
Using SPEEDES to Simulate the Blue Gene Interconnect
Network

Introduction

In November 2001, IBM announced a jointly funded research partnership between IBM
and the Lawrence Livermore National Laboratory as part of the United States Department
of Energy ASCI Advanced Architecture Research Program. This partnership targets the
production of a massively parallel machine, BlueGeneL (BG/L), scheduled to be
operational in the 2004-2005 time frame. BG/L is a scalable system in which the
maximum number of compute nodes assigned to a single parallel application job is 216 =
65,536. The BG/L nodes exploit system-on-a-chip technology, configured in a 64x32~32
3-D torus, to deliver target peak processing power of 360 teraFLOPS (trillion floating-
point operations per second) at price/performance and power consumptiodperfonnance
targets unobtainable with conventional architectures.

Caltech’s Jet Propulsion Laboratory (JPL) and Center for Advanced Computer
Architecture (CACR) is conducting application and simulation analyses of BGL in order
to establish a range of effectiveness for the Blue Gene/L MPP architecture in performing
important classes of computations and to determine the design sensitivity of the global
interconnect network in support of real world ASCI application execution.

Approach

A number of applications are being analyzed for the purpose of providing workload
traces for a statistical BG/L simulator. The selected applications stress load balancing,
multiple languages, and dynamic behavior with respect to CPU/memory/communications
usage throughout execution. In particular, the applications and kernels being traced and
analyzed are:

Magnetic Hydro Dynamics (MHD) - A fluid solver for equations of
hydrodynamics and resistive Maxwell’s equations. This application decomposes
physical domains into regular domains across processors, exercising nearest
neighbor communications and global reductions each time step.

Quantum Monte Carlo (QMC) - The code calculates material properties within
chemical accuracy. A more efficient implementation of this application is under
development, yielding huge computational demands, small memory and
communication requirements.

Gyrokinetic Toroidal Code (GTC) - GTC calculates micro-turbulance in a
tokamak using kinetic equations in a collisionless regime. The code is highly
compute bound, except for synchronizing MPI Allreduce calls.

3-D Adaptive Mesh Refinement (AMR3D) - A fluid dynamics code performing
Richtmyer-Meshkov shock simulation using GrACE data management libraries

for mesh generation and automatic load balancing. AMR3D is highly dynamic
and generates collective and point-to-point message traffic in bursts, during re-
griding events.

2-D AMR MHD - An elliptic iterative solver for ideal MHD equations, using
AMR finite difference calculations. This code allows compelling comparisons
between large unimesh (no AMR) traces and AMR (increasing levels of
refinement) enabled runs. Figure 2 shows communication traffic traces during
execution of an 128x128 mesh, with 2 levels of AMR run on 32 processors. The
communications workload was captured by CACR’s Expandable Trace Format
(ETF) tool, enabled by simple application instrumentation.

The direct approach of cycle-by-cycle level simulation a 64K node system running
parallel applications is infeasible due to limitations of existing computer systems. In lieu
of this, the JPL/CACR team is taking a statistical approach using parameterized models
of the applications (workloads) and statistical (queuing) models of processing node
message traffic derived from traces produced by the computational experiments. All 64K
nodes will be explicitly represented, but message traffic will be aggregated to reduce
simulation run time while retaining statistical effects of adaptive routing and network
contention as a function of network load and size.

Commercial sequential discrete event simulation packages are incapable of handling
systems of 64K nodes. For example, sequential discrete event statistical model was
developed using a commercial modeling tool (SEWworkbench). Due to memory
limitations, this sequential model is scalable up to only 1024 BG/L nodes. To cover the
full range of B G L sizes it was necessary to exploit parallel discrete event simulation
software that could then be run on parallel machines for scalability.

Parallel discrete event simulation has been successfully used for battlefield simulations
which may involve large numbers of complex simulation objects (millions) where
processing of individual events is compute intensive. Parallel simulations of MPP
architectures and computer networks in which a large number simple objects and small
compute time events are processed have not been as widely studied. A parallel discrete
event statistical model was developed to scale to the full 64K nodes. Both optimistic and
time step methods are being used to speed up the parallel simulation. An optimistic time
step model was developed using the SPEEDES (Synchronous Parallel Environment for
Emulation and Discrete-Event Simulation) framework developed at JPL. Results of this
approach are reported in this paper.

