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Abstract: 
In this paper, we present a new, simple, and optimized 
hardware architecture sequential learning technique 
for adaptive Principal Component Analysis (PCA) 
which will “help optimize the hardware 
implementation” in VLSI and to overcome the 
difficulties of the traditional gradient descent in 
learning convergence and hardware implementation. 
To demonstrate the performance of our algorithm, we 
study two cases: data feature extraction and image 
compression. In this study, we show that our learning 
approach can extract the principal components from 
the given data set as compatible as PCA using 
deterministic approach from MATLAB. However, the 
innovation of our approach is simple and easy to 
implement in hardware that can optimize hardware 
requirements for  System-On-A-Chip approach. In 
addition, it demonstrates that our approach is more 
advanced in hardware implementation when 
compared with state of the art for gradient descent 
technique. 

I. INTRODUCTION 
Principal Component Analysis (PCA) is a second 
order statistical approach, which has been used to 
extract the features of data set [ l]  or perform data 
reduction (compression) [2,3]. Specially, when data 
set is, redundant and overwhelming large, PCA is very 
effective linear technique as a preprocessing step to 
extract data features and to cluster data for 
classification. It can play as optimal linear transform 
known as Kahunen-Louvre (LK) for data 
compression. 
To obtain the principal component vectors, 
traditionally the covariance matrix is calculated then 
eigen values are obtained, and corresponding to each 
eigen value, a component (eigen) vector is found. 
This procedure is complicated and computationally 
intensive thereby making it restrictive to apply for real 
world applications such as data compression and data 
extraction. Moreover, the PCA hardware 
implementation for real time application becomes 
even more challenging. 
To get over the hurdles from the traditional PCA 
technique, the simple sequential PCA techniques are 
introduced [4-101. These techniques are based on 
learning approach to obtain sequentially principal 

component vectors. Some works in PCA are reported 
using Hebbian or anti-Hebbian learning [4-51 and 
gradient-based learning [6- 1 I]. There are several 
reports that are successful in using PCA for data 
reduction and detection [12-131. Most of the works 
are software-based due to the complication of the 
hardware requirements. 
For the gradient descent technique, it is straight 
forward to compare with others e.g. steepest decent, 
conjugate gradient, or Newton’s second order, but it 
still poses some difficulties: learning convergence 
with minor component vectors and further, it is still 
complicated to implement in hardware. 
We introduce an innovative dominant element based 
gradient descent technique to simplify the system 
architecture and to reduce computational intensity as 
required for gradient descent. This simplification will 
ensure, at least, the same quality convergence and 
require much less hardware if implemented as 
opposed gradient descent technique. 
Due to the collapse of the energy function when each 
component vector is extracted and removed 
consecutively from the energy function; hence the 
next component vector faces challenge to be obtained 
due to the very small attractor to compare with the 
previous ones. Moreover, we introduce the innovative 
dynamic initial learning rate to compensate for the 
energy lost when the previous components are 
removed from the energy function. 
In this paper, we provide the new learning algorithm 
named dominant element based gradient descent and 
dynamic initial leaming rate (DOGEDYN). This 
DOGEDYN is used to study feature extraction and 
data compression to demonstrate its superiority as 
opposed to gradient descent (GED), dominant element 
based gradient descent (DOGED), gradient descent 
with dynamic initial learning rate (GEDYN). Finally, 
a simple hardware architecture is proposed to solve 
hyperspectral application for full parallelism in 
computation to obtain real time computation 
capability. 

11. MATHEMATICAL 
FOUNDATION 

We adapt the objective fimction [ 1 I] below: 



where m is the number of principal components and k 

is the number of measurement vectors. X, is a 
measured vector at time t and w, is the th principal 
vector (or eigen vector). 
With 
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PCA learning approach 
From equation (2), the learning algorithm can be 
processed sequentially for each principal vector that is 
based on the gradient descent as follows: 

ayI ~ ( I Y ,  - w 1 w f ~ , l 2 )  
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From equation (3), only the dominant element [14] 
(full analysis will be provided in the long paper) is 
used; the weight update can be obtained as follows: 

W I T  = wp," + TAW,, = w;," + <E,, (4 Y ,  + W,,YlYl/) 
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Where < = 2 

Eo is the initial energy when the network starts 
learning and E,-, the energy of the (2-1)~ extracted 
principal has. 
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111. HARDWARE 

From equation (4), the learning architecture is realized 
as in Figure 3. 

