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tifically interesting locations near rough and dangerous terrain.
They will need to operate with limited prior information about
the terrain, and under varying lighting conditions. Landing
safely and precisely in the face of these challenges is difficult
for existing vision-based landing systems, which require detailed
orbital reconnaissance, a priori hazard maps, and impose time-
of-day restrictions on landing to ensure similar lighting condi-
tions in orbital and descent imagery. Advanced 3D imaging
LiDAR systems currently under development, and originally
intended for single-scan hazard detection, have the potential
to be operated continuously from altitudes of up to 5 km.
Used together with existing inertial measurement units (IMUs),
these sensors open a path-to-flight for a full navigation and
mapping system, which could replace or augment a traditional
landing sensor suite. A landing system based around these
sensors can perform accurate altimetry, map-relative localiza-
tion (MRL), LiDAR-inertial odometry, and map refinement in
an illumination-insensitive manner, over unknown or partially
known terrain. This paper outlines preliminary work on a
LiDAR-inertial landing system that: estimates the spacecraft
trajectory during entry, descent, and landing (EDL); and maps
the topography of the terrain below, for future use in hazard
detection and avoidance. An incremental, factor graph based,
smoothing approach is used to solve for the maximum a posteriori
trajectory of spacecraft states. Integrated IMU measurements
and features tracked in adjacent range and intensity images
are used to estimate motion (LiDAR-inertial odometry). LIDAR
scans are binned into motion-corrected digital elevation models
(DEMs), which are matched to an existing orbital topographic
map to provide absolute position information (MRL). The esti-
mated trajectory is then used to project the LIDAR scans into the
map frame, creating a variable-resolution quadtree topographic
map suitable for hazard detection and avoidance. Existing
topographic maps from throughout the solar system (i.e., Earth,
the Moon, Mars, Ceres, Vesta, Europa, Enceladus, and Eros)
are upsampled for use in EDL simulations. The Mars 2020
Lander Vision System Simulator (LVSS) is extended to simulate
LiDAR-inertial data for realistic EDL trajectories. Results of
the algorithm operating on the simulated data are presented.
Estimated spacecraft trajectory and refined map are compared
to ground truth to assess estimation accuracy.
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1. INTRODUCTION

When landing a spacecraft on another planetary body, the
primary concern is safety of the mission. Early interplane-
tary missions targeted expansive, flat areas to accommodate
large landing uncertainties. However, the most scientifically
interesting regions on other planetary bodies — the craters, the
canyons, the mountains, the deltas, and the lava tubes — are
typically home to rugged, hazardous terrain.

For the Mars 2020 mission, visual terrain relative navigation
was introduced to allow the Perseverance rover and Ingenuity
helicopter to land safely in the scientifically interesting, but
relatively hazardous, Jezero Crater. To make this possible,
high-resolution (up to 0.5 m/px) orbital maps are used to pre-
identify hazardous regions. A downward-facing camera takes
images which are matched against onboard orbital maps,
localizing the lander during descent. The lander is then able
to divert to the nearest hazard-free region.

While this is an elegant solution for the Mars 2020 mis-
sion, it is not widely applicable to all bodies in the solar
system. Orbital reconnaisance of the resolution required for
pre-indentification of lander-sized hazards does not exist for
many bodies of interest such as Europa, Enceladus, asteroids,
and comets. As evidenced by the baselining of a scanning
LiDAR for hazard detection on the Europa Lander pre-
phase A project [1], this may be true even after a dedicated
mission (i.e., Europa Clipper) has been used to map landing
sites. Additionally, visual terrain relative navigation matches
images from a passively lit scene, and is thus dependent
on the lighting conditions at the time of image acquisition.
This imposes the constraint that landing must occur when the
landing site is well lit, in a similar season and a similar time
of time of day as when orbital images were obtained.

These challenges can be mitigated or solved by replacing the
downward-facing camera with an active, dense 3D LiDAR
sensor, and the high-resolution visual orbital map with a low-
resolution (e.g., 32 m/px) topographic map. LiDAR sensors
provide ranging and laser return intensity over an entire
field of points, creating a range and intensity image; unlike
cameras, they provide direct, high-confidence depth measure-
ments and are invariant to lighting conditions. Used together
with an inertial measurement unit (IMU) and a star tracker,
LiDAR could replace or augment a traditional landing sensor
suite. In addition to estimation of the lander’s navigation
state during descent, a LIDAR-inertial based landing system
can also build a high-resolution topographic map for onboard
hazard detection. This means that the system will enable
landing on bodies for which there is little or no a priori
knowledge of the topography, under any lighting conditions.



