
Software Management and Implementation Plan For The
Microwave Limb Sounder (MLS) Carried on a NASA Earth Observing

System (EOS) Satellite

Hui-Yin Shaw, Michael A. Girard, Vincent S. Perun, and Joseph S. Sherif
California Institute of Technology, JPL, Pasadena, CA 91 109

California State University, Fullerton, CA 92834

Abstract
This paper presents a Software Management and Implementation Plan (SMIP) for
managing and controlling the development of the Microwave Limb Sounder (MLS)
instrument software, and the Instrument Ground Support Equipment (IGSE) software.
The paper is intended to be a combination of the Software Management Plan (S M P) and
the Work Implementation Plan (WIP). It describes the management approach to
developing the instrument software and the IGSE software which is used to test the
instrument and its software. This includes the flight development phases, flight software
activities, life cycle, deliverables, and other software development process issues such as
configuration management practices, software assurance activities, risk management and
metrics reporting. The project was completed at the Jet Propulsion Laboratory (JPL).

Introduction
The Microwave Limb Sounder (MLS) is an instrument to be carried on board a NASA
Earth Observing System (EOS) satellite. It is targeted for year 2004 launch onboard the
NASA's Aura spacecraft. Its objective is to measure naturally occurring microwave
thermal emission from the limb of Earth's atmosphere to remotely sense vertical profiles
of selected atmospheric gases, temperature and pressure. Previous and on-going MLS
experiments include spacecraft, aircraft and balloon versions. The space MLS experiment
is designed to address a broad range of global change issues. A series of spectrometers
and radiometers covering a range of frequencies will be employed in this MLS
experiment. The instrument software is defined to include all flight software developed
for execution in the MLS instrument flight computer. The electronics test equipment is
developed in support of the instrument flight software development and verification. The
IGSE software is developed in support of system-level integration and testing of the MLS
instrument.

Flight Software Description
The MLS flight software consists of three parts: Remote Interface Unit (RIU), Master,
and Command and Data Handling (C&DH). Each part is self-contained and operates on a
distinct processor within the Instrument. Each software element falls into two further
divisions: ROM-based (firmware) and RAM-based. Each of the three software parts will

have a part that resides in ROM in the instrument, and each will have an uploadable
RAM component. One function of each ROM-based part is the ability to load its
corresponding RAM-based software. The RIU is a control node of an onboard serial
network that connects the various instrument sensors and actuators to the C&DH.
Nominally, the code in each RIU is identical. The RIU is configured for its particular
sensor/actuator by command directives to the RIU.The Master is the network controller.
It removes the real-time needs of the network from the C&DH.The C&DH software
provides communication between the Instrument and the Spacecraft. The principle
communication from the Spacecraft to the Instrument consists of commands derived from
ground directives that the Spacecraft passes to the Instrument. The Instrument will
primarily pass telemetry data from the sensors to the Spacecraft, which will forward the
data to the Ground. The C&DH will also provide primary health maintenance for the
Instrument .
Flight Software Development Phases
The software development for the EOS MLS Flight Software represents an approximate
3-year effort at a staffing of three software developers on the average, for that duration.
Total Lines of Code (LOC) are expected to be no greater than 10,000.Table 1 summarizes
the activities, deliverables and formal reviews associated with each phase of the flight
software development life cycle. Activities of subsequent phases may commence before
the current phase has been completed.

IGSE Software Description
The MLS IGSE Software consists of three parts: Command and Monitoring, Data
Analysis and Level 1 Calibration. The Command and Monitoring software formats,
checks and sends commands to the MLS instrument ground support equipment and
monitors and displays the resulting telemetry. The software also saves the telemetry and
controls the command and telemetry databases. The Data Analysis software supports the
analysis of the instrument telemetry and supports the analysis of the calibrated Level 1B
data produced by the Level 1 Calibration software. The Level 1 Calibration software
produces the radiometrically calibrated Level 1B data from the uncalibrated telemetry
produced by the instrument.

Management Approach
The MLS software management includes the following specific activities: 1. Product
reviews, 2. Configuration management, 3. Quality assurance, 4. Risk management and
metrics reporting and 5. Test anomaly management. The software management processes
of reviews; configuration management; software product assurance and metrics analysis
are part of the risk management program. Defect prevention and early detection is
accomplished with the use of peer reviews on software documents and critical program
logic, and unit testing. Technical reviews were conducted in two ways: Peer reviews and
formal reviews. The peer reviews will penetrate to a meaningful technical depth,
providing direct feedback to the engineers andor managers involved. The formal reviews
will provide the breadth and perspective of a project-level review. The preparation for
formal reviews may be abbreviated by drawing upon the results of informal peer reviews.

2

The objectives of peer reviews are to thoroughly look into the technical details in the
software documents and to provide direct feedback to the development engineers. The
key elements for conducting successful peer reviews are: 1. Review the material before
meeting; 2. Stay focused during the meeting; 3. Record all issues and action items and 4.
Track issues/action items through closure.

