mutations, crossovers etc 

are employed with some new ideas. We use the tuple idea one more time to improve the 

efficiency of the algorithm. In our application it is possible to substitute an entire 

subcandidate at mutation time if desired. We therefore carry both normal (single PACT) 

substitution and subcandidate substitution. In either case, we are ensured that the cost 

boundary will he loosely obeyed. 

4.0 Testing 

We are now testing but have few if any results to report yet. 