The objective of the work described in this paper is to develop
and mature a LiDAR-inertial based navigation and mapping
system for safe and precise landing on planetary bodies. The
remainder of this paper is structured as follows. Section 2
provides an overview of related work. Section 3 goes over the
necessary background material drawn on to implement our
technical approach. Section 4 outlines the technical approach
that we took. Section 5 presents and discusses the technical
results. Section 6 concludes and suggests future work.

2. RELATED WORK

Related work on space-qualified LiDARSs, visual terrain rel-
ative navigation, and LiDAR-inertial navigation, described
below, are heavily drawn upon in this project. The novelty
of this work in filling gaps present in the literature is also
discussed below.

Space-Qualified LiDARs

JPL is overseeing contracts to develop two space-qualified
LiDARs for the Europa Lander mission, to be used for hazard
detection and avoidance. They are both 11.42° field of view
scanning LiDARs with scan durations < 2 s. They are
baselined to perform coarse (200x200 px, 5 m/px, 25 cm lo
accuracy) mapping at 5 km altitude and fine (20002000 px,
5 cm/px, 5 cm lo accuracy) mapping at 500 m altitude. While
they are currently required to only measure range, after some
development work, at least one of the designs may be able
to provide laser return intensity. The possibility of using
these LiDARs continuously during descent was one of the
motivations behind this work.

The Osiris-REx mission’s Goldeneye LiDAR uses the Ad-
vanced Scientific Concepts (ASC) 3D 128x 128 px space-
qualified flash LiDAR, with a nominal update frequency of
5 Hz, a range of up to 3 km inclusive (with higher range pos-
sible) [2]. It measures range (5 cm 1o accuracy [2], [3]) and
laser return intensity, and can be run at up to 30 frames/s [4].
The field of view depends on the optics, but has been tested at
1, 3,5, and 8.6° [3], [5], [6]. This sensor was also used in the
NASA Autonomous Landing Hazard Avoidance Technology
(ALHAT) program [5], [6], and is the inspiration behind the
flash LiDAR simulated in this R&TD.

Other space qualified LiDARs include the Osiris-REx mis-
sion’s Laser Altimeter (OLA), the first scanning LiDAR to fly
on a planetary mission [7], and the Jena Optronik RVS 3000-
3D scanning LiDAR, in development to provide ranging to
non-cooperative orbital targets [8].

Visual Terrain Relative Navigation

State-of-the-art visual terrain relative navigation (TRN) is
performed on the Mars 2020 mission using the Lander Vision
System (LVS). A preliminary version of these algorithms is
detailed in [9]. A systems-level view of LVS is provided
in [10], and results of its field test are given in [11]. In [9],
the authors describe an Extended Kalman Filter (EKF) for
localization with respect to map landmarks that uses a camera
tightly coupled with an IMU in a manner similar to the Multi-
State Constraint Kalman Filter (MSCKF) [12]. Unlike the
MSCKE, a pose history does not need to be stored and land-
marks are matched to the map rather than to previous frames.
SIFT features or correlation-based approaches are discussed,
with the latter requiring an onboard altimeter and orientation
estimate to appropriately de-warp the image into the map
frame. Image processing delays are mitigated by temporarily

cloning the state. LVS is tested using a simulation tool
called the LVS simulator (LVSS) which takes a spacecraft
trajectory and visual and topographic maps as inputs, and
generates images and IMU measurements as outputs. LVSS
was augmented in this work for generation of LiDAR-inertial
datasets.

Johns Hopkins Applied Physics Laboratory (APL) has de-
veloped APLNav to perform correlation-based map relative
localization [13], [14], [15]. Visual images taken on the
lander are compared to lighting-corrected orbital imagery to
localize the spacecraft during descent.

The Charles Stark Draper Laboratory, as part of the NASA
Safe and Precise Landing Integrated Capabilities Evolution
(SPLICE) program, developed a correlation-based matching
map relative localization system, and performed a flight test
on a Masten Space Systems Xodiac vehicle [16].

Ted Steiner, in his PhD thesis [17], outlines a smoothing-
based approach to TRN. He incorporates map landmarks
as well as ad-hoc opportunistic landmarks for accuracy im-
provement, and uses graph-based techniques to solve for the
entire trajectory. He explicitly estimates the positions of
all landmarks, adding tight priors to map landmarks since
their location is well-known a-priori. Steiner makes use
of the open-source Georgia Tech Smoothing and Mapping
(GTSAM) software library [18], which is also used in this
work, to implement his smoothing algorithm.