ARCHITECTURE 

between vectors y and wi. The result of the C box 
operation will, again, be summed with the previous 
multiplication of y, and wil and its output will be 
multiplied with the learning rate < before updating to 
w,, as described in equation (4). This single unit can 
be cascaded into n units to obtain a PCA learning 
vector and this learning vector can be cascaded to 
obtain many as parallel eigenvector extractors as 
needed for each application. 

IV. APPLICATIONS 
In this study, we used two gray scale images: 

Elaine and tank as shown in Figures (3a) and (4a). 
The purpose of this study is to evaluate how well our 
technique can extract the features of these images via 
principal components as opposed to the MATLAB 
technique and from the extracted features we can 
process for image compression. 
Elaine image consists of 256x256 gray pixel and each 
pixel has 8-bit quantization. Tank is 512x512 pixel 
image with 8-bit gray scale/pixel. 
We used input vector as row data with 64 pixelhector 
to construct the training vector set. When the training 
vector set is available, the algorithm as shown in 
equation (4) is applied to extract the principal vector. 
Our study has shown that the maximum number of 
iterations required is 150 of learning repetitions and 
the first 20 component vectors are extracted. 

Feature extraction 
Feature extraction using PCA is a well known 
approach [l], and is based on the maximum statistics 
feature correlation. 
The first 10-component vector extracted from Elaine 
image using our technique is projected onto the first 
10-component from MATLAB (inner product) and its 
results are shown in Figure 2a. 
As orthogonal characteristics between principal 
vectors, if the learning component vector and the 
component vector f?om MATLAB are the same order 
and identical (or close to identical), the expected inner 
product should be close to +/-l; otherwise, it should 
be close to zero. 
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Figure 1 : Single New PCA learning unit. 

In Figure 1, the raw input data x, is subtracted from the 
sum of the previous projected data on the previous 
principal components to obtain y as defined in the 
equation (2). The C box provides the inner product 
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Figure (2a): The projection (inner product) 
result of 10-component vector extracted 
from Elaine image using our technique on 
10-component vector from MATLAB. 



The first IO-component vector extracted from tank 
image using MATLAB and our approach and the 
projection between principal vectors are shown in 
Figure 2b. 
As shown in Figure 2a and 2b, there are ten values 
(+/-1) and the rest (70 values are close to zero) from 
which our technique can extract the feature vector as 
identical as that with the MATLAB technique. 

Figure 3c: constructed image from 20- 
component using our technique 
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Figure 2b: The projection result of 10- 
component of our technique on 10- 
component of MATLAB (Tank image) 
Compression 

In this study, we extracted the first 20-component 
vector from full set of 64 component vectors. Since 
The full image is constructed from the first 20 
component principal vectors extracted using 
MATLAB shown in Figures (3b and 4b) and using our 
approach (3c and 4c). 

Figure 3a: original image (256x256) 

Figure 3b: constructed image from 20- 
component using MATLAB 

Figure 4a: original image (512x5 12) 

Figure 4b: constructed image from 20- 
component using MATLAB 

Figure 4c: constructed image from 20- 
component using our technique. 



V. DISCUSSION 
To demonstrate that our approach is more advanced as 
compared with the gradient descent technique, we 
have studied two given images (3a and 4a) using four 
techniques: GED, DOGED, GEDYN and DOGEDYN. 
The results are shown table I. 
Table I: Comparison of number component to be 

Elaine 
Tank 

GED DOGED GEDYN DOGEDYN 
2 I I  >20 >20 
3 6 >20 >20 

This study is based on 150 iterations for leaming. The 
DOGED is better than GED in leaming and hardware 
implementation as shown in Figure 1. When the 
dynamic initial learning rate is incorporated, the 
GEDYN and DOGEDYN are able to extract as many 
components as needed (or all component if needed). 

VI. CONCLUSION 
In this paper, we have demonstrated that our 
innovative DOGEDYN technique (which 
consists of dominant element based gradient 
descent learning and dynamic initial learning 
rate) requires much less hardware, simple 
system architecture, and reliable learning 
technique which can easily be implemented in 
VLSI hardware. Simplicity in hardware 
requirement is afforded because there are several 
identical building blocks as principal vector 
extractor and sit on the same chip to extract fully 
parallel spectral images. This will allow one to 
extract principal component vectors of 
hyperspectral data in a fully parallel fashion for 
real time classification based on the features or 
land data compression. 
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