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Abstract 

A general method for solving an important class of quantum detection problems will be 
presented and evaluated. The quantum theory for detecting ''pure states" for 
communications purposes has been developed over two decades ago, however the "mixed 
state" problem representing "signal plus noise" states has received little attention due to 
its great complexity. Here we develop a practical model for solving the mixed-state 
problem using a discrete approximation to the coherent-state representation of signal plus 
noise density operators. The problem is formulated in terms of quantum ''measurement 
states'' whose detection performance is optimized via generalized rotations in Hilbert 
space. An efficient algorithm for carrying out the required numerical optimization will be 
described. The algorithm will first be applied to the binary signal plus noise problem for 
which exact performance results are known. Next, this newly developed technique will be 
applied to a previously unsolved quantum "mixed state" detection problem, namely the 
detection of ternary signals in the presence of thermal noise fields. 
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1. INTRODUCTION 

The classical communications model assumes that deterministic signals are observed in the presence of additive 
Gaussian noise. Thls model is adequate for describing communications at radio frequencies, where quantum effects are 
not readily detectable. However, at optical frequencies quantum effects become the dominant source of error, and must 
be taken into account. An approach consistent with the principles of quantum mechanics starts by quantizing the 
received electromagnetic field, and seeks to determine those measurements on the received field that achieve best 
results, such as minimizing the average probability of detection error. Exact solutions for the case of pure coherent states 
for both binary and higher-dimensional signals can be found in the literature [l, 2, 3, 41. The quantum mechanical 
solution for pure-state signals can be formulated in terms of Kennedy’s orthogonal “measurement states”, involving 
optimization of the detection operator over the signal subspace [2, 31. Recently, efficient algorithms have been 
developed to carry out the required optimization, and applied to high-dimensional signals of interest in optical 
communications, including the well-known “pulse position modulation” (PPM,) and “dense signal sets” such as QPSK 
and BPSK-PPM, as described in [ 5 , 6 ] .  

The addition of thermal noise fields to the received coherent-state field complicates the problem significantly, and hence 
exact solutions to the quantum “signal-plus-noise’’ problems are generally not known. One class of problems that can be 
solved numerically is the class of binary coherent state signals in the presence of thermal noise fields, where the solution 
involves finding the positive eigenvalues of the difference of density operators under the two hypotheses in matrix form 
[l, 31. However, for higher dimensional signals, solutions are not readily available. 

Here we present a technique that can be used to evaluate the performance of higher dimensional signal sets observed in 
the presence of noise. Our solution involves an approximation to the density operators, followed by detection in terms of 
optimized measurement states defined over the signal plus noise subspace. The detection operators are expressed in 
terms of orthogonal measurement states, and first applied to binary signals whose performance in the presence of noise is 
known, for purposes of evaluation and comparison. The detection operators are then applied to a three-signal “ternary” 
detection problem, and performance determined in the presence of noise. Although currently applied only to ternary 
signals due to computational complexity, it is clear that this technique can be extended to higher dimensional signal sets, 
providing an ability to determine optimum performance in the presence of noise for a large class of signals. 

2. QUANTUM REPRESENTATION OF SIGNAL PLUS NOISE 

2.1 Coherent-State Representation of Signals 

Coherent states, representing electromagnetic radiation produced by physical devices such as lasers, are an important 
class of states for optical communications [7]. It is well known that the coherent states of a single mode of radiation 
1 a ) can be expressed in the form of a superposition of orthonormal states I n ) , known as the number states: 
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The coefficients of the number states are govemed by the complex parameter a . Each number eigenstate 1 n ) contains 
n photons, and hence the probability of obtaining exactly n photons as the outcome of an experiment can be computed as 

For any n, this expression specifies Poisson probabilities for the number of photons, with average number of photons 
equal to 1 a 3 N ,  . Coherent states are not orthogonal, as can be shown by considering the overlap between two 

arbitrary coherent states, la, ) and I a, ) . Orthogonality requires the overlap to vanish, however for coherent states 
the squared magnitude of the overlap is not zero, but given by the following expression: 

Equation (3) demonstrates that there is always some overlap between coherent states, regardless of how great the 
average photon count in each state may be. 