LiDAR-Inertial Navigation for EDL

LiDAR-inertial navigation has been previously investigated
in the context of EDL. In the aerospace community, esti-
mation of different components of the spacecraft state dur-
ing EDL is traditionally subdivided into different sensing
modalities. Orientation is estimated using a star tracker and
gyroscope; altitude measurement is performed using radar or
a laser rangefinder and is referred to as altimetry; horizontal
position is measured using visual TRN (aka map relative
localization (MRL)); velocity is estimated using either a
dedicated instrument such as Doppler radar or LiDAR or
through velocimetry (frame-to-frame matching of images).
At lower altitudes, hazard detection and avoidance (HDA)
refers to the building of a local hazard map and diverting to
a hazard-free region, and the term hazard relative navigation
(HRN) is often used when referring to performing TRN in
this local hazard map.

The ALHAT program investigated the use of LiDAR-based
TRN for landing. In [6], the authors suggest using different
sensors for different phases: a flash LiDAR for altimetry
between 20 km and 100 m altitude, for TRN between 15 km
and 5 km, and for HDA/HRN between 1 km and 100 m;
a Doppler LiDAR for velocimetry and altimetry between
2.5 km and 10 m; and a laser altimeter for altimetry between
20 km and 100 m, and for TRN between 15 km and 5 km.

Some instruments were tested for their ability to perform
HDA/HRN on the NASA Morpheus vertical take off and
landing (VTOL) vehicle [19] at NASA Kennedy Space Cen-
ter’s shuttle landing facilities. In the tests outlined in [19], an
ASC Goldeneye LiDAR with 1° field of view was gimballed
to create a 60x60 m, 10 cm/px DEM over the landing field
at approximately 250 m altitude. During 6 s scan, vehicle dy-
namics were “sufficiently damped” to allow for map creation.
HRN was performed with respect to this local map and used
to guide the spacecraft to a selected safe landing site within
1t.



In [20] the authors offer a survey of passive and active ap-
proaches for lunar landing for the ALHAT project. Included
in this survey are frame-to-frame DEM matching and frame-
to-map DEM matching. The authors’ investigation includes
simulated matching of contours as well as DEMs generated
in a pushbroom manner, where a single degree-of-freedom
LiDAR scanner sweeps back and forth perpendicular to the
direction of travel (cross-track) and the along-track motion is
used as the second scan degree of freedom (i.e., a pushbroom
scan). The authors conclude that 2D range images provide
better matching accuracy that 1D measured contours. Despite
recognizing the requirement for motion compensation, the
method for doing this is not discussed.

In [21], the authors describe field testing of LiDAR-based
TRN with both a laser altimeter and a flash LiDAR (the ASC
Goldeneye, configured with a 3° field of view) mounted on
a single degree-of-freedom gimbal. Data was obtained at
a test velocity of approximately 60 m/s at altitudes of 2,
4, and 8 km over Death Valley and Nevada. LiDAR point
clouds, originating from multiple LiDAR scans and binned
to 5 m/px were matched to topographic maps of the same
resolution. To project into the UTM map frame, the ground
truth flight trajectory was interpolated (i.e., motion compen-
sation was performed with ground truth knowledge). Frame-
to-map template matching was performed using a floating
point matching methodology that handles missing data [22]
(normalized cross-correlation); then a bi-quadratic fit was
used for sub-pixel accuracy. This is identical to the method
used herein for MRL. Interestingly, matching performance of
the laser altimeter contours and the comparable to that of the
flash LiDAR swaths was similar. This is likely because the
flash LiDAR, with its 3° field of view, formed only narrow
swaths which were at most slightly more informative than the
laser altimeter contours.

In [23] the authors use a scanning LiDAR without feature
matching to perform velocity estimation. A pseudo-Doppler
technique tracks surface normals, and measures local range
rate in three directions (similar to Doppler LiDAR). This
technique relies on rapidly scanning a very small azimuth-
elevation range twice in a row, determining the surface nor-
mal, and then using range finite difference to obtain velocity
along the surface normal. While useful for determining
velocity, this technique requires a specific scan pattern, and
is thus of little utility for the other objectives of this work.