Background

Discrete event simulation is a simulation model in which different simulation objects
exist. These objects are executed at discrete points in time. Objects pass simulation
time-stamped event messages to other objects (or to themselves) that cause the recipient
objects to execute at the point in simulation time carried by the message. When the
receipt of a message causes an object to execute at a point in simulation time, this action
taken is called an event. Discrete event simulation differs from a time-step simulation in

which objects are checked at each time step in order to assess and modify the current
state of the object

It is often possible to develop a simulation as either a discrete event simulation or a time-
step simulation. For example, a colliding pucks type of simulation could be developed as
a time-step simulation by calculating the position of each puck at each time step, based
on its state in the previous time step. Alternatively, in a discrete event based simulation
of the same application, collision events could be scheduled based on a puck’s current
position relative to the boundaries of the table as well as the positions of other pucks. In
the latter case, each puck’s state is only updated when a specific event occurs, not at
regular time steps. When the system being simulated is by its nature asynchronous, it is
usually best to use the discrete event model. Forcing the use of a time-step model in that
case may result in inefficiencies, because of the overhead that occurs as each time step is
executed whether or not any work needs to be done in that time step.

In a discrete event simulation, care must be taken that all events are executed in the
proper time order. This is typically accomplished in a sequential implementation by
forming a sorted event list, from which events are taken one at a time to be executed.
The situation in a parallel discrete event simulation (PDES) is harder. While individual
event lists on each node are ordered in time, something must be done to in effect order
those lists across all the nodes involved in the simulation. Consider two events, E, and
E,, where E, occurs at an earlier simulation time than &, and the outcome of E, affects
the execution of E,. If the two events are executed on separate nodes, something has to
be done to coordinate the execution of both. If E, is allowed to run first, without having
the information that E, is to provide, a causality error may result.

Mechanisms in parallel discrete event simulation to deal with possible causality errors
generally fall into two categories: conservative and optimistic[11. Conservative
algorithms avoid causality errors by constraining the operation of the simulation so that
(in the above case) E, is not allowed to execute until E, has completed. Such constraints
can come at the cost of efficiency, so that less than optimal parallelism may be extracted
from the simulation.

Optimistic algorithms, on the other hand, fully exploit available parallelism by allowing
causality errors to occur, but the algorithm will detect this situation and force event
rollbacks as necessary. In the previous example, if executes before E,, when the
simulation framework executes E, it detects that E, must be rolled back to the state it was
in before E, finished execution. The optimistic algorithm then re-executes E,, this time
including any state changes caused by E,. This does of course lead to additional
overhead, and a requirement for a more complicated simulation framework that can
handle rollbacks, but practice has shown that this cost is generally outweighed by the
extra parallelism extracted.

SPEEDES is an optimistic simulation framework developed at the Jet Propulsion
Laboratory by Dr. Jeffrey Steinman in the early 1990’s. It has been put to use by DOD in
numerous battlefield simulations. By default, SPEEDES uses a synchronization
algorithm called breathing time warp based on the concept of virtual time developed by

Dave JeffersonC21. SPEEDES modifies Jefferson’s original Time Warp concept by
placing a limitation on the number of rollbacks that may occur in the course of the
simulation. This algorithm uses a time window to prevent runaway objects from
generating excessive numbers of rollbacks. However the choice of algorithm is governed
by a runtime parameter that may be modified to remove any such limitations, allowing a
pure Time Warp based algorithm to be used.

When it came time to install SPEEDES at JPL, we were first faced with the decision of
whether to install it on an SGI Origin 2000, or a Beowulf style computer. The program’s
author recommended the Origin because it uses a shared memory model for
communications between processors, which, for SPEEDES, is much more efficient than
using a message passing model such as MPI. In addition, we were told that a SPEEDES
simulation had previously been developed that handled 1,000,000 simulation objects
running on 100 Origin nodes. This told us that SPEEDES would scale efficiently, and
that the choice of the Origin would work well for our purposes. Because SPEEDES had
previously been ported to the Origin, it was fairly straightforward to install the source
code on our computer and compile and test it.