2.2 Coherent-State Representation of Signal plus Noise 

The density operator for optical signal plus background radiation in a single mode of the received field can be 
represented in terms of a continuum of coherent states as [ 13 

where p is the complex envelope of the coherent-state vector representing the signal in the absence of thermal noise. In 
the plane of complex numbers, a, the Gaussian weight function is centered over the origin when there is no signal, and 
shifted to the complex number ,u when a signal is present, where 1 p is the photon energy of the signal. An 
approximate discrete representation of equation (4) can be obtained by replacing the integral with an infinite sum, 
yielding: 
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where Pjk = (Z N)-' lexp(- I a - p 1 ajk ) is the approximating discrete coherent state with 

complex parameter a$ , obeying the constraint = N , where N is the average number of photons in a single 

mode of the noise field. We can interpret the sum in equation (5) as defining a countable set of coherent states, each 
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occurring with probability defined by the integral of the Gaussian weight function over the area associated with the 
approximating coherent state. The probability PJk of receiving a coherent state within a specified region of the a - 
plane, A, ,  is given by the integral of the weight function over that region. This model will be referred to as the 
“discrete coherent-state”, or DCS, approximation. 

For coherent states separated by a distance of one unit in the a plane, equation (3) evaluates to 0.368, and decreases 
rapidly for greater distances. This suggest the possibility of approximating the continuous a plane with discrete 
samples on a regular grid of points separated by one unit, for applications where relatively large regions of the a plane 
are involved. In effect, this approximation collapses small neighborhoods of unit diameter onto a single coherent state 
located at specific grid point. A graphical representation of the DCS approximation is shown in Fig. 1, illustrating the 
approximate density operator for thermal noise near the origin of the complex a -plane. Since coherent states separated 
by one unit or more have relatively small overlap, samples of the a -plane on a grid separated by one unit may be 
adequate under some conditions, thereby reducing the complexity of the representation. This model is expected to yield 
accurate results for cases where the Gaussian weight function is broad enough to have significant probability at a radius 
of one unit or more fiom the center. At the same time, the sampled model is not expected to yield good results for cases 
where the noise energy is so small that only the central coherent state has a significant probability of occurrence: in that 
case, the model effectively reduces to the noiseless case, and denser sampling is required to adequately represent the a 
plane. The notation for labeling the coherent-state centers anticipates the application of this model to detection, where 
the absence of signal energy is generally referred to as the “null hypothesis” or H ,  : a cluster of coherent-states around 

the origin represents the density operator for noise only, or H ,  , hence the common zero in the subscripts signifying the 
null hypothesis. 

Fig. 1. Discrete coherent-state (DCS) representation of zero-mean noise 

Further noting that coherent states with a - parameter far from the center of the weight distribution are not very likely to 
occur, it is often reasonable to ignore these low-probability states. With Gaussian weight distribution as in equation ( 5 )  
and using the numbering scheme defined in Figure 1, this implies that there exists a K for either density operator such 
that Vk 2 K ,  Pr[l ajk )] I E .  By selecting a suitably small& and adopting the numbering scheme of Fig. 1, the 
density operators of equation ( 5 )  can be approximated by finite sums of discrete coherent states. 



2.3 Quantum Detection in the Presence of Noise 

The DCS noise model is first applied to binary “on-off keying” (OOK). Under “hypothesis zero”, denoted by H ,  , only 

thermal noise is received, whereas under “hypothesis one”, HI , a coherent-state signal plus thermal noise enters the 
receiver. Using the approximation in (9, and renaming the subscripts to reflect the hypotheses as shown in Fig. 1, the 
following approximate density operators are obtained : 

k=O 

These density operators define the probability of occurrence of coherent states approximating the noise distribution, with 
coherent state I aOk ) occurring with probability POk under H,, and 1 alk)  with probability ek under H1. Ths  
formulation leads to an approximate model according to which any one of a large number of coherent states could occur 
under either hypothesis due to the presence of noise. 

Optimal detection of quantum states can be formulated in terms of projections onto orthononnal “measurement states” as 
described in [2, 3, 4, 5 ,  61. In our model, the detection operator for the binary signal plus noise problem spans the entire 
signal plus noise subspace of Hilbert space. It is denoted by W2 , with components the projection operators no and n, , 
corresponding to the two hypotheses H ,  and H I  : 

The measurement state components of these operators are orthonormal quantum states of the form 
I wo ), . * , I w(K-l) ), and 1 wK ), * - , I w ( ~ ~ - ~ )  ) , respectively. These detection operators are projectors, hence their 
eigenvalues are either zero or one, as shown by the following example: 

