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Abstract 
Large Eddy Simulation (LES) models are evaluated on a Direct Numerical Simulation (DNS) database representing 

a three-dimensional temporal mixing layer with evaporating drops. In two-phase flow LES, necessary models must be 
found for the filtered source terms representing the effect of the drops on the filtered flow field. Because the unfiltered 
flow field, unavailable in LES, is required for calculating the source terms, various approximations were considered for it, 
and a reduction in the number of tracked drops was evaluated. All filtered source term models were found to overestimate 
corresponding filtered source terms, and the error of using computational drops was calculated. 

Introduction 

The Large Eddy Simulation ( L E S )  methodology was 
conceived for single-phase (SP) flows to decrease com- 
putational costs through restricting the resolution to that 
of the large scales and including the effect of the small 
scales through models. The J-ES equations are obtained by 
spatially filtering the Direct Numerical Simulation (DNS) 
equation set, as DNS are simulations which compute the 
entire range of scales typical of turbulent flows. For com- 
pressible multi-species flows, this filtering process intro- 
duces unresolved momentum, energy and species subgrid 
scale (SGS) fluxes. Therefore, for SP flows, the neces- 
sary SGS models consist of expressions relating the SGS 
fluxes to the resolved variables. For two-phase (TP) flows 
with evaporating (liquid) drops, the situation is more com- 
plicared because rhe filter voiume contains drops. As- 
suming that the drops are small enough to be treated as 
point sources, their evolution depends on the gas-phase 
flow field, and in turn they affect the gas phase by acting 
as sources of mass, momentum and energy. Consistency in 
the goal of decreasing computational costs dictates that not 
only must the flow resolution be decreased in LES with 
respect to DNS, but the same concept also must be ap- 
plied to the ensemble of drops. That is, in LES the drops 
should not be the actual drops of DNS, but instead should 
be 'computational' drops representing the effect of several 
actual drops. Therefore, TP LES requires modeling both 
the effect of the flow field on the drops (through the drop 
far-field). and that of the drops on the flow field (through 
filtered source terms). 

We use here the DNS database from a recent study [ 11 to 

develop the necessary models for the filtered source terms 
(SGS flux models are derived elsewhere [2]) with the in- 
tent of introducing a consistent TP flow LES methodology 
wherein both the number of grid points and that of tracked 
drops is reduced compared to DNS. SGS TP flow models 
that treated the drop contribution but did not reduce the size 
of the drop ensemble or consider the effect of the drops 
on the flow field were presented in [3] and [4]. Some of 
these models are here extended so as to calculate the fil- 
tered source terms from the filtered flow field and the re- 
duced drop ensemble. Only an abbreviated description of 
the source term modeling study is here presented, with de- 
tails available elsewhere [2]. 

Highlights of the DNS model 
The detailed DNS equations dong with the justification 

of the assumptions embodied in them were described in [ 11, 
based on the formulation of [5 ] .  The governing equations 
are formulated in an Eulerian frame for the gas phase and a 
Lagrangian frame for the drops. The gas phase consists of 
two species which are the carrier gas and the vapor evolv- 
ing from the drops. In contrast with the formulation of [SI, 
the gas energy equation of [ 11 includes the heat flux contri- 
bution due to the enthalpy carried by the species. The drops 
are treated as point sources of mass, momentum and energy 
for the gas phase; this treatment is justified by the dilute 
(i.e. volumetrically small, 0(10-3)) loading and the size 
of each particle being much smaller than the Kolmogorov 
scale. 

