
..

Formalized Pilot Study of Safety-Critical Software Anomalies
Final Report

December 30,2002

Robyn R. Lutz
Inks Carmen Mikulski

Jet Propulsion Laboratory

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. The work was sponsored by the NASA

Office of Safety and Mission Assurance under the Software Assurance Research Program led by the NASA
Software IV&V Facility. This work is managed locally at JPL through the Assurance Technology Program

Office.

Version 1.2 1

Summary

This report describes both the research techniques and the application results from the
analysis of safety-critical software anomalies recorded post-launch on seven spacecraft:
Galileo, Mars Global Surveyor, CassiniMuygens, Deep Space 1, Mars Climate Orbiter,
Mars Polar Lander, and Stardust. The process involved the adaptation of an existing
defect-analysis methodology, Orthogonal Defect Classification, to spacecraft
applications. This report also describes initial results from a feasibility study of adapting
this ODC technique to analyze software problem reports generated during testing on the
Mars Exploration Rovers. Both the approach and the results are presented here. The
goal is to reduce the number of safety-critical software anomalies that occur during flight
by providing a quantitative analysis of previous anomalies as a foundation for process
improvement.

Version 1.2 2

Introduction

Advances in NASA’s capability to produce quality software that contributes to safe,
reliable systems depend in part on our ability to more precisely characterize areas
needing improvement. Analysis of software anomalies is such an area. This work
characterizes the common causes of safety-critical in-flight software anomalies using
operational data from seven spacecraft. The analysis was done using an adaptation of a
defect-analysis technology, called Orthogonal Defect Classification (ODC), developed by
IBM and used by industries such as Bellcore and Motorola. Since the goal of the
research is to provide a sound, quantitative foundation to enable improvements, a
formalized pilot study approach (the rigorous Glass criteria) was used.

Results from analysis of the safety-critical software anomalies occurring post-launch on
seven spacecraft were delivered to the IV&V Facility. In response to queries regarding
whether a similar adaptation of ODC could provide analysis of pre-launch software
anomalies, a feasibility study began in collaboration with the Mars Exploration Rover
project. In this study problem reports generated during integration and system testing
were analyzed using a similar adaptation of ODC.

This final report provides the following results not previously delivered to the IV&V
Facility:

1.
2.

3.

4.

5 .
6.

7.

8.

Definition of ODC Classification Scheme Adapted to Post-Launch Anomalies
Definition of ODC Classification Scheme Adapted to Software Testing Problem
Reports
Excel Database of ODC Classification of 199 post-launch critical software
Incident/Surprise/Anomaly reports,
Excel Database of ODC Classification of testing software developmental
problem failure reports and software problem failure reports
Pivot Table Summary of Results from Analysis of Post-Launch Anomalies
Pivot Table Summary of Results from Analysis of SomeTesting Problem
Reports
Paper Describing Results from Preliminary Analysis of Some Testing Problem
Reports (accepted to IEEE International Conference on Software Engineering,
2003)
Process Recommendations Resulting from ODC Analysis of Safety-Critical
Post-Launch Software Anomalies from Seven Spacecraft

Version 1.2 3

Section 1. Definition of ODC Classification Scheme Adapted to Post-
Launch Anomalies

Ground
Resources

Activities Triggers

Resource Conflict

Unknown I Unknown

Targets

Ground
Software

Flight
Software

FunctiodAlgorithm

Interfaces

Assignmenthitializ
ation
Timing

FunctiodAlgorithm
Interfaces
Assignment/Initializ
ation
Timing

Info.
DeveloDment

1 Procedures

Hardware 1 Hardware

NoneAJnknow

Version 1.2 4

Section 2. Definition of ODC Classification Scheme Adapted to
Software Testing Problem Reports

Ground Software

This document contains the definitions of PFR classification, which apply the Orthogonal
Defect Classification (ODC) to the MER PFRs encountered during the three level of testing
(Build, I&T, and ATLO).

FunctiodAlgorithm
Interfaces

The classifications are being customized for MER during the tests phases in an effort to
provide information to the different test levels ...

Flight Software

Classification Summary:

FunctiodAlgorithm
Interfaces
Timing:

Assignment/Initialization
Flight Rule

BuildPackage Install Dependency
Scripts

Testbed environment
Timing:
Assignment/Initialization
Flight Rule

Version 1.2 5

Info.
Development

Unknown

Version conflict
Documentation

Missing procedures
Procedures not followed

Version 1.2 6

ACTIVITY

Activity: Is the test level being performed when the defect was found?

Activity
Build Test

Description of Activity

TRIGGER

ATLO
Test
Unknown

Trigger: The environment or condition that had to exist for the defect to surface. The
environment or condition that was the catalyst for the anomaly [ODC].
Suggested description by Karen: “Test objective of the test being run when the defect was discovered. This
objective is not necessarily related to the defect or the cause of the anomaly.”

This activity will be selected when the

Capability
Invocation

Command
Execution
InspectiodReview

HW Configuration

HW-SW
Interaction

Recovery

Special Procedures

Version 1.2

The error was detected while testing theresponse
from a series of related commands.
This includes lack of or incorrect telemetry
The error was detected while testing the response
from a single command.
A problem have been found out by inspection of:

Code
Test results

A S/W or WW error was detected as a result of testing
a particular WW configuration, or the hardware
failed.
Denied connectivity?
Electronics
When the expectation of the H/W and S/W are
inconsistent, e.g. the wrong switch closes or the data
appears on the wrong channel or in the wrong
directory.
When a recovery action or fault protection uncovers a
problem.
Testing a specific mission maneuver.

7

Start and Restart

Unknown

Workload & Stress

If the defect is triggered by:
Missing or incorrect files
Denied access to files
Wrong SMI' versions
Routine build of the S/w version not proceeding as

expected.
Incorrect delivery

The error was detected while the systedsubsystem
was being:

initialized, reboot, shutdown,
powered up, or
restarted following an earlier shutdown or complete system

or subsvstem failure
The trigger can not be determined

The error was detected after the system was placed
under a heavy task load or run for a very long period
of time.
Types of problems under test include possible memory leaks,
buffer overflows, file and queue full conditions, and delays such
as late arrival of responses, crossed arrival of responses, loss of
responses, and late execution of timed commands.

Version 1.2 8

TARGET

Target: “Represents the high-level identity of the entity that was fixed” [ODC web
page]. The target can be the identity that was changed to avoid the problem in the future
(e.g., software that is updated to avoid a future problem with hardware) or the identity
that was used to fix a problem (e.g., a contingency file or command that is sent to solve a
hardware problem). Usually found in “Corrective Action” description.