Application of the detection operator to the received coherent state results in one of the eigenvalues of the detection 
operator as the outcome: if the outcome of the measurement is a non-zero eigenvalue of no then H ,  is selected, 

otherwise the receiver decides that HI was received. Detection operators for the general M-hypothesis problem can be 

formulated in a similar manner. Now there are M densities, denoted by p , , p , * * * , pM-,  , and the detection operator 

for the M hypothesis problem, WM , is of the form: 

m=O 



These detection operators correspond to a receiver structure whose performance can be determined using numerical 
techniques. The detection operator W, is simultaneously applied to the entire signal plus noise subspace, encompassing 
all hypotheses. The probability of correct detection is found by first determining the expected values of the component 
projection operators, then averaging over the hypotheses. For example, given H o  , the probability of obtaining a non- 

zero eigenvalue of no is equal to the expected value of no : 

j=O i=o m=O 

The probability of correct detection is obtained by averaging the conditional probabilities for each 
hypothesis: P ( c )  = C P(H,) P[C I H,] where P(H,) are the a-priori probabilities. The average probability of 

error follows as P(E) = 1 - P(C) . 
m 

It is interesting to compare the receiver for the DCS model developed here and the application of the measurement states 
optimum for the pure-state (noiseless) case. In the pure-state formulation there is only one measurement-state associated 
with each hypothesis, hence correct detection occurs if the noise-corrupted signal, represented as one of K coherent 
states in a given cluster, projects onto the single measurement state associated with that cluster. However, in the DCS 
formulation, projection of the received coherent state onto any of the measurement states associated with that hypothesis 
results in correct detection. For the pure-state case, the conditional probability of correct detection contains only K terms 
when the DCS model is used, denoting the projection of the received noise-corrupted coherent-states onto a single 
measurement state for the transmitted hypothesis. For example, when H o  is transmitted, the conditional probability for 
“pure projection” is given by the expression 

P(C 1 H,) =z 
I=O 

By contrast, the conditional probability of correct detection in he DCS formulation contains K 2  positive terms, since 
now there are K measurement states, and all possible distinct projections onto every measurement state are used, as 
shown in equation (lo), resulting in greater conditional probability of correct detection. 

In general, the DCS detection operators described above do not necessarily minimize the average probability of error. 
Best performance is obtained when the measurement states are optimized so as to maximize the average probability of 
correct detection. Since the detection operators consist of “rigid” orthogonal measurement states, the required 



optimization can be formulated in terms of rotations of the detection operators in Hilbert space. The details of the 
numerical optimization via rigid rotations of the detection operators is the subject of the following section. 

3. OPTIMIZATION OF THE DETECTION OPERATORS 

Numerical optimization of the detection operators consists of finding the orientation of the orthogonal measurement 
states which yield the maximum probability of correct detection, or equivalently, minimum probability of error. As 
shown in previous articles [5, 61, the solution to the general K hypotheses problem can be found by rotating the 
measurement states in a K dimensional Hilbert space, and calculating the probability of correct detection for each 
rotation until the global maximum is found. To summarize the original approach, the optimization problem can be solved 
iteratively starting with two dimensions, since it is possible to rotate the projections of a vector in any lower dimension 
without affecting the projections of that vector onto the higher dimensions. This principle is illustrated in Figure 2, where 
the projection of an arbitrary vector & in the X-Y plane is given by & cos(ry) . The vector V, can be rotated such that 
the projection onto the Z axis is unchanged while the X and Y projection components vary. Generalizing this result to any 
K dimensional vector, the projections onto the (K-1) coordinate axes can be varied by rotating each of the (K-1) 
measurement coordinates without affecting the projection onto the next higher dimension. 

/ X axis 

Fig. 2. Vector Rotation 

Using this dimensional independence, the measurement states are incrementally rotated and the error probability 
calculated until the angle yielding the minimum probability of error is found for each dimension. To M e r  simplify the 
search, each dimension only requires a rotation in a single plane. This plane is defined by the K-th hmensional axis and 
the K-1 bisector. The optimum measurement-state orientation for each dimension can be determined from the lower- 
dimensional solution, and this procedure continued until the complete K-dimensional solution is obtained. However, 
when the signal states are not symmetrically placed, such as the case for OOK or BPSK in the presence of noise, the 
diagonal rotation algorithm described does not provide the true optimal orientation of the measurement states. In order to 
find the optimal orientation, the diagonal rotational algorithm described above must be extended. ’ 

The original rotation algorithm described above, and documented in [6 ] ,  must be mohfied to accomodate the 
optimization for the non-symmetrical case. The measurement state orientation and probability of error solved for the 
symmetric case is used as an initial condition. The measurement axes are then incrementally rotated about each axis pair 
in the lower-dimensional space from 0 to 360 degrees. With each rotational increment, the angle of rotation and 
probability of error for the new orientation is measured. The new measurement state orientation is accepted only if the 
probability of error is lower than that before. This operation is carried out for both directions, clockwise and 
counterclockwise. 