The mixing layer geometry is illustrated in Fig. 1 where 
the streamwise ( 2 1 ) .  the cross-stream (Q), and the span- 
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wise (23), coordinates are shown, and the domain lengths 
are L1, L2 and L3 in each direction. Periodic boundary 
conditions are used in the z1 and 2 3  diiections, and adia- 
batic slip wall conditions are employed for the 22 bound- 
aries. The free-stream velocity UO = M,,OUC,O is calcu- 
lated from a specified value of the convective Mach num- 
ber Mc,o based on the carrier gas initial speed of sound 
u c , ~  = ,/&Tc,oCP,c/Cv,c where TC,O is the initial uni- 
form temperature of the carrier gas at the initial uniform 
pressure; the carrier gas is the sole initial species in the 
gas phase. The initial vorticity thickness is 6,,0 = 6, (0) 
where 6, (t)  = Avo/ (8 (ul) /a22),, with the brack- 
ets () denoting averages over homogeneous (q, 23) planes 
and the velocity difference across the layer is AUo = 2Uo; 
the initial mean streamwise velocity has an error-function 
profile. The specified value of the initial Reynolds number, 
Reo = poAUoS,,o/,u, where po is the initial gas density, 
is used to calculate p. The thermal conductivity and dif- 
fusivity are then computed using this value of p and spec- 
ified values of Prandtl and Schmidt numbers of 0.697 (the 
Lewis number is unity). All thermophysical properties are 
the same as those employed in the simulations of [3] using 
air as the carrier gas and decane as the drop liquid. 

To promote layer growth, the layer is initially perturbed 
so as to induce roll-up and pairing. The perturbations, de- 
scribed in [5] specify spanwise and streamwise vorticity 
fluctuations, with streamwise and spanwise wavelengths in 
the z1 and 23 directions of A1 = 7.296,~~ and A3 = O.6A1. 
For all the simulations performed herein, L1 = 0.2 m, 
L1 = 4x1, L2 = 1.1L1 and L3 = 4x3, where Li is the 
domain length in the zi direction. The relative amplitudes 
of the forcing perturbations with respect to the circulations 
are 10% and 2.25% in the spanwise and streamwise direc- 
tions, respectively. 

The drops are initially distributed randomly throughout 
the 22 < 0 domain with specified temperature, velocity, 
number density and size distribution. Initially, all the drops 
have the same temperature, Td,o, and have the same veloc- 
ity as the gas phase at their location. The mean number 
density profile is smoothed near the center-line, 22 = 0, 
using an error function profile. The drop size distribu- 
tion is initially specified through the drop Stokes number 
St = rdAuo/6,,o whose initial distribution is Gaussian 
with mean 3 and standard deviation 0.5. The number of 
drops is determined by the initial mass loading MLo (ini- 
tial ratio of mass of liquid to mass of carrier gas in drop- 
laden part of domain). 

The DNS equations were solved numerically using a 
fourth-order explicit Runge-Kutta temporal integration for 
time derivatives and eight-order central finite differences 
with tenth-order filtering for spatial derivatives. A fourth- 

order Lagrange interpolation procedure was used to ob- 
tain gas-phase variable values at the drop locations. The 
DNS endeavor was undertaken to achieve several transi- 
tional states that could be further analyzed for a priori tur- 
bulence modeling. As detailed in [ 11, simulations were per- 
formed at Reo = 500 and 600 and at MLo of 0,0.2 and 0.5. 
All cases had M,,0=0.35, Tc,o=375K, p0=0.9415kglm3, 
AU0=271.7m/s and 6,p6.859x 10-3m. The drop laden 
(MLo>O) cases had Td,o=345K and liquid density of 
642kg/m3. ~n the present paper, the a priori source- 
term analysis is restricted to the simulation with Reo = 
600 and MLo = 0.2, denoted TP600a2, which had 
2,993,360 drops, 288 x 320 x 176 grid points; at the tran- 
sitional state which occurred at the nondimensional time 
(t* = tAUo/6,,o) of 105, this layer attained attained a 
momentum-thickness Reynolds number of 1576. 

Models for filtered source terms 
There are two issues in modeling the drops source terms 

in L;Es: (i) the necessity of knowing the gas flow dependent 
variables at the drop locations, and (ii) the consistent reduc- 
tion, in the spirit of LES, of the number of tracked drops to 
match the reduction in the number of computational nodes 
from DNS to LES. The first issue has initially been stud- 
ied in [4] and further in [l]. Several models were evaluated 
by comparison with the DNS database: (1) an ideal model 
which precisely replicates the flow field (unattainable in 
LES and representing the best-case scenario in which errors 
due to modeling the unfiltered flow field are eliminated), 
(2) a baseline model which neglected SGS effects on the 
drop evolution, (3) a random model with a mean specified 
by the LES solution and a SGS standard deviation, DSGS, 
to be modeled, and (4) a deterministic model which recon- 
structs the DNS field at the drop location based on a Taylor 
expension resulting in a model (subscript m) 

with the filtered standard deviation 17 = 0 modeled as 

2 = (6- Jq2 = (Jmi - q2, 
(2) 

where + (4) = {ui, T, Y v , ~ }  represents the gas-phase 
primitive variables (u; is the ith component of the 
velocity, T is the temperature, YV is the evaporated va- 
por mass fraction and p is the pressure) and 4 = 
{ p, pui , pet, pYv} represents the gas-phase conservative 
variables ( p  is the density and et is the total energy). By 
definition, $ is the volume-average associated with a fil- 
ter G and @ = % / p  is the Favre (density-weighted) fil- 
tering. Using the best available CTSGS, as calculated from 
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the DNS database in order to decouple the assessment of 
the reconstruction process from the issue of modeling IC, 
and CSGS, it was shown [2] that the DNS source terms 
s d  ($j, 2) = { s I , d > s I < , i , d ,  S I I I , d }  at the drop locations 
and filtered Source term s ($f, 2) = Cp [ s d  ($f , Z)lp 
source terms calculated on the actual drop field 2 are best 
reproduced by the model eqs. 1 and 2; the ideal model 
used in conjunction with 2 leads to the DNS fields, but 
is not attainable in LES. qbf is the value of + at the drop 

the continuity, momentum and energy equations, 3 = 
{ 31, S I I , ~ ,  ~ I I I }  is the filtered source term and V, is the 
filtering volume where there are p drops. 

To study the issue of reducing the number of computed 
drops, we consider that each computational drop represents 
a fixed number of actual drops. That is, if the number of 
real drops is N, and the number of computational drops is 
Np, then each computational drop p represents NR drops, 
where NR = N,/Np is the ratio between the number of 
actual drops and the number of computational drops. The 
filtered source terms are then computed for the Np drops, 
and scaled by NR leading to 

far-field, S I , d , S I I , j , d  and S I I I , d  are the SOUTCe k I m S  in 

(3) 
where 2 is a representative drop field rather than the ac- 
tual drop field 2. To illustrate the effect of increasing NR 
(decreasing the number of computational drops), in Fig. 2 
are the (xl, x3) homogeneous-plane averages and RMS of 
31 and its models. A top-hat filter is used with width A = 
4Ax or A = 8Ax, where Ax = max (Ax,,  AX^, Ax3) is 
the grid spacing with Ax1 N Ax2 N Ax3 for the DNS. 
The results for 3, are labeled according to the $m used 
(idea;, baseline, random, deteministicj, wide those for 3 
are labeled as ‘exact’. These plots for NR = 1,8 and 64 are 
not intended to be typical, but rather to visualize the global 
comparisons to be presented below. Clearly, in the middle 
of the layer there is strong evaporation, as indicated by the 
average 31 being positive. ~n the lower stream, on average 
SI is negative, indicating net condensation; further scrutiny 
revealed that at some locations there is also evaporation oc- 
curring. As shown by the small RMS in the lower stream, 
the magnitude of condensatiodevaporation is small. R e  
turning to the issue of computational-drop modeling, Fig. 2 
shows that 31 is generally overpredicted by the models. 
Whereas on average, the models do not seem to show much 
dependence on NR, the RMS shows a clear deterioration 
with NR. The greatest error in 3 1 , ~  occurs in the middle of 
the layer where the strongest evaporation occurs and where 
the filtered flow field differs most from the unfiltered flow 
field. In contrast, near the boundaries the filtered flow field 