Model Development

IBM developers had previously written a simulation of the Blue Gene interconnect
network in order to determine basic design parameters and functionality. That simulation
was written using C , without the benefit of a simulation framework. It was written as a
parallel discrete event simulation, and used a conservative time management algorithm.
The approach was made efficient by grouping events into time buckets, and
synchronizing nodes after processing all events in the bucket. Speedup on 16 nodes was
close to linear when the workload was a random one, because of the fairly even
distribution of work across the nodes. For a workload generating an uneven distribution
of messages, however, speedup dropped to 5.6.

One of the goals of the IBM simulator was to simulate all network activity at a cycle-by-
cycle level of granularity. In this it was very thorough, but because of its high fidelity
large workloads could not be handled in a reasonable amount of time. This motivated the
development of a simulation model that would use a coarser level of granularity, and
would be able to handle larger workloads. Ultimately we would like to simulate millions
of packets being transferred between 65,536 simulated nodes, in order to understand the
response of the network under a variety of loads.

We expect that a PDES using optimistic time management will be more efficient than
conservative methods at handling workloads involving uneven workload distributions,
especially for the case where the load imbalances may exist at any instant in simulation
time, but that over the course of the entire simulation the total loads on each node
balance. This is because optimistic methods allow for temporal load balancing. Nodes
are allowed to run at different rates, so that if a node temporarily has a heavier load, it is
allowed to fall back in simulation time, and can catch up later when its load is eased.

In part to begin to familiarize ourselves with the way SPEEDES operated, and in part to
determine whether it would scale properly for our application, we started with a very
simple model. Once it was working correctly and efficiently, we built additional features
into it. This approach helped to highlight the effect any newly added features had on the
efficiency of the simulation, and facilitated the debugging process.

Because of the complexities involved in optimistic simulations, a good simulation
framework needs to handle these in a way that is as transparent as possible to the user.
SPEEDES does all the work of detecting causality errors, and handles rollbacks
transparently.

The fundamental programming construct in SPEEDES is the simulation object. Each
such object communicates to other objects by sending and receiving time-stamped
messages. Receipt of a message eventually triggers the receiving object to process that
message. The simulation time of the received message becomes the simulation time
associated with the corresponding object when it executes. If an object executes during a
certain time slice and is not rolled back, that event is said to be committed.

In our simulation we model each network node as a unique SPEEDES object. Each
network packet is modeled as a message in the simulation. We decided to design at this
level of granularity because of the complexity involved in the adaptive routing being used
by the network. As congestion builds up in one part of the network, traffic patterns
change in an attempt to route messages around the congested area. This behavior is
difficult to encapsulate analytically, and we felt that the model itself should behave in this
manner.

Our simulation messages are quite small, and only contain information relating to the
transfer process, such as the origination node, destination node, time of origination, and
so on. When a message is sent from one object to another, it triggers an arbitration
process in the receiving object that determines whether the message needs to be sent on,
and if so, what route it should take. In parallel with this, the same object is examining its
workload queue to determine whether new messages are being generated. Information
about congestion on that node is sent back to the originating node to assist in flow control
and the adaptive routing algorithm.

SPEEDES is written in C++, and uses the object-oriented nature of the language to good
effect in hiding some of the complexity involved in state-saving. Through the use of
macros, it provides “rollbackable” equivalents of most common variable types. By
declaring a variable to be of one of these types, the user is relieved of having to be
concerned about saving and restoring the state of that variable. For example, the
common C++ types of int and double have equivalents named RB-int and RB-double.
Through operator overloading provided by SPEEDES, they can be used in exactly the
same way as their counterparts, but in addition will have their values saved automatically,
and restored whenever the object undergoes rollback. Other such types include
RB-logical, RB-string, and RB-ptr. Memory allocation and deallocation routines that
can be rolled back are also available. An inconsistency could arise if memory was
allocated by an object, and an address to that memory were to be saved in a pointer. If

the object is rolled back, the reallocated memory might be in a different location, and the
restored pointer would now have the wrong value. For this purpose SPEEDES
implements smart pointers that can keep track of where allocated memory is really
located, and adjust themselves accordingly.

Various classes of rollbackable storage are provided by SPEEDES. One and two
dimensional arrays that are either fixed in size or dynamically sized are supported, as are
one dimensional polymorphic arrays. In addition to support for arrays, SPEEDES
provides two rollbackable container classes: a keyed list class and a keyed tree class.
Because of the flexibility in the way the classes are implemented, and in the number of
methods defined for each, our simulation was able to use the keyed list class as a FIFO
type. Key usage is not required, and operations such as PushTop and PopBot lent
themselves perfectly for our purposes of defining queues to hold packets as they arrived,
and while they were waiting to be sent out.

Provision is made for committing output to files or “standard out” or “standard error”
through the RB-ostream class. It behaves just like the equivalent C++ ostream class,
except that the output to the stream is only sent once the event is committed.

As touched upon earlier, in our model an event is triggered every time a message is
received at a simulated node, whether it is to be passed on by that node or consumed by
that node. This kind of event accounts for the largest number of events in the model.
With the fine level of granularity we use, most of our elapsed time is spent in the
overhead SPEEDES requires to handle the events, and not much time is spent within the
event itself. Consequently, limiting the number of events can do much to speed the
elapsed time of the simulation.

One way we have found to limit the number of simulation events is to use the SPEEDES
feature of persistent processes. In our initial try, each loop through the arbitration process
triggered a new event, but this resulted in slow run times. SPEEDES has a special WAIT
command (implemented as a macro) that forces a process to give up time, depending on
the state of a semaphore. By setting the semaphore every time a message is available for
arbitration, we are able to limit the number of events required by the arbitration cycle.

Though overall SPEEDES does a good job of shielding the programmer from most of the
complications involved in PDES, some complications in designing such a simulation did
come through. For example, it was not obvious from the documentation whether
messages were persistent or whether space for them had to be allocated in a rollbackable
fashion. In general, the user must be aware of when rollbackable memory needs to be
used. Normally if the contents of the memory are to be used only in the course of an
event, that memory need not be rollbackable, but this rule can be complicated when one
uses special classes such as the keyed list class. In our simulation, whenever we stored
messages in the list, or retrieved them for resending, the contents had to be copied
between normal memory and rollbackable storage.

Some of the problems mentioned, as well as our optimization work, required trial and
error and added code for debugging. Our Totalview and gdb debuggers did not work

well with this system, so we had to use other means. SPEEDES comes with a number of
sample programs that can be compiled and run, that demonstrate various features. These
turned out to be very helpful for filling in some gaps in the documentation. SPEEDES
can be configured to print out statistics at the end of each run, such as the number of
events handled by each routine. This feature was especially useful for those regular
simulations where the correct number of events was predictable.

SPEEDES runs in a deterministic fashion, so that the same path is followed each time an
identical simulation is run. This is particularly important for debugging. It also can be
run in a trace mode, where each event is logged to an output file. The most challenging
type of problem to debug were the crashes that resulted typically when SPEEDES
routines were called inappropriately. Output statements such as printf and cout helped
illustrate the path the code was taking and could narrow down the possibilities of which
call was causing the problem. The previously mentioned RB-cout calls were not helpful,
because they were only printed if the event in question completed and was committed. If
a call within the event triggered the crash, the event would not complete and the RB-cout
call would never succeed.

Results

The first model on which we measured performance was a very simple one, designed just
to familiarize ourselves with the performance, scaling, and use of SPEEDES. As such, it
did not have any message flow control or adaptive routing built into it. Instead it sent
messages as fast as the hardware and software would allow, and used a simple dimension
ordered routing algorithm. At the beginning of the simulation, each simulated node
generated 1,000 packets, each of which was destined for a randomly chosen node in the
network. In turn, each generated message was injected into the receiving routine for the
originating node.

The receiving routine handled each incoming packet identically, whether it had just been
injected, or had been received from an adjacent node. In either case, the destination node
information was retrieved from the packet content, and a determination was made as to
whether the packet was at its final destination, or whether it had to be sent on to another
node. In the event that it had to be sent on, the routine determined what the next step was
in the packet’s routing, and sent the packet on its way.

The SGI Origin 2000 on which we ran the simulation has 128 R12000 processors
available, each running at 300 MHz. These are configured as 2 processors per node.
With each node containing 1 GB of RAM, it has a total of 64 GB of RAM.

Each message injected in the simulation resulted in an event. An event was also
generated each time the message was received, whether it was received on the originating
node when it was first injected, or received by a destination or intermediate node. The
network in our model is a three dimensional torus that allows packets to be sent in either
direction for each dimension. If x, y, and z represent the size of the network in each
dimension, each packet requires at most 1/2 * (x + y + z) hops to reach its destination. On
the average, a randomly generated packet will require 1/4 * (x + y + z) hops. Using this

information it became fairly easy to calculate the approximate number of total events. If
m is the total number of messages, the expected number of events is close to m * [1 + 114
* (x + y + z)].

With the large numbers of real messages being sent between physical nodes during our
simulation runs, and a small amount of computation used to process each message, we
did not expect to see good speedup figures, and have focused mainly on the scaling
performance of the simulation. Nevertheless we did a small series of speedup tests, and
were pleasantly surprised to obtain a 3.9 speedup when moving one of our simulations
from 4 physical processors to 16 processors. For the speedup test we simulated 4096
Blue Gene nodes, each of which injected 100 packets.

The smallest simulation we used for the scaling tests ran on 8 physical processors and
simulated 4K Blue Gene nodes, in a 16 x 16 x 16 torus. We injected 100 packets per
simulated node, for a total of 400K packets. Including injection events and receive
events, the simulation handled over 5 million events. We scaled this up in 5 steps to 64K
nodes simulated on 128 physical nodes producing a total of more than 200 million events
(see table 1).

We were quite pleased with the way the SPEEDES simulation scaled. The scaling
performance was within about 10% of ideal, except for the 128 node case. Because the
latter used all available nodes of the Origin, one of the processors was busy running some
of the standard O/S tasks as well as our simulation, and we believe this caused the
deviation shown in figure 1.

Conclusions and Future Work

SPEEDES has shown itself to be a valuable tool for the purposes of simulating a large
computer network. It has shown itself capable of scaling up to handle the large number
of objects and events required by this simulation. It is effective in its use of parallelism,
both in handling large problem sizes, and in lessening the time required for the
simulation.

Our main task for the near term is to increase the fidelity of the model in terms of the
arbitration scheme that it uses as well as its adaptive routing techniques. Once that is
completed, we will repeat the performance measurements previously done. Another part
of our effort will be to add packet transit information into each packet as it is routed.
This will enable the gathering of collective packet throughput statistics, so that we can
better understand how the network operates, and whether there may be bottlenecks in
certain areas.

Another team is working in parallel to produce characterizations of workloads based on
specific science applications. This workload information will be used to drive our
simulation to show how the system might operate under realistic applications.

With our long experience in developing simulations, we are particularly interested in
understanding what optimistic techniques give the best performance for a given

simulation. With the ability SPEEDES offers to run the same simulation under different
time management techniques, we can directly measure the effect on performance. We
are particularly interested in doing this for those simulations which have unbalanced
workloads.

SPEEDES has assisted us in this effort by proving to be an efficient framework for
running parallel discrete event simulations.

Acknowledgment

This work was done by the Jet Propulsion Laboratory under contract,with the California
Institute of Technology.

References

1 . Fujimoto, Richard M., “Parallel Discrete Event Simulation.” Communications of the
ACM, Vol. 33, No. 10 (October 1990), pp. 30-53.

2. Jefferson, David R., “Virtual Time.” ACM Trans. Prog. Lang. and Syst. 7 , 3 (July
1985), pp. 404-425.

Configuration

16x16~16

16x 16x32

BG/L nodes Physical
Processors

4K 8

8K 16

16x32~32

Total
Injected
Packets

16K 32

400K

32x32~32

32x32~64

800K

32K 64

64K 128

1.6M

3.2M

6.4M

Table 1. Benchmark Problem Sizes

Average
hops/p k t

12

16

20

24

32

1600
1400
1200

SPEEDES Performance

Best Case
Measured

-
-

400

200

0
16x16~16 16x16~32 16x32~32 32x32~32 32x32~64
(8 nodes) (16 nodes) (32 nodes) (64 nodes) (128

nodes)
Configuration

Figure 1. Scaling Results