Flight software

Information

None/ Unknown I----
I Hardware

If the corrective action was in ground software. Ground software includes:
Mission and Science Planning,

0 Operations, Operations Analysis Software,
0 Data Management Software,

Sequence Development Software,
8 Ground Data Transport Software,
0 Simulator Software,
0 Pre-launch Integration and Test Software,

Modeling Software,
0 Bench Test Equipment Software,
0 Commercial Software supporting development [Ref: OP/SP software

classification]
1. Selected if the corrective action was in software residing on

the spacecraft, either in the flight control computer or in the
instrument computer, etc. Includes commercial software
(e.g., operating systems)

2. Selected if the corrective action was:
A real-time command,

0 Flight code update/patch.

If the corrective action was to a procedure, documentation, or
technical information.
If the corrective action involved proper installation of files in the
expected directory
Nothing was targeted to be fixed and the problem was closed.
Or
Insufficient information to determine what was done to correct
the problem or the problem was closed due to insufficient
datdinformation to be able to determine what needs to be fixed.
The hardware is targeted to fix the Droblem.

Version 1.2 9

TYPE

Type: Represents the actual correction that was made. "is the meaning of the fix" (R.
Chillarege). Collectively, the defect types describe the nature of work.

FunctiodAlg
orithm

Interfaces

Assignment/
Initialization

Timing

Flight Rule

Testbed t- Environment

1. When the defect is the result of the omission
or incorrect implementation of:

significant capability, or
requirements, or
end-user interfaces, or
global data structure(s).

2. When the defect is the result of an efficiency
or correctness problem that affects the task and
was fixed by (re)implementing an algorithm or
a local data structure

3. When the defect is the result of omission or
incorrect validation of parameters or data in
conditional statements.

When the defect is the result of a communication
problem between:
Modules, components, device drivers, fbnction.
Note: The defect that is the result of passing the
wrong type of variable is an I/F problem, while
the defect that is the result of passing the wrong
value. is an assignment.
When the defect is the result of:

value(s) assigned incorrectly, or
0 not assigned at all, or
0 wrong calibration value.

Note than a fix involving multiple assignments
corrections may be type Algorithm.
1. When the defect is the result of timing error

between:
systedsubsystem,

0 modules,
S/W-H/W, etc. or

or an incorrect use of serialization for
controlling access to a shared resource.

or missing mound Flight Rule.

2. When the defect is the result of the omission

1. When the defect is the result of an incorrect

When the testbed does not support the executed
command or capability.

Version 1.2 10

Flight
Software

BuilcVPackage

FunctiodAlg
orithm

Interfaces

Assignment/
Initialization

Timing

Flight Rule

Install
dependency

Packaging/
Scripts

2. When the defect is the result of the omission
or incorrect implementation of:
0 significant capability, or
0 requirements, or
0 end-user interfaces, or
0 global data structure(s)

3. When the defect is the result of an efficiency
or correctness problem that affects the task and
was fixed by (re)implementing an algorithm or
a local data structure, or

4. When the defect is the result of omission or
incorrect validation of parameters or data in
conditional statements .

When the defect is the result of a communication
problem between:
Modules, components, device drivers, function.
Note: The defect that is the result of passing the
wrong type of variable is an I/F problem, while
the defect that is the result of passing the wrong
value, is an assignment.
When the defect is the result of a value(s):

assigned incorrectly or
0 not assigned at all, or

a wrong calibration value.
Note than a fix involving multiple assignments
corrections may be type Algorithm.
1. When the defect is the result of timing error between:

systedsubsystem,
0 modules,

SIW-WW, etc.

or an incorrect use of serialization for
controlling access to a shared resource.

2. When the defect is the result of the omission

When the defect is the result of an incorrect or
missing spacecraft Flight Rule.
When the defect is encounter during installation,
if needed files were missing or misplaced. Also
if at execution, files were missing due to an
installation problem.
When the defect is encountered during the system
build process and was the result of:

the library system, or
faulty change management, or
version control.

Version 1.2 11

Information
Development

Documentati
on

Procedure
not followed

None/
Unknown

Nothing
Fixed

When the problem is the result of an error in the:
written description contained in user guides,

0 installation manuals, or
0 prologues, or
0 code comments.

Note, this should not be confused with an error or
omission in the requirements or design that might
be a Function or Interface defect type.
When the problem is the result of a missing, out
of date. or incomdete Procedure.
When the problem is the result of using the
wrong procedure or not following the
documented Procedure.
The problem could not be fixed or decided did
not need to be fixed; the problem was closed
without indication that anything was fixed.
Insufficient information provided.
The hardware was fixed to resolve the problem
(installation. connectivitv moblems?)

Version 1.2 12

Excel Database of ODC Classification of post-launch critical software
Incident/Surprise/Anomaly reports

Activitv ~.

Flight Operations
Flight Operations

System Test

Flight Operations

System Test

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

System Test

System Test

System Test

Flight Operations

System Test

System Test

System Test

System Test

Flight Operations

Unknown

Flight Operations

Trigger
Special Procedure
Special Procedure

Inspection/Review

Hardware Failure

Cmd Seq Test

Hardware Failure

Special Procedure

Special Procedure

Normal Activity

Data
Access/Delivery

Normal Activity

Cmd Seq Test

Cmd Seq Test

Cmd Seq Test

Normal Activity

Cmd Seq Test

Software
Configuration

Cmd Seq Test

Cmd Seq Test

Data
Access/Delivery

Unknown

Normal Activity

Target
Ground Software
Flight Software

Information
Development

Information
Development

Flight Software

Flight Software

Information
Development

None/Un known

Ground Resources

Ground Software

Ground Software

Ground Software

Ground Software

Ground Software

Information
Development

Ground Software

Information
Development

Flight Software

Ground Software

Information
Development

NonelUnknown

Flight Software

Type
Assignmentllnitialization
Assignmentllnitialization

Procedures

Procedures

Function/Algorithm

Function/Algorithm

Procedures

Nothing Fixed

Resource Conflict

Function/Algorithm

Interfaces

Assignmentllnitialization

Function/Algorithm

FunctionlAlgorithm

Procedures

Function/Algorithm

Procedures

Assignment/ Initialization

FunctionlAlgorithm

Procedures

Nothing Fixed

Assignmentllnitialization

Version 1.2 13

Activi Trigger
Software
Configuration

Data
AccesslDelivery

Flight Operations r
Target

Information
Development

Information
Development

System Test

System Test

Flight Operations

System Test

Special Procedure

InspectionlReview

Recovery
Recovery

InspectionlReview

Recovery

System Test F

Information
Development
Information
Development
Flight Software
Flight Software

Ground Software

Information
Development

Flight Operations 7
Normal Activity

Unknown I
Flight Software

Flight Operations

Unknown

Flight Operations

None/Un known

Flight Operations i-------- Special Procedure

Flight Operations 1
Information
Development

Flight Operations 1
Special Procedure

System Test

Flight Software

Software Ground Software
Configuration I
Configuration

Recovery

I

Hardware Failure NonelUnknown

I
Hardware Failure Hardware

I

Hardware Hardware
Configuration

Type
Procedures

Procedures

Interfaces

Nothing Fixed

Procedures

Procedures

Flight Rule
Function/Algorithm

Function/Algorithm

Documentation

Assignmenvlnitialization

Nothing Fixed

FunctionlAlgorithm

Function/Algorithm

Nothing Fixed

Procedures

Procedures

FunctionlAlgorithm

Unknown

Procedures

Timing

Procedures

Hardware

Hardware

Version 1.2 14

Activity Trigger

AccesslDelivery I " '

Flight Operations

Flight Operations
Flight Operations

Flight Operations

Flight Operations

Fliaht ODerations

Flight Operations
AccesslDelivery

Flight Operations
AccesslDelivery

Data
AccesslDelivery
Special Procedure
Data
AccesslDelivery
Data
AccesslDelivery
Data
AccesslDelivery
Data

Flight Operations Data
AccesslDelivery

Flight Operations

I
System Test I InspectionlReview

Data
AccesslDelivery

I Unknown

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

I Unknown

Data
AccesslDelivery
Data
AccesslDelivery
Data
AccesslDelivery
Data
AccesslDelivery
Data
AccesslDelivery
Data
AccesslDelivery
Data
AccesslDelivery
Data
AccesslDelivery
Data
AccesslDelivery
Data

System Test

Flight Operations

Flight Operations
AccesslDelivery

AccesslDelivery

InspectionlReview

Target
Flight Software

Flight Software

Ground Software
NonelUn known

NonelUnknown

NonelUn known

Information
Development

Information
Development

Information
Development

Information
Development

Information
Development

Information
Development
Ground Software

Information
Development
Information
Development
Information
Development
Ground Software

Ground Software

Ground Software

Ground Software

Ground Software

Flight Software
Flight Software
Flight Software

Information
Development
Information
Development
Flight Software

NonelUnknown

Ground Software

Type
Assignmentllnitialization

Timing

Timing
Unknown

Unknown

Unknown

Procedures

Procedures

Procedures

Procedures

Procedures

Procedures

Assignmentllnitialization

Procedures

Procedures

Procedures

Timing

Timing

Timing

Timing

Interfaces

Timing
Flight Rule
FunctionlAlgorithm

Procedures

Procedures

FunctionlAlgorithm

Nothing Fixed

FunctionlAlgorithm

Version 1.2 15

Activity
-light Operations

Trigger Target
;round Software

Type
FunctionlAlgorithm lata

4ccesslDelivery
lata
4ccesslDelivery

-light Operations ;round Software

:light Software

:light Software

FunctionlAlgorithm

System Test Software
zonfiguration

Assignment/ lnitialization

System Test nspectionlReview Assignment/ Initialization

System Test Procedures nformation
levelopment
nformation
levelopment
nformation

iardware
zonfiguration
Jnknown

lata
4ccesslDelivery
iardware
zonfiguration

Jnknown

'light Operations

Procedures

Procedures

Documentation
levelopment
nformation System Test
levelopment
nformation
levelopment
;round Software

Procedures Jnknown Jnknown

Assignment/ Initialization StarVRestarUShutdo
Nn

System Test

-light Operations

System Test

Procedures nformation
levelopment
3uild Package

lata
4ccesslDelivery
Software
zonfiguration

Installation dependency

nformation 'light Operations

System Test

Special Procedure

nspectionlReview

Procedures

FunctionlAlgorithm
levelopment
;round Software

System Test Software
zontlguration
Software
Zonfiguration

>round Software Assignment/ Initialization

System Test JonelUn known Nothing Fixed

System Test -la rdwa re
=on figuration

-la rdwa re Hardware

;round Software System Test

System Test

StarVRestarVShutdo
wn

Assignmentllnitialization

Information
Development

Software
Configuration

Procedures

FunctionlAlgorithm

FunctionlAlgorithm

Nothing Fixed

Hardware

Procedures

System Test Software
Configuration

Ground Software

Flight Operations Data
AccesslDelivery

Flight Software

Data
AccesslDelivery

NonelUnknown Flight Operations

System Test Hardware
Configuration

Hardware

Data
AccesslDelivery

Information
Development

Flight Operations

Version 1.2 16

Activity
-light Operations

Trigger

-light Operations

Target

plight Operations

InspectionlReview

Flight Operations

Flight Software

Flight Operations

Data
Access/Delivery

Normal Activity

Hardware Failure

Data
AccesslDelivery

System Test

NonelUnknown

NonelUnknown

NonelUnknown

NonelUnknown

Flight Operations

Special Procedure

Flight Operations

Flight Software

Flight Operations

Flight Operations

Flight Operations

Data
AccesslDelivery

Flight Operations

System Test

Ground Software

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

4ccesslDelivery I
Ground Software

4ccesslDelivery

Information

AccesslDelivery

Configuration

Development

AccesslDelivery

Type
riming

riming

Jroced u res

riming

riming

riming

Uothing Fixed

Vothing Fixed

Vothing Fixed

Vothing Fixed

Nothing Fixed

Timing

4ssignmenUlnitialization

Procedures

Procedures

Interfaces

AssignmenUlnitialization

Version 1.2 17

Activity
Flight Operations

Flight Software System Test Interfaces

Flight Operations

Flight Operations

NonelUnknown

Flight Operations

Nothing Fixed

Flight Operations

Flight Operations

Information
Development

Flight Operations

Procedures

System Test

Ground Software

Unknown

System Test

Interfaces

System Test

Flight Software

Information
Development

NonelUnknown

Ground Software

NonelUnknown

Build Package

Ground Software

Ground Software

Flight Software

Flight Software

Flight Software

Flight Software

Flight Software

Ground Resources

System Test

FunctionlAlgorithm

Documentation

Unknown

Assignmenthitialization

Nothing Fixed

Install dependency

Function/Algorithm

FunctionlAlgorithm

Assignmenthitialization

Assignmentllnitialization

FunctionlAlgorithm

Assignment/ Initialization

Assignmentllnitialization

Resource Conflict

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

System Test

Ground Software System Test FunctionlAlgorithm

System Test Ground Software

Trigger
Data
AccesslDelivery

Assignment/ Initialization

Hardware
Configuration

Recovery

Data
AccesslDelivery

Data
AccesslDelivery

Hardware Failure

Data
AccesslDelivery

Data
AccesslDelivery

Software
Configuration

Unknown

Software
Configuration

Hardware
Configuration

Hardware
Configuration

Special Procedure

Hardware Failure

Recovery

Recovery

Normal Activity

Software
Configuration

StaNRestaNShutdo
wn

Hardware
Configuration

I

Version 1.2 18

Activity
Flight Operations

Target

Flight Operations

Type

System Test Ground Software

System Test

Assignmentllnitialization

System Test Information
Development

Flight Operations

Flight Operations

Flight Operations

Procedures

Flight Operations

NonelUnknown

Flight Software

Information
Development

Information
Development

System Test

Nothing Fixed

Assignmentllnitialization

Procedures

Procedures

Flight Operations

Flight Operations

System Test

Ground Software

NoneNnknown

Build Package

Ground Software

System Test

Timing

Unknown

Packaging Script

Function/Algorithm Flight Operations

Information
Development

Flight Operations Procedures

Flight Operations

Flight Operations

Flight Operations

Trigger
Normal Activity

Normal Activity

StarURestarVShutdo
wn

Software
Configuration

Software
configuration

Hardware Failure

Special Procedure

Hardware Failure

Hardware Failure

Software
Configuration

Hardware Failure

Normal Activity

Software
Configuration

Software
Configuration

Data
AccesslDelivery

Data
AccesslDelivery

Data
AccesslDelivery

Data
AccesslDelivery

Data
Access/Delivery

Development

Development

Development

Information Procedures
Development

Ground Software Interfaces I
Development

Version 1.2 19

Activitv Target
nformation
levelopment

Sround Software

Sround Software

nformation
Development

iardware

Information
Sevelopment

Information
Sevelopment

Information
Development

Information
Development

Information
Development

Information
Development

Information
Development

. - - _. - . -
Flight Operations

Type
Procedures

FunctionlAlgorithm

Assignmentllnitialization

Procedures

Hardware

Procedures

Procedures

Procedures

Procedures

Procedures

Procedures

Procedures

System Test

Ground Software

System Test

Flight Operations

Assignmenthitialization

System Test

Information
Development

Flight Software

Flight Software

Build Package

Information
Development

NonelUnknown

Flight Operations

Procedures

Assignmentllnitialization

Assignmentllnitialization

Install dependency

Procedures

Nothing Fixed

Flight Operations

Flight Operations

Flight Operations

Flight Operations

Flight Operations

System Test

Flight Operations

Flight Operations

Flight Operations

Flight Operations

System Test

Flight Operations

Flight Operations

Trigger
Data
AccesslDelivery

Software
Configuration

Cmd Seq Test

Data
Access/Delivery

Hardware
Configuration

Data
AccesslDelivery

Data
AccesslDelivery

Data
AccesslDelivery

Data
AccesslDelivery

Data
Access/Delivery

Normal Activity

Hardware
Configuration

Data
AccesslDelivery

Normal Activity

Special Procedure

Hardware Failure

Software
Configuration

Normal Activity

Data
AccesslDelivery

Version 1.2 20

Activity
Flight Operations

Trigger
Data
AccesslDelivery

Special Procedure

Software
Configuration

Hardware Failure

Flight Operations

Target
Information
Development

NonelUnknown

Ground Software

Flight Software

System Test

InspectionlReview

Flight Operations

Flight Software System Test

Recovery Flight Operations Flight Software

Flight Operations Hardware Failure

Recovery

Hardware
Configuration

Flight Operations

Flight Software

Flight Software

NonelUnknown System Test

InspectionlReview

Flight Operations

NonelUnknown

Flight Operations

Hardware Failure

Unknown

Data
AccesslDelivery

Data
AccesslDelivery

Flight Operations

Hardware

NonelUnknown

NonelU n known

NonelUnknown

System Test

Flight Operations

Data
AccesslDelivery

Unknown

Flight Operations

None/Unknown

Flight Operations

Data
AccesslDelivery

Data
AccesslDelivery

Data
AccesslDelivery

Flight Operations

Flight Software

FI ig ht Software

Flight Software

Flight Operations

Special Procedure

Flight Operations

NonelUnknown

Flight Operations

Flight Operations

Recovery

Type
Procedures

Nothing Fixed

Interfaces

FunctionlAlgorithm

Assignment/ Initialization

FunctionlAlgorithm

Assignment/lnitialization

Timing

Nothing Fixed

Assignment/ Initialization

FunctionlAlgorithm

FunctionlAlgorithm

Nothing Fixed

Hardware

Unknown

Unknown

Unknown

Nothing Fixed

FunctionlAlgorithm

FunctionlAlgorithm

FunctionlAlgorithm

Nothing Fixed

Version 1.2 21

Section 4. Excel Database of ODC Classification of testing software
problem reports

Version 1.2 22

Version 1.2 23

Activity Release Trigger Target Tme
I & T R4 Command Execution Information Development Documentation

I & T R4 Command Execution Flight Software FunctiodAlgorithm ...
BuildTest
I & T
I & T
I & T 1 R4 I Capability Invocation I Information Development 1 Missing Procedures
I & T I Capability Invocation I Information Development I Missing Procedures

R4 Command Execution Flight Software Interfaces
R4 Capability Invocation Information Development Procedures not followed
R4 Capability Invocation Information Development Procedures not followed

Version 1.2 24

Version 1.2 25

Version 1.2 26

Version 1.2 27

Section 5. Pivot Table Summary of Results from Analysis of Post-
Launch Anomalies

Ground Software

Ground Resources

Figure 5-1 Distribution of Type within Target

b 15

0

hfumtcn Dsvebpmnt

Figure 5-2 Distribution of Target within Trigger

Version 1.2 28

BO

70

60

50

40

M

20

10

0

16 __ ______-- ----- _____- --- ____---
14

E
P c

Figure 5-3 S / W Flight & Ground Targets vs. Type by Activity

Distribution of Triggers within Activity

Flight Operabns SystemTest

Version 1.2 29

Section 6. Pivot Table Summary of Results from Analysis of Some
Testing Problem Reports

Figure 6-1 Distribution of Type by Activity for Release 3

d

WorUod 6 (tess ~ A @ " l M U t ? a t m

Figure 6-2 Type Distribution within Trigger

Version 1.2 30

C

Figure 6-3 Target Distribution within Trigger

Version 1.2 31

Section 7. Paper Describing Results from Preliminary Analysis of
Some Testing Problem Reports (accepted to IEEE International
Conference on Software Engineering, 2003)

Version 1.2 32

Requirements Discovery During the Testing of Safety-Critical Software

Robyn R. Lutz
Jet Propulsion Laboratory
and Iowa State University

rlutzmcs. iastate. edu

Ines Carmen Mikulski
Jet Propulsion Laboratory
Pasadena, CA 91 109-8099

ines.c. mikulski(3ipl. nasa.gov

Abstract

This paper describes the role of requirements discovery during the testing of a safety-critical software system.
Analysis of problem reports generated by the integration and system testing of an embedded, safety-critical
software system identijied four common mechanisms for requirements discovery and resolution during testing:
(1) Incomplete requirements, resolved by changes to the software, (2) Unexpected requirements interactions,
resolved by changes to the operational procedures, (3) Requirements confusion by the testers, resolved by
changes to the documentation, and (4) Requirements confusion by the testers, resolved by a determination that no
change was needed. The experience reported here confirms that requirements discovery during testing is
frequently due to communication digiculties and subtle inte$ace issues. The results also suggest that ‘yalse
positive” problem reports from testing (in which the software behaves correctly but unexpectedly) provide a rich
source of requirements information that can be used to reduce operational anomalies in critical systems.

1. Introduction

This paper describes the role of requirements
discovery during the testing of a safety-critical software
system. Difficulties with requirements have been
repeatedly implicated as a source of both testing defects
[2, 71 and accidents in deployed systems [3, 101. In an
effort to improve our understanding of how
requirements discovery occurs during testing, and how
such discoveries are resolved (or are not resolved) prior
to deployment, we investigated the requirements-related
problems reported during testing of a safety-critical
system currently under development. Analysis of the
problem reports generated during integration and
system testing of the software distinguished four
common mechanisms for requirements discovery and
resolution:

The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. It
was funded by NASA’s Code Q Software Program Center Initiative,
UPN 323-08. The first author’s research is supported in part by
National Science Foundation Grants CCR-0204139 and CCR-
0205588.

(1) Incomplete requirements, resolved by changes to
the software. As often occurs, testing caused several
previously unidentified requirements to surface. These
new requirements usually involved complicated
interface issues between software components or
between hardware and software. Several of the
incomplete requirements involved fault protection, of
special concern in safety-critical systems.

(2) Unexpected requirements interactions, resolved
by changes to the operational procedures. A closely
related mechanism for requirements discovery was the
identification during testing of unexpected interactions
among the existing requirements. Typically, these
interactions resulted in new required sequencing of
activities when the interleaved processes unexpectedly
caused incorrect behavior or did not achieve the
required precondition for correct execution of the
software.

(3) Requirements confusion by the testers, resolved
by changes to the documentation. Testing revealed
some significant misunderstandings on the part of the
testers regarding what the requirements actually were.
In these cases the software worked as required and the
requirements were correct, but the software’s behavior
was unexpected. The corrective action was not to fix

Version 1.2 33

http://nasa.gov

the software, but to enhance the documentation in order
to better communicate the required software behavior
or requirements rationale.

(4) Requirements confusion by the testers, resolved
by a determination that no change was needed. In this
mechanism testing also revealed a gap in requirements
understanding. However, the problem report was
judged to be a “false positive,” Le., indicating failure
where the software in fact behaved correctly. We found
that in some cases where the software behaved correctly
but unexpectedly, an opportunity was missed to prevent
similar, subsequent requirements confusion by the
operators of the deployed system. We propose some
guidelines for distinguishing and responding to such
situations.

The experience reported here suggests that problem
reports generated during testing are an underused
source of information about potential requirement-
related anomalies that may occur after the software is
deployed. Test defect reports provide a unique source
of insights into future users’ gaps in domain
knowledge, misidentification of requirement rationales,
and erroneous assumptions regarding required
sequences of activities. In this limited sense, testing
problem reports may provide a preview of some
possible operational problems. The main contributions
of the paper are (1) to identify the common mechanisms
by which requirements discovery and resolution
occurred during testing, and (2) to report the lessons
learned regarding how such discoveries can be better
used to reduce future requirements anomalies in the
deployed system.

The rest of the paper is divided into sections as
follows. Section 2 describes the approach used to
investigate requirements discovery during testing.
Section 3 discusses and evaluates the results in the
context of some illustrative examples. Section 4 briefly
compares the experience described here to others’
findings. Section 5 summarizes the lessons learned.

2. Approach

The data for this analysis consisted of the 171
completed problem reports (PRs) written by project test
teams during integration and system testing of the Mars
Exploration Rovers (MER). MER, to be launched in
2003, will explore Mars with two robotic rovers
equipped to search for evidence of previous water. The
size of MER‘S flight software is roughly 300K Lines of
Code, implementing approximately 400 software
requirements of varying degrees of granularity.
Although the software was delivered in a series of
builds, we do not distinguish here among the builds due
to the relatively small number of PRs.

The on-line problem reports (PRs) filled out by the
project consist of three parts. The first part describes

the problem and is filled out by the tester when the
problem occurs. The second part is filled out by the
analyst assigned to investigate the problem. The third
part is filled in later with a description of the corrective
action that was taken to close out the problem.

The approach we selected for the analysis of the
PRs was an adaptation of Orthogonal Defect
Classification (ODC) El]. ODC provides a way to
“extract signatures from defects” and to correlate the
defects to attributes of the development process (Fig.
1). Our ODC-based approach uses four attributes to
characterize each PR: Activity, Trigger, Target, and
Type. The Activity describes where the defect surfaced,
e.g., Integration Test or System Test. The Trigger
describes the environment or condition that had to exist

I Integration Test I System Test

Figure 1 Types of Corrections for Testing Reports

for the defect to appear. In the testing environment, the
trigger was usually the testing of
a single command or of a capability sequence (i.e., a
software requirement scenario). The Target describes
the high-level entity that was fixed in response to the
problem report, e.g., Flight software, Ground software,
etc. The Type describes the actual correction that was
made, i.e., “the meaning of the fix” [l].

The two authors classified the PRs using the adapted
ODC. Both of us have experience on flight projects at
JPL but neither are directly involved with the testing of
the MER software. MER engineers generously assisted
us with answers to our process and domain questions.

Following the ODC approach, we defined each
classification attribute and the possible values it could
take in a document that was reviewed by MER project
personnel. Adaptation of the standard ODC categories
to the spacecraft domain was driven by the need to
capture core properties of the anomalies seen during
testing. In order to improve repeatability and reduce
bias, the process of classification involved three steps in
which (1) each analyst separately classified the set of
anomalies, (2) inconsistent classifications were
highlighted and each analyst had an opportunity to
correct any clear errors in her own classifications (e.g.,
missing fields), and (3) they analysts jointly reviewed

Version 1.2 34

12/13/02

the remaining inconsistencies and resolved them
through discussion. A detailed description of the
classification process and of efforts to remove bias is
provided in [9].

The work reported here is part of a multi-year pilot
study to reduce the number of safety-critical software
anomalies that occur post-launch. This paper reports
the first experience using the adapted ODC technique
on a spacecraft currently under development. The
motivation was to mine the testing problem reports for
insights into how requirements discovery during testing
can be used to forestall or mitigate some critical
software anomalies during operations.

3. Results and analysis

We here describe each of the four mechanisms for
requirements discovery and resolution identified during
analysis of the problem reports (PRs) generated in
integration and system testing of the spacecraft
software. A subsection describes each mechanism in
terms of the ODC classification values that characterize
it, provides a more in-depth causal analysis of some
typical examples, and evaluates the adequacy of the
corrective action taken to resolve the requirements
discovery.

3.1 Incomplete requirements, resolved by
changes to the software

Sixty-five of the completed 171 integration and
system testing PRs were resolved by a change to the
flight software (Fig. 2). In ODC terms, the Target for
these sixty-five PRs was “Flight Software.” Twenty-
three of the Flight Software PRs had an ODC Type of
“AssignmentAnitialization.” These PRs were resolved
by changes to parameters in the light of new system
knowledge. They entailed discovery of new
requirements knowledge, but not of new functional
requirements. Two typical examples of these PRs are,
in one case, a change to the value of the variable “max”
to avoid unintended triggering of fault protection and,
in another case, a change to require that a component
come up disabled rather than enabled after a reboot.

Another twenty-three of the sixty-five Flight
Software testing PRs had an ODC Type of
“FunctiodAlgorithm.” Some of these changes
involved design or implementation issues such as
testing of functions not yet delivered in the current
build. However, the PRs of interest to us from a
requirements perspective are the ten that entailed more
substantial changes to the flight software as the result of
knowledge gained during testing.

Each of these ten PRs was resolved by requiring a
new software function. Many of the corrective actions

taken to close these PRs involved additional
reasonableness checks on preconditions and post-
conditions. Several involved startuphestart scenarios, or
the correct triggering of recovery software. New
requirements included an additional health check, a
parameter validation check, an inhibit to checks of
disabled software, distinguishing unavailability from
non-response of a unit, turning off encoding in some
cases, ignoring false out-of-order messages, providing a
new capability to copy a rate to a register, an additional
check so a warning does not occur in a shutdown mode,
and a new capability to command a hardware unit.

An additional seven of the Flight Software PRs had
an ODC Type of “Timing,” and seven more had an
ODC Type of “Interfaces.” In these types, as well, the
role of testing in the discovery of new requirements was

Figure 1 Fixing Testing Problem Reports

evident. Due to space constraints, we only mention
briefly that several resulted in new requirements to
insert delays in the software to compensate for interface
delays. It is worth noting that no PRs documented extra
requirements (where the flight software did more than it
should).

3.2 Unexpected requirements interactions,
resolved by changes to the operational
procedures

The previous subsection described new requirements
that were discovered during testing and resolved by
changes to the flight software. In this subsection we
describe unexpected requirement interactions that were
discovered during testing and fixed, not by changes to
the software, but instead by changes to the procedures
that will constrain operational activities.

This mechanism for requirements discovery tended
to involve emerging requirements, not discovered until
testing, on the sequencing or timing of activities in
interfacing software components or softwarehardware
interfaces. The ODC Target for these thirteen PRs was
“Information Development” and the ODC Type for
these PRs was “Missing or Incomplete Procedures.”
This second mechanism is a special case of the
incomplete requirements described above, involving

Version 1.2 35

1211 3/02

new knowledge and requirements that must be enforced
on interactions. However, this mechanism differs from
the first mechanism described above in that
achievement of the new requirement is here allocated to
procedures rather than to software.

Most of these PRs dealt only with testing procedures
and were not relevant to operations or maintenance.
However, three of them involved discovery during
testing of unexpected requirements interactions. In
each of these three cases, responsibility for the
requirement was allocated to operations. For example,
in one PR testing revealed that unless a spacecraft
component was re-calibrated before use, it triggered
fault-protection software. The discovery of this
requirement for sequential activities (first calibrate,
then use) was allocated to an operational procedure.

In another, a tester observed that, contrary to
expectations, an off command was issued redundantly
by a software fault monitor. Analysis showed that this
behavior was correct, but idiosyncratic. The corrective
action was to avoid these redundant commands during
operations by carefully selecting the high and low limits
to preclude the state observed in testing. It is easy to
see how, even with a documented procedure in place,
this situation might recur in operations.

This third mechanism for requirements discovery is
of interest in preventing operational anomalies because
corrections made to procedures still depend on the
correct implementation of the procedure by the operator
of the deployed system each time the relevant scenario
arises. We were thus interested in whether some of
the new requirements for constraining interactions,
levied on the operational procedures, might be better
handled in software. Given the small number of s in the
study, no conclusion was appropriate. However, the
examples suggest that in long-lived systems, the
tradeoff between easy but operator-dependent
procedural fixes and more costly but operator-
independent software fixes should be considered.

3.3 Requirements confusion by the testers,
resolved by changes to the documentation

The previous two subsections both described
requirements discovery mechanisms in which the
testers’ expectations were consistent with the required
software behavior. Testing revealed missing
requirements that had to be added in order to achieve
the correct, and expected, behavior. The requirements
discovery mechanism described in this section is
different in that the testers’ expectations regarding the
required software behavior were incorrect. The
resolution was to try to remove the source of the testers’
confusion by improving the documentation of the
existing requirements and their rationale.

Fourteen of the 171 testing PRs were resolved by

changes to the documentation. The ODC Target for
these PRs was “Information Development” and the
ODC Type was “Documentation.” (Only PRs that
changed just documentation but not software or
procedures are labeled this way).

Four of the PRs of type “Documentation” revealed
erroneous requirements assumptions by the testers. For
example, in one case, the tester incorrectly assumed that
certain heaters remain on during the transition from one
mode to another, as the spacecraft transitions from the
pre-separation mode of the Mars lander to the
entryldescent mode (as the lander enters the Martian
atmosphere). The tester’s assumption was reasonable
but incorrect. In fact, there is a software requirement on
another component to turn the heaters off when this
transition occurs. Documentation of this fact was
added to the Functional Design Document and the
procedure writers were notified of the update in order to
correct the misunderstanding prior to launch.

In these PRs it was requirements confusion, rather
than new requirements that were discovered during
testing. The perceived inconsistency between the test
results and the required behavior was inaccurate. The
corrective action was not to fix the software but the
source of confusion. This resulted in improved
communication of the rationale for the existing
behavior in the existing project documentation

3.4 Requirements confusion by the testers,
resolved by a determination that no change was
needed.

The final mechanism for requirements discovery is
similar to the previous one except that no fix is made,
even to documentation. Thirty of the 171 testing PRs
have an ODC Target of “NoneiUnknown” and an ODC
Type of “Nothing Fixed.” The reason that nothing was
fixed is that these PRs were “false positives,” raising an
alarm when nothing was broken. Our interest in
investigating this mechanism was to see if any of these
PRs described requirements confusion or requirements
interactions that could potentially recur in flight
operations. If so, it might be that some change to
documentation or procedure was indicated.

As expected, for most of the PRs there was, in fact,
nothing to fix. For example, thirteen of the thirty PRs
referred to problems that were no longer relevant (e.g.,
the current build removed the issue); two were clearly
one-time operator errors (e.g., misreading the test
results); and three were relevant only to the test
environment but not to flight. However, eight of the
thirty raised possible flight concems, although in each
case the software worked as required. We describe
several of these more fully here, since they support our
claim that false positives encountered during testing
often provide a useful window into latent requirements

Version 1.2 36

1211 3102

misunderstandings during operations.
For example, in one case the PR stated as an error

that commands issued when a remote unit was off were
not rejected as expected, but instead were completed
when the unit rebooted. Although the software
operated correctly, the PR revealed a gap in
understanding of the rationale for the software’s
required behavior (a gap, by the way, that was shared
by the analysts). Since this requirements confusion
could apparently reappear in a post-launch operational
scenario, it may merit additional documentation to
preclude a similar mistake by an operator.

Another PR of Type “Nothing Fixed” describes a
situation in which one component, attempting to
communicate with another component, received
warning messages indicating that an invalid response
had occurred. In fact, the communication attempt
happened to occur during a few-millisecond timeout
that takes place in some particular scenarios. This
behavior is, in fact, correct and required, and
subsequent communication attempts will be normal.
However, the effect of the timeout is rather subtle.

In a third example, the tester incorrectly assumed
that a telemetry (data download) channel output the
value of a counter when the channel instead provided
the value of the counter’s high-water mark (the highest
value yet recorded for the counter). Thus, even when
the counter was reset, the telemetry value remained
constant. The requirements rationale is sound -- that
the fault-protection software needs information
regarding the worst case over a time interval, not just
the current snapshot of a frequently reset counter.
However, the requirements misunderstanding by the
tester is reasonable and suggests that a similar
erroneous assumption might be possible later.

Testing PRs often provide detailed descriptions of
sequences of input, states, error messages, and even
partial dumps in order that the test scenario can later be
duplicated. This level of detail is extraordinarily useful
in allowing an analyst to pinpoint not only whether an
error has occurred but also the source of any confusion
regarding the required behavior. Incorrect assumptions
(e.g., about the effect of specific commands on the state
of the system) and gaps in domain knowledge (e.g., of
hardware idiosyncrasies or transients) can often be
identified from the details in the problem reports.

3.5 Implications for testing

Given limited project resources (in terms of schedule
and budget), should these “false-positive’’ testing
reports be documented further? Based on the problem
reports seen here and on past experience with
operational anomalies [8, 91, we suggest the following
guideline: i f the situation described in the problem
report could recur in operations, and if the

Version 1.2 37

requirements confiuion or misunderstanding of
required interactions could also recur in operations,
then the problem report may merit additional attention.
Using this guideline, each of the three examples above
would have involved additional corrective actions.

For example, one such false-positive PR recorded a
perceived discrepancy between two time tags that
should be identical. In fact, the software worked as
required. The two time tags were two different
representations of the same time (cumulative number of
seconds since a standard base time and the translation
of that value to the current UTC, the Universal Time).
This misunderstanding by the tester is one that could be
repeated by an operator or maintenance programmer
with conceivably hazardous effect, so may merit
additional documentation.

Experience with the MER testing PRs also suggests
that PRs related to certain critical activities always
merit additional attention even if the PR merely records
requirements confusion. Thus, if the testing PR
involves fault protection software, critical control
software, critical maneuvers or activities (e.g., engine
burns), or critical mission phases (e.g., insertion of the
spacecraft into a planetary orbit), then the problem
report should take into account measures to prevent the
required behavior that surprised the testers from later
surprising the operators.

3.6 Implications for operations

False-positive problem reports from testing (when
the software behavior was correct but unexpected, so
nothing was fixed) have significant value in a
development organization if the requirements confusion
or emerging domain knowledge that led to them can be
identified and remedied. Especially in a long-lived
spacecraft system where turnover of operational
personnel is to be expected, loss of knowledge
regarding requirement rationale can be substantial. It
appears that testers’ requirements confusion may
provide some small degree of “crystal ball” insight into
possible future post-release misunderstandings and,
thus, the opportunity to mitigate those gaps, whether by
documentation, training, or changes to software or
procedures. Techniques to trace the requirements
misunderstandings encountered during testing into
operations are at this time an open problem.

Some results from a recent study by the authors
confirm that the requirements discovery mechanisms
found in testing can affect safety-critical operations.
This ODC-based study profiled 199 safety-critical
software anomalies recorded post-launch on seven
spacecraft [9]. One of the surprises to emerge from that
study was that some procedures needed for post-launch
operations were not in place, and that these omissions
contributed to 2 1 % of the safety-critical anomalies.

12/ 13/02

Another finding related to requirements discovery was
that in most of the anomalies of Type “Nothing Fixed”
(14% of the total), what was originally reported as a
safety-critical anomaly was in fact the required
behavior of the spacecraft, i.e., requirements confusion.
Better understanding of the various requirements-
discovery mechanisms in testing has as its primary goal
to prevent slippage of requirements-related testing
problems into operations.

4. Related Work

Most work on the analysis of testing defects has
focused on measuring the quality or readiness of the
software for release (see, e.g., [2]). In our study, the
focus was instead on how to use the requirements
discoveries made during testing (either of incomplete
software or of incorrect human assumptions) to reduce
critical defects during operations.

The results reported here tend to confirm the central
role that Hanks, Knight, and Strunk have found for
problems communicating domain knowledge [3].
Weiss, Leveson, Lundqvist, Farid, and Stringfellow
specifically implicate requirements misunderstanding in
several recent disasters, stating, “software-related
accidents almost always are due to misunderstanding
about what the software should do” [lo]. In this
regard, the instances of requirements confusion found
here are somewhat similar to the examples of mode
confusion by pilots and other operators that Leveson
and others have described.

Previous work by one of the authors found that
safety-related testing defects on two earlier spacecraft
arose most commonly from (1) misunderstanding of the
software’s interfaces with the rest of the system and (2)
discrepancies between the documented requirements
and the requirements needed for correct functioning of
the system [7]. A recent study by Lauesen and Vinter
found similar results for non-critical systems, with
slightly more than half the defect reports being
requirements defects and the major source being
missing requirements [5].
Several defect classification methods (see, e.g., [6, 11)
include communication failures as root causes or as
defect triggers. However, these approaches tend not to
distinguish requirements confusion in which the
reported software behavior is actually correct from
other kinds of communication failures, as we found
helpful here. These studies also focus on ways to
prevent requirements defects from reaching testing,
whereas we were more interested in how to use testing
problem reports to prevent defects from reaching
operations.

Harold recently suggested the use of “test artifacts”
for software engineering tasks in describing future

directions for work, but added that “this research is in
its infancy” [4]. The experience described here
suggests that testing problem reports may be useful test
artifacts that can be more effectively mined for
requirements insights to reduce post-deployment
anomalies.

5. Conclusion

The results reported here distinguish four common
mechanisms for requirements discovery and resolution
during the integration and system testing of a safety-
critical software system. One of the lessons learned
was that requirements discovery during testing is
frequently due to communication difficulties and subtle
interface issues. Requirements discovery in testing thus
drove changes not only to the software but also to the
operational procedures and to the documentation of
requirements rationale. Another lesson learned was that
false-positive problem reports from testing (where the
software behaves correctly but unexpectedly) provide a
rich source of insights into potential requirements-
related anomalies during operations. This information
may be able to be used to reduce operational anomalies
in critical systems.

Acknowledgments. The authors thank Daniel
Erickson and the Mars Exploration Rover engineers and
test teams for their assistance and feedback.

References

[l] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday,
D. S. Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal
Defect Classification-A Concept for In-Process
Measurements, ZEEE Trans on SWEng, Nov. 1992, pp. 943-
956.

[2] S. Gardiner, ed. Testing Safety-Critical Sofhyare,
Springer-Verlag, London, 1999.

[3] K. S. Hanks, J. C. Knight, and E. A. Strunk, “Erroneous
Requirements: A Linguistic Basis for Their Occurrence and
an Approach to Their Reduction,” Proc. 2dh NASA Goddard
SWEng Workshop, IEEE, Greenbelt, MD, Nov., 2001.

[4] M. J. Harold, “Testing: A Roadmap” in The Future of
Sofware Engineering, A. Finkelstein, ed., ACM Press, New
York, 2000.

[SI S. Lauesen and 0. Vinter, “Preventing Requirements
Defects: An Experiment in Process Improvement,”
Requirements Engineering Journal, 2001, pp. 37-50.

[6] M. Leszak, D. E. Perry, and D. Stoll, “A Case Study in
Root Cause Defect Analysis,” Proc 22”d Intl Conf SW Eng
(ZCSE’OO), IEEE CS Press, Los Alamitos, CA, 2002, pp. 428-
437.

Version 1.2 38

12/13/02

[7] R. Lutz, “Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems,” Proc IEEE Intl Symp
Req Eng, IEEE CS Press, 1993, pp. 126-133.

[8] R. Lutz and I. C. Mikulski, “Operational Anomalies as a
Cause of Safety-Critical Requirements Evolution,” The
Journal of Systems and Software, to appear.

[9] R. Lutz and I. C. Mikulski, “Empirical Analysis of Safety-
Critical Anomalies During Operations,” submitted to ZEEE
Trans on SW Eng.

[101 K. A. Weiss, N. Leveson, K. Lundqvist, N. Farid, and M.
Stringfellow, “An Analysis of Causation in Aerospace
Accidents,” Space, 2001, Aug., 2001.

Version 1.2 39

12/13/02

Section 8. Process Recommendations Resulting from ODC Analysis of Safety-Critical Post-Launch
Software Anomalies from Seven Spacecraft

Finding

1. Some needed procedures
were not in place during
operations

2. Operations sometimes not
informed of expected behavior
of spacecraft so no fix required

3. Technical difficulties with
downlink cause critical
anomalies

4. Most changes to flight
software aren’t just fixes to
code, but involve requirements
and design

Original
Hypothesis
Most critical anomalies
caused by procedures
not being followed (58
of 199)

For critical anomalies
where no fix ever
occurred, this was
result of loss of the
spacecraft (25 of 199)

Ground-so h a r e
downlink difficulties
cause many critical
anomalies (20 of 199)

Incorrect code causes
many flight-software
anomalies (44 of 199)

TrueFalse

False
(for 29%;
17 of 5 8)

False
(for36%; 9
of 25)

True
(for 100%;
20 of 20)

False
(for 34%;
15 of 44)

Process Recommendation

Reuse Lessons Learned regarding missing procedures needed
in previous missions:
(1) Assemble generic “Checklist of Common Procedures”
(2) Inspect new missions against this checklist prior to launch
(3) Increase operational mission testing pre-launch
Improve communication with Mission Operations:
(1) Formalize ISA update procedure
(2) Remove high-criticality rating from ISAs that turn out to
be non-problems
(3) Update documentation used by operations as software or
procedures change

Downlink is technically challenging:
(1) Monitor Ground Systems anomaly-reporting metrics
during operations to track trends and apply suggested
improvements to software development
(2) Shorten time-to-close for open ground system anomaly
reports (ISAs)
Better requirements engineering for maintenance is needed:
(1) Use anomaly-reporting database for early identification of
potential new software requirements to compensate for
hardware or environmental problems
(2) Take advantage of hardware trend analysis to maximize

Version 1.2 40 1211 3/02

Finding

5. Software requirements
changes often involve
(1) new requirements to
handle rare but high-
consequence scenarios;
(2) new requirements to

compensate for hardware
limitation or failure

6. Most critical software
anomalies involve ground
software or operations

7. “Rare” events trigger many
but not most (-1/3) anomalies

8. Most anomalies don’t occur
in critical mission phases

Original
Hypothesis

Incorrect flight-
software requirements
cause many anomalies

Most critical software
ISAs involve flight
software

Most critical software
ISAs rest from atypical
situations (recovery,
hardware failure or
sDecial Drocedures)
Most anomalies occur
during critical mission
phases

True/False

False
(for 29%;
13 of 44)

False
(for 22%;
44 of 199)

False
(for 34%;
68 of 199)

False
(for 18 %;
36 of 199)

Process Recommendation

lead time for planning software changes

Attention to fault scenarios during requirements phase pays
off
(1) Use early Contingency Planning to support requirements
evolution
(2) Pursue requirements completeness with regard to failure
scenarios via software FMECA and software FTA

Ground software causes many critical anomalies:
(1) Identify historically high-risk ground software via problem
reports
(2) Increase software assurance of ISA-associated ground
software
“Rare events” do occur fairly often and do cause anomalies:
(1) Continue to test software for correct recovery fiom
hardware and software failure scenarios

Don’t let guard down during cruise:
(1) Update analyses as hardware, environment change
(2) System test special procedures (e.g., calibration) prior to
use
(3) Since much testing occurs during cruise, explicitly
incorporate cruise-phase testing into project test plans

Version 1.2 41 1211 3/02

,

Examples of Unexpected ISA patterns: I
Summary of Unexpected Patterns

Process Recommendation:

22% of critical ISAs had ground software
as Target (fix) I Software QA for ground software

23% of critical ISAs had procedures as Assemble checklist of needed
procedures for future projects

Type ----
Of these, 41 % had Data access / delivery
as Trigger

Better communication of changes
and updates to operations

34% of critical ISAs involving system test
had software configuration as Trigger
(cause) ; 24% had hardware configuration
as Trigger

Example (from spacecraft):

Additional end-to-end configuration
testing

Unable to process multiple submissions.
Fixed code.

Not in inertial mode during star calibration.
Additions made to checklist to prevent in
future.

Multiple queries for spacecraft engineering
and monitor data failed. Streamlined
notification to operators of problems.

OPS personnel did not have a green
command system for the uplink of two
trajectory-correction command files.
Problems resulted from a firewall
configuration change.

Version 1.2 42 1211 3/02