To illustrate, the example for a set of binary signals in ten dimensional Hilbert space is shown. Each signal state will be 
augmented with 4 additional coherent states to account for the effects of noise, so that K = 5 .  Each cluster representing a 
noise-corrupted signal in the DCS model will contain 5 signals as depicted in Figure 3a. 

a. 10 dimensions binary signals b. 14 dimensions binary signals 

c, 15 dimensions ternary signals 

Figure 3. Placement of approximating coherent states for the DCS model with K = 5 ,  and the sectors 
used to calculate probabilities of occurrence 

For the binary DCS problem, this yields a total of 10 signal states, 1 a,, ) , i = 0, 1,2, 3,4,  and 1 ali ) , i = 5 ,  6,7 ,  8 ,9 .  

Correspondingly, there will be a total of 10 measurement states I W ,  ) , i = 0, 1, . . ., 9. In order to provide an 
approximation to the sampling scheme described earlier, a two circle scheme was adopted for the probability 
distribution. The probability for the primary coherent state representing the signal, in the smallest circle in Figure 3a, was 
set to be 0.5. The four coherent states surrounding the primary coherent state were located at a radius of 1.0 from the 
center. The final circle was set at a radius of 1.5. The probability distribution for each state was then computed as 
follows. The probability of occurrence of the states under H ,  is governed by the equation 

Integrating this equation over a circle of radius r yields the equation 

rz  -_ 
P ( r ) = l - e  



which can be used to determine the probabilities associated which each coherent state in the cluster by evaluating 

= (a)-’ Imp(- 1 a - ,U l 2  / N )  d *a over the appropriate regions. This serves as the initial starting point for 

the second optimization algorithm. The measurement states are incrementally rotated about each higher dimensional axis 
pair in the signal set from 0 to 360 degrees. For each increment rotation, the probability of error is calculated using 
equation (10). Using the 10-dimensional setup as an example, the algorithm begins by rotating the measurement states in 
the X-Y plane from 0 to 360 degrees. The angle yielding the minimum probability of error is determined and the 
orientation of the measurement states is set at the minimum angle. The new measurement state orientation is then rotated 
in the X-2  plane, the minimum probability of error is determined and the measurement state orientation is set 
correspondingly. This rotation process is repeated until all axis pairs have been rotated about. The process is then 
repeated with the rotation in negative direction from 0 to -360 degrees. After all the rotations have been completed, a 
minimum probability of error will be found which is the optimal orientation of the measurement states. This approach 
can be generalized up to K dimensions by systematically rotating about each axis pair and finding the minimum 
probability of error. 

4. NUMERICAL RESULTS 

Performance of the optimized detection operators for the DCS noise model have been evaluated, using the state-space 
optimization technique described above. The results for OOK and BPSK signals using both 5-dimensional and 7- 
dimensional clusters in the DCS model (K  = 5 and K = 7) are shown in Figures 4 and 5. In both figures, dashed curves 
represent the results for K = 5, and solid curves for K = 7. The exact error probabilities obtained previously via the 
eigenvalue method are labeled “Q-Opt” in both figures. Comparisons of optimum quantum detection with classical 
detection techniques such as photon counting and coherent detection are treated elsewhere [l, 4, 51 where it is shown 
that classical detection techques are typically 3 -5 dB worse than optimum quantum detection. 

With OOK signaling, the received signal field is in a coherent state I a )  under hypothesis one, and state I o }  under 
hypothesis zero, as shown in Fig. 3a. Thermal noise entering the receiver along with the signal generates the 
approximate density operators defined in equation (6). The performance of the optimum quantum detector for OOK 
signals in the absence of noise have been evaluated previously using measurement-state techniques, and documented in 
[4]. The approximate error probabilities obtained with the DCS technique are compared with the known performance of 
the optimum quantum detector, obtained by evaluating the eigenvalues of the difference of the density operators under 
the two hypotheses [l, 31. As expected, even small amounts of thermal radiation degrades optimum receiver 
performance significantly: an average noise count of 0.1 photons per symbol degrades performance by more than 2 dl3, 
whereas lllgher levels of noise corresponding to 0.3 photons per symbol lead to over 4 dB performance degradation, 

The DCS technique yields accurate error probabilities for values that exceed the small probability mass remaining 
outside the largest approximating ring of the five-state DCS approximation in each cluster. These probabilities can be 
found using equation (13): for the hgher noise case of N = 0.3 the probability outside the first ring is 6~ It is 
clear from Fig. 4 that these values are consistent with the floor of the DCS error probabilities. For the lower noise case, 
N = 0.1 and N = 0.03, the floor is due primarily to numerical errors resulting from the rather large (one degree) rotation 
increments used in the algorithms. Ths was verified by recomputing a few points with 0.1 degree increments, resulting 
in an order of magnitude reduction in the noise floor. Therefore, lower error probabilities can be reached with the 
optimized rotation algorithm by using smaller increments, but at the expanse of computation time. 

The performance of the “pure projection” operator defined by equation (1 1) has also been evaluated. Note that for 
moderately high modal noise counts corresponding to N = 0.1, the probability of bit error for the pure projection 
algorithm reaches a floor at an error probability of 0.1 over the range considered, whereas the DCS algorithm continues 
to track the optimum solution until a much lower limiting value is reached, as shown in Fig. 4. 
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Figure 4. Performance of approximate DCS algorithm and optimum quantum detector for Binary OOK signals, 
in the presence of noise. K = 5 and 7. 

Error probabilities for BPSK signals using both five and seven dimensional DCS noise models are shown in Fig. 5, and 
compared to the optimum quantum detector as a fimction of the average number of photons per symbol, For this 
modulation, the state of the received field in the absence of noise is denoted by 1 a) under hypothesis one, and by 
1 -a ) under hypothesis zero. Five dimensional clusters were treated as before, but in the seven-dimensional 
representation the areas of the sectors were equalized by increasing the radius of the central disk, in order to attain better 
probability weights for the approximating coherent states. It is again evident that the DCS approximation yields accurate 
results for error probabilities that exceed the uncounted probability outside the first DCS ring. Note that BPSK signals 
require only about half the average signal photons per symbol to reach a given error probability, when compared to OOK 
signaling. However, since BPSK signals transmits a signal pulse under both hypotheses whereas OOK transmits a signal 
only under the “signal hypothesis” and nothing under the altemative, BPSK modulation actually requires on the average 



twice as many photons per symbol as OOK. When compared on the basis of average transmitted power, both modulation 
schemes exhibit similar performance. 

Finally, the DCS algorithm has been applied to the problem of estimating the performance of the optimum quantum 
receiver for ternary signals, in the presence of noise. This signaling scheme is defined by three signal states, namely 
I a )  , I -a) and I 0). The DCS noise model now consists of three clusters in the a - plane, placed as shown in Fig. 3c. 
The DCS algorithm places fifteen measurement states near the discrete coherent states in such a way as to maximize the 
probability of correct detection. Application of the DCS algorithm yields the error probabilities for weak ( N  = 0.03), 
moderate ( N  = 0. l), and strong noise ( N  = 0.3) cases shown in Fig. 6 .  For the strong noise case, an error floor is reached 
at about 1 v3 , again due to the probability mass ignored outside the second ring in the DCS model. For the low-noise 
cases, the error floor is dominated by the rotation increments in the optimization algorithm. Since the current limit of the 
optimization algorithm is fifteen dimensions, clusters of five coherent states were used for each hypothesis (K = 5). 
Direct comparison with other results was not possible, however, since no previous solution to t h l s  problem could be 
found. The extension to higher dimensional signal sets is conceptually straightforward using the DCS technique 
described here, but requires extending the software to still higher dimensions. 
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Figure 5. Performance of approximate DCS algorithm with BPSK signals, compared to known solutions for 

optimum quantum detection in the presence of noise. K = 5 and 7. 
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Figure 6. Performance of the optimum quantum detector for ternary signals, in the 

presence of noise. K = 5 .  

5. CONCLUSIONS 

A new technique has been developed to evaluate the performance of the optimum quantum receiver for coherent state 
signals in the presence of thermal noise. The continuous density operators for signal plus noise in the coherent-state 
representation were approximated by discrete operators. Detection operators for the discrete coherent states were defined 
in terms of orthogonal measurement states, and the probability of error minimized by rotating the detection operators in 
Hilbert space. Optimum performance of the new DCS algorithm was verified using binary modulation formats whose 
performance in the presence of noise is well known [l]. The DCS algorithm was then applied to ternary modulation, 
whose performance in the presence of noise was not previously known, and performance curves for several noise 
conditions were obtained. This technique shows great promise for determining the performance of optimum quantum 
detectors for higher dimensional signals in the presence of noise, such as pulse-position modulated product-state signals 
and dense signal sets [5 ]  contemplated for flee-space communications, where no alternative methods for evaluating 
performance are available currently. 
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