In our recent work [24], [25] we investigate the feasibility of
performing single-scan MRL at 5 km for the Europa Lander
mission. This work assumes that at the start of the scan,
orientation is known to within 0.5° 3¢ from a star tracker and
gyroscope propagation, velocity is known to within 10 m/s
30 from a previous visual feature-based velocimetry step, and
the Europa Lander LiDAR specifications as described above.
High resolution (0.5 m/px) Europan terrains were generated
by artificially adding high frequency terrain content to low-
resolution source data. This study indicated that localization
results on par with visual MRL could be obtained using
LiDAR and 32 m/px maps at 5 km altitude on Europa. In
this work, we make use of the artificial terrain generation and
MRL techniques from this previous work; however, while
the previous work used DSENDS [26] for simulation and
MATLAB for estimation, herein we use LVSS for simulation
and C++ for estimation.

Novelty of this Work

In developing our LiDAR-inertial navigation and mapping al-
gorithm, it was possible to draw on the related work outlined

above. However, there were some significant gaps that were
addressed in order to accomplish our objectives.

One prominent gap was absence of a LIDAR simulator within
the existing EDL simulation options. To mitigate this we aug-
mented the existing LVSS software to include the simulation
flash and scanning LiDAR, outputting both range and laser
return intensity data.

In order to demonstrate the onboard refinement of maps
to resolutions suitable for hazard detection and avoidance
throughout the solar system, we needed a diverse set of data
with lander-scale pixel size. Outside of Earth, the Moon,
and Mars, appropriate ground truth topographic maps were
not available. To create maps of the requisite resolution,
we first obtained topographic maps from eight planets at the
best resolution available. We then used a technique that we
pioneered in [27] to upsample 81 DEMs to 0.5 m/px.

Previous work on visual-inertial odometry, both using filter-
ing [12], and smoothing [28], [29] have employed “struc-
tureless” methods of including opportunistic landmark corre-
spondences, which apply pose constraints without explicitly
requiring estimation of landmark positions. However, these
methods apply exclusively to monocular cameras. In this
work, we extend the structureless approach for inclusion
of range and bearing correspondences detected by a flash
LiDAR.

Previous approaches LiDAR-inertial odometry with a scan-
ning LiDAR employ three different methods: assuming a
constant velocity during the LiDAR scans [30], [31] (which
is unrealistic during EDL); using an additional global shutter
sensor to de-warp the LiDAR scans [32] (which increases
complexity, size, weight, and power); or evaluating IMU
measurement error at every IMU measurement [33] (which
is computationally expensive). In this work, we develop a
method for directly including feature correspondences from
scanning IMU into a factor graph that is not subject to any of
these assumptions or drawbacks.

While existing TRN and hazard mapping systems require
special flight modes in which the spacecraft is close to nadir-
facing and relatively stable, the method developed herein is
designed to navigate and map during all phases of EDL,
including powered approach. This is accomplished by per-
forming LiDAR-inertial odometry and MRL throughout the
entire trajectory, and by including only the highest-quality
measurements.

3. BACKGROUND

This section provides some relevant background information
used in the development of our approach in Section 4. It dis-
cusses flash and scanning LiDAR, the existing Lander Vision
System Simulator (LVSS), and smoothing-based estimation.

Flash and Scanning LiDAR

A LiDAR instrument is used to measure the distance to a
surface by recording the time of flight of a pulsed laser beam
or the phase delay of a modulated beam. Often, the intensity
of the reflected laser beam, which is a function of range, laser
power, surface albedo, and surface normal, is also measured.

In the case of flash LiDAR, a wide laser pulse is emitted,
and camera-like optics are used to simultaneously measure
the laser returns over an array of azimuth and elevation
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Figure 1. Input DEM (a), and SRM (b).

angles. The global shutter nature of this sensor significantly
simplifies the use of the scan data, as the points do not require
motion compensation. However, since a large amount of
power is required to emit wide laser pulses, the maximum
range and field of view of flash LiDAR are relatively low.

In the case of conventional scanning LiDAR, a narrow laser
pulse is emitted and a single sensor is used to measure the
laser return. A movable platform or mirror is used to rapidly
scan the laser and sensor across a set of azimuth and elevation
angles, following a “scan pattern”. This scan pattern can be
open-loop, where the set of azimuth and elevation angles are
predefined; or it can be closed-loop, where the azimuth and
elevation angles are defined at the time of data acquisition,
in order to actively compensate for sensor motion. As
a result of the narrow laser pulse, the range of scanning
LiDAR tends to exceed that of flash LiDAR. Additionally,
the field of view can be defined by the scan pattern, and
thus designed to exceed that of flash LIDAR. The drawback
to scanning LiDAR is that if either the sensor and/or the
scene are moving, this motion needs to be corrected for,
either actively by controlling the scan pattern while sensing,
or retroactively when processing the data. Since motion
compensation requires an accurate state estimate, the utility
of scanning LiDAR data is dependent on the accuracy of the
state estimate.