is almost identical to the unfiltered one. Since the models 
are relatively more accurate at the lower stream boundary, 
where the non-zero 31 shows that the drops are still evapo- 
ratingkondensing, the indications are that drop evaporation 
is not by itself the cause of errors in the filtered source term 
models. Rather, errors arise from the imprecision in rep- 
resenting the actual drop field by the computational drop 
field, since the ideal model (which uses the actual unfil- 
tered variables) gives the same results as the other models 
near the lower boundary. Given that the errors due to mod- 
eling the unfiltered flow field are unavoidable in E S ,  it is 
of interest to determine the conditions under which the ad- 
ditional errors introduced by the computational-drop mod- 
eling are acceptably small. 

To quantify the effect of increasing NR, slopes from 
the least square fits of the filtered DNS (i.e. 3 com- 
puted at the corresponding A) to modeled 31, 311,i and 
3111 are plotted (see [2]) for d of 4Ax and 8A.a: ver- 
sus NR = 1,2,4,8,16,32,64. The results show that all 
slopes are smaller than unity, meaning that all the models 
overestimate the source terms. Generally, the determinis- 
tic model outperforms the baseline model, with errors al- 

ideal model gives the best prediction for 3; its relative su- 
periority is significant at the larger filter width, and at the 
smaller filter width when NR is small. For the smaller fil- 
ter width at larger NR, all the models give similar predic- 
tions. The accuracy of the models declines with NR. but 
not at the same rate for all source terms as 3111 seems 
to be best predicted whereas s11,3 seems to be the worst 
predicted with the strongest error growth with NR. It can 
thus be concluded that for small NR (more computational 
drops) the baa-wacies in ,$f,m are a much stronger so-urce 
of error than is the effect of computational-drop model- 
ing (NR > 1). This explains why, when using $f, it is 
seen that the ideal model sm improves for fixed NR as A 
is increased from 4Ax to 8Ax since the filtering volume 
is increased and the number of drops within each filtering 
volume is accordingly increased, giving a better accuracy; 
whereas the opposite is observed with all the other sm be- 
cause as A increases, information is lost during the gas- 
phase variable modeling, resulting in decreasing accuracy 
(as increases, 6 is more unlike $). However, for large 
NR (fewer computational drops), larger than about 8, the 
effect of having few drops dominates, as there is an increas- 
ing convergence of the slopes from the ideal sm to those 
from the other gm for larger NR. Also noticeable is the ef- 
fect of the nonlinear relationship between +j,m and Sm in 
that a proportional reduction in grid resolution and number 
of drops does not give the same error in the filtered source 



terms. That is, increasing 6 from 4Ax to 8Az means an 
eight-fold increase in the filtering volume, but an eight-fold 
decrease in the number of drops ( NR = 1,2,4,8 compared 
to NR = 8,16,32,64, respectively) does not give the same 
error in Sm. ~n quantifying the Sm error through the max- 
imal percentage error (greatest deviation from unity over 
the five source terms, multiplied by loo), the maximal Sm 
error was found to be in 311,s for the baseline, random and 
deterministic models. The maximal percentage errors listed 
in Table 1 show that for the baseline model, the error for 
NR = 8 and 6 = 8Az is three times that for NR = 1 and 
6 = 4Ax, whereas the error for NR = 64 and 6 = 8 4 2  
is twice that for NR = 8 and = 4Ax. A similar trend of 
decreasing error ratio with increasing NR is observed for 
the other models. When proportionally increasing NR and 
the filter volume, the largest loss of accuracy is experienced 
with the deterministic model, which is the most accurate, 
while the smallest relative error is with the random model, 
which is the least accurate. In LES the effect of modeling 
$f is unavoidable and most likely 6 would have been se- 
lected according to the gas-phase resolution requirements; 
once 6 is selected, the accuracy of the calculation will de- 
crease with increasing NR, independent of the model. This 
means that if large errors are computationally acceptable 
(i.e. order of magnitude calculations), a large NR and large 
6 are acceptable because the error will be the same as for 
large NR and small 6; that is, for large NR the error is 
independent of 6. 

The above results conceming the computational drops 
were obtained at a transitional state. It is pertinent to 
inquire whether the overprediction of the filtered source 
terms is unique to this time station, or rather a general oc- 
currence. To this end, the analysis of Sm was repeated at 
t*=20,45 and 80, corresponding to time stations before the 
first pairing, between the first and second pairings and at 
the end of the second pairiig. The results reinforce the 
previous conclusions that: (1) the effect of modeling $f is 
dominant at the larger 6, where the error is initially large 
but not so sensitive to NR, (2) the effect of modeling +f is 
significant at the smaller 6 for smaller NR but not at larger 
NR, (3) the deterministic model performs best, followed 
closely by the baseline model, with the random model giv- 
ing the worst predictions, and (4) decreasing the number 
of computational drops proportionally to the increase in fil- 
tering volume size does not necessarily maintain the filter- 
ing error. In considering the pre-transitional time stations, 
the trends at a given NR seem to be as follows: (1) for 
the smaller 6, the error seems insensitive to time up to 
t* = 80 and then exhibits a small growth, except for the 
lowest NR = 1 or 2 where the error clearly grows with 
time, and (2) for the larger A, the error generally grows 
with time, with more pronounced error growth at smaller 

values of NR. 

Conclusions 
From this a priori study, the indications are that the un- 

filtered flow field models perform better for smaller filter 
widths; however, only at small values of NR (below about 
8 for = 4Az) does this translate into improved accu- 
racy of filtered source term models. On the other hand, 
for larger filter widths, there is little to be gained by using 
small NR, since the error growth with NR is modest; how- 
ever, the filtered source term models will be less accurate 
than at the smaller filter width. None of the models consid- 
ered yields particularly accurate predictions for the filtered 
source terms, with errors ranging from 10% to 90%. How- 
ever, this does not necessarily preclude their use in LES, 
since from the budgets of the LES equations ([l]), the fil- 
tered source terms are an order of magnitude smaller than 
the largest terms. The sensitivity of flow field and drop evo- 
lution to filtered source term errors can only be determined 
by performing an u posteriori LES study. 
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NR Baseline Random Deterministic 

2 22 32 13 
42 19 4 27 
54 30 8 36 

Emax(2&8NB) 1 56 65 40 
2 60 72 45 

79 53 
87 64 

Emax (& NR) 1 3.0 2.5 4.0 

2.3 3.5 
1.9 2.8 
1.6 2.1 

E m a x ( A , N R )  I 19 26 10 

4 65 
8 73 

Emax  (a& ~ N R )  

2 2.8 
4 2.4 
8 2.1 

Table 1: Maximal percentage error of filtered source term models, E,,, for TP600a2 at t*=105, d = 4Ax. 
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Figure 1 : Mixing layer configuration 
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Figure 2: Homogeneous (XI, 23) plane (a,c,e) averages and (b,d,f) RMS of $1 models, TP600a2 (Re0=600, MLpO.2) at 
t*=105, A4Ax:  (a,b) N R = ~ ,  (c,d) N R = ~ ,  (e,f) N ~ = 6 4 .  The filtered source term models are designated ideal, baseline, 
random or deterministic according to $m, the model used for the unfiltered gas-phase variables. NR is the ratio of the 
number of actual drops to the number of computational drops. (In the figures, the notations [SI and A are used for $ and 
A respectively.) 
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