Software Configuration Management
The MLS Flight Software Task and IGSE Task are subject to Configuration Management
(CM) controls. Software Configuration Management (SCM) has these goals:

1. To assign a unique identifier for each delivered item called a version id;
2. To facilitate identification of differences between versions;
3. To facilitate rebuilding of any delivered version;
4. To protect any delivered version from loss due to technical computer failure

and mitigate loss due to operational error.
5. To assign to a product version all problem reports, change requests, test variances,

and waivers associated with that version.
Two other SCM requirements shall be followed: (1) Backup procedures; backup
copies of baselined software products shall be maintained in a physically different
location from the master copies and (2) Baselined products shall be maintained so
that unauthorized access and modifications are prohibited. All changes to the
masterhaselined software products shall be controlled and documented.

Modifications to inherited software will be governed by the same software development
management policies as newly developed software. In addition, commercial software
items shall be included in the configuration management scheme in which documentation
of appropriate version IDS of acquired software shall suffice for CM.

3

Table 1. Flight Software Activities, Deliverables and Reviews in MLS Development Life
Cycle

Software
Requirements
Analysis

Software
Design
Analysis

Activity
Develop detailed
program requirements

Develop key interface
specifications with the
CDS and with
instrument devices

Describe command
definitions and
contents

Produce bit-level
specifications for input
and output packets

Complete key timing
studies

Determine
methodology for the
software development

Preliminary timing
study

0 Define major data
structures for the
Flight Program

computational flow for
the Flight Program

0 Software Acceptance
Test Plan

Definemain

0 Finalize timing study

0 Software
Management and
Implementation
Plan

0 Software
Requirements
Document (SRD)

0 Software Design

Timing study

Document (SDD)

memo

SRR: Software
Requirements
Review on (SRD)

(WR): Software
Design Review on
(SDD)

4

Implement.
Phase

Software
Acceptance
Test Phase

I

0 Produce Command
and Telemetry
Handbook

0 Define memory map
for the Flight
Computer

interrupts and device
addresses

0 Determine all external

Develop code and
deliver in incremental
deliveries with
completed unit tests

Software Users Guide

Acceptance Test Plan
(final)

Users Guide

Begin work on

Develop Software

0 Complete Software

Perform acceptance
testing and correct all
anomalies

0 Prepare ROM code for
PROM creation

Software code

Commandand
Telemetry
Handbook

delivery memos

Acceptance Test
Plan (ATP)

Incremental

Software

Note: unit tests shall
not be formalized for
the MLS Flight
Software Task.

Software User
Guide

Report
Acceptance Test

Tested Software

Software Release
Description

Internal
Incremental
Delivery Reviews

JPL informal peer
review:
Acceptance Test
Plan (ATP)

(SdelR):
Software Delivery
Review
JPL informal peer
review: User
Guide

Software Quality Assurance
The level of the Software Quality Assurance (SQA) support will be based on project-
criticality. Software Assurance activities consist of the elements listed below:

1. Provide concurrent engineering support to the software development teams in
the development and documentation of software products and software
acceptance test plan and procedures.

2. Provide requirements traceability analysis to insure all software requirements
are properly defined and not overlooked in the development and
implementation of the software.

3. Monitor software integration activities and provide integration and acceptance
test related support as appropriate and within allocated SQA budget constraint

4. Support fault analysis effort jointly conducted by the
Software/Hardware/IGSE to isolate the anomaly to the proper cause generator
for problem resolution, and

5

5. Perform process compliance audit.

Risk Management and Metrics Reporting
The MLS software management approach supports the MLS’s risk management of risk
avoidance through planning. The software management processes of reviews,
configuration management, software quality assurance and metrics analysis are all part of
the risk management program. Specific approaches to various risks; metrics data
collections, analysis and reporting are described below.

The MLS instrument software development adapts the prototyping approach to perform
early evaluation of methods and techniques used in the development. Defect prevention
and early detection will be accomplished with the use of peer reviews on software
documents and critical program logic, and unit testing. Each software requirement in the
MLS Instrument Flight Software Requirements Document shall be verified through
testing, demonstration, inspection, or analysis. Test planning and designing of the test
cases are initiated during the software design phase and into the software implementation
phase. The early start on the test planning activity helps uncover requirement and design
flaws. It also helps in the early identification of test support needs for the software
acceptance test.

Technical Risks

Security and Safety Risks
Virus protection program for software designated for delivery and during storage will be
used as needed. Software safety risk assessment will be performed as an integral part of
the system safety assessment. Analysis techniques such as software Failure Modes and
Effects Analysis (FMEA) and software Fault Tree Analysis (FTA) will be.

Resource, Schedule and Cost Risks
The software development team will perform the resource, schedule and cost risk
assessment and reporting as part of the MLS Project resource, schedule and cost risk
management. Software development cost, schedule and workforce are baselined and are
tracked and reported on a regular basis to the Project.

Metrics and Reporting
The product metrics for the development of the flight software and IGSE software are
maintained in the Project’s performance measurement system. The following flight
software metrics will be tracked and reported to the project element manager for the
Monthly Management Reviews: (a) completed and current-best-estimate executable
source lines of code vs. Plan; (b) actual work months and dollars expended vs. plan; (c)
number and status of external change requests; (d) number of errors discovered during
integration testing and (e) number of errors discovered during acceptance testing.
Monthly status reporting to the Project Management includes: Narrative on significant
events; accomplishments; work in progress; metrics reporting and concerns.

6

Flight Computer Resource Margin
The flight computer resource margin is measured as the difference between the current
hardware design quantities and the current best estimate of the operational consumption.
The following margins for computer memory, bus capacity, and CPU throughput at the
listed times shall be maintained.

Bus
Capacity

100%

100%

50%

50%

50%

50%

10%

Table 2. Flight Computer Rc

CPU
Capacity

100%

100%

50%

50%

50%

50%

10%

Instrument Preliminary 100%
Design Review (PDR)

Instrument Critical Design 50%
Review (CDR)

Software Requirements 40%
Review (SRR)

Software Design Review 40%
(SDR)
Software Delivery Review
(SdelR)

Launch Readiness

Delivery and Operational Transition
Delivery facility should represent final instrument configuration in environment
appropriate to physical instrument test and maintenance. Software deliveries consist of
text files that may be read by any standard workstation computer and operating system.
For instrument flight software the following items are delivered:

1. Tables (actuator scan, Master RAM program, RIU RAM programs, RIU RAM
broadcast, RIU language programs, and acquisition table). 2. C&DH software,
3. Master software and 4. RIU software

Program Set
MLS Software decomposition shall follow the guidelines below. :
A program set is the basic entity for development, review, documentation, and delivery
outside the development organization. Separate program sets should be designated
whenever:

1. Different functions are allocated to physically distinct processors

7

2. Software that would otherwise be a single program set is developed by
different organizations

3. The program set is common to more than one system and loosely coupled to
other program sets

4. The size of the program set is greater than 100K executable source lines of
code (SLOC).

Product Acceptance Criteria
The criteria for flight software correctness shall be: 1) All success criteria met during
Flight Software testing as defined in Flight Software Acceptance Test Plan, and 2) No
open problem reports or ProblerdFailure Reports (P/FR) remain on Flight Software Set.
The criteria for IGSE software correctness shall be: 1) All success criteria met during
IGSE Software testing as defined in IGSE Acceptance Test Plan, and 2) No open
problem reports or (P/FR) remain on IGSE Software Set.

Conclusion
This paper presents the plan for managing and controlling the development of the
Microwave Limb Sounder (MLS) instrument software and instrument ground support
equipment (IGSE) software. The paper describes the management approach to
developing the instrument software and the IGSE software that includes the flight
development phases, flight software activities, organization, life cycle, deliverables, and
other software development process issues such as configuration management practices,
software assurance activities, risk management and metrics reporting.

Bibliography
[Beizer, 19901 Beizer, B. Software Testing Techniques. Second Edition. Van Nostrand
Reinhold Pub. Company, New York, NY 1990.
[Boehm, 19831 Boehm, B. Software Engineering Economics. Prentice- Hall, Englewoods
Cliffs, New Jersey 1983.
[Brooks, 19951 Brooks, Jr., F. The Mythical Man Month: Essays on Software
Engineering. Second Edition. Addison Wesley, Reading, MA 1995.
[Card, 19901 Card, D. and R. Glass. Measuring Software Design Quality. Prentice- Hall,
Englewoods Cliffs, New Jersey 1990.
[Donaldson, 19971 Donaldson, S. E. and S. G. Siegel. Cultivating Successful Software
Development. Prentice- Hall, Englewoods Cliffs, New Jersey 1997.

[Grady, 19971 Grady, R. B. Successful Software Process Improvement. Prentice- Hall,
Englewoods Cliffs, New Jersey 1997.
[Hamlet, 20011 Hamlet, D. and J. Mayber. The Engineering of Software. Addison
Wesley, Reading, MA 2001.
[Humphrey, 19891 Humphrey, W. Managing the Software Process. . Addison Wesley,
Reading, MA 1989.

8

[Grady, 19971 Grady, R. B. Successful Software Process Improvement. Prentice- Hall,
Englewoods Cliffs, New Jersey 1997.
[Kelly, 19921 Kelly, J., J. Sherif and J. Hops, “ An Analysis of Defect Densities Found

During Software Inspection,” J. Systems and Software, 17, 11 1-1 17, 1992.
[Viega, 20021 Viega, J. and G. McGraw. Building Secure Software. Addison Wesley,
Reading, MA 2002.
[Weller, 19941 Weller. E., “ Using Metrics to Manage Software Projects,’’ IEEE
Software, 27-33, 1994.

Acknowledgments
The work described in this paper was carried out at the Jet Propulsion Laboratory,

(JPL), California Institute of Technology, under contract with the National Aeronautics
and Space Administration (NASA). The authors would like to extend their sincere thanks
to Gary Lau, Dennis Flower, Marc Walch, Mark Boyles, Philip Szeto and Wing-Sang
(Simon) Chong for their support of the MLS software development efforts.

9