Hybrid systems, such as those currently in development for
the Europa Lander project, use small sensing arrays mounted
on scanning platforms to improve upon the limited resolution
typical of flash and scanning LiDAR systems, while not
requiring excessively long scan durations.

The Lander Vision System Simulator (LVSS)

The simulation environment used for this work is the Lander
Vision System Simulation (LVSS). LVSS was developed
to support the technology maturation of the Lander Vision
System (LVS) for the Mars 2020 program [10]. The inputs
to LVSS are the nominal lander trajectory and a terrain map
both given with respect to the Planet-Centered-Planet-Fixed
(PCPF) frame. Each lander trajectory data entry consists of
a time stamp, an XYZ position, and an attitude quaternion.
Given the trajectory, LVSS calculates the gravitational accel-
eration using a spherical gravity model with .J, perturbation.
The lander inertial measurements are provided at 200 Hz.
The IMU error model includes: quantization errors, scale
factor errors, angle random walk, rate random walk, rate
bias, velocity random walk, acceleration random walk, and
acceleration bias.

This simulator is capable of generating camera images of the
surface terrain using a DEM and a co-registered 8-bit surface
reflectance map (SRM). Figure la and Figure 1b show an
example of the DEM and the SRM respectively. There is
also an altimeter model in LVSS, which provides line-of-sight
range measurement. The altimeter model served as a starting
point for the LiDAR model development.

Smoothing-Based Estimation

The algorithm developed herein adopts a smoothing-based
approach to estimate spacecraft states and landmark locations
during EDL. Smoothing-based estimation attempts to find the
maximum a posteriori (MAP) estimate of a set of random
variables © given a set of noisy measurements Z. The
problem of finding the optimal values @™ is stated formally
below.

®* = argmax P(O® | Z) = argmax P(Z | ®) P(®) (1)
) e

Assuming that each measurement is Gaussian, and using the
monotonic natural logarithm function, this problem can be
reduced to the problem of minimizing the sum of several
probabilistic factors [34], [35].

®* = argmin — log(P(Z | ®) P(®)) 2)
e
1 2
= argmin 5 D IO Bz,
f€F-
L 0, 50, |
2 o,
fp€EFp P
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Above, the Mahalanobis distance ||€||% is the inverse covari-
ance weighted norm from the multivariate Gaussian distribu-
tion; it is defined as follows.

lely = "= e = =7 %€ )

Each factor f, in Equation 4 corresponds to a single measure-
mentz¢, € Z,and each factor f, corresponds to a single prior
expected value 6y € ©. Whereas Z and © are considered
constant in the optimization, optimal values of 87, € © and
0 s, € © are minimized. The factors F, together with the
variables ©® and edges connecting them &, form a bipartite
graph G called a factor graph. A factor graph encodes the
conditional dependency structure of an estimation problem.



The measurement model h(-) in Equation 3 is not neces-
sarily a linear function. Linearization about the current
estimate is thus performed in the same way as in the extended
Kalman filter. Further, a H operator is used in Equation 3
instead of the expected — operator because measurements
and priors are not necessarily in a vector space. Often,
the measurements live on a manifold, such as SE(3). The
B operator is used herein to denote that subtraction takes
place in the tangent space of the appropriate manifold. As
shown in Equation 5, premultiplication of an error term € by
the inverse square root of measurement or prior covariance
(denoted “whitening”) can be used to turn the Mahalanobis
distance into the L2 norm. Thus the problem becomes a
sparse nonlinear least squares problem, for which there are
a wealth of efficient methods to solve. The incremental (as
opposed to batch) solution of the problem above is referred
to as incremental smoothing and mapping (iISAM) [35]. The
most advanced open source software library implementation
of iSAM is called Georgia Tech Smoothing and Mapping
(GTSAM) [18]; this library is used herein to incrementally
perform smoothing-based estimation.

4. APPROACH

In order to develop and demonstrate an algorithm for LIDAR-
inertial navigation and mapping for precision landing, it
was necessary to generate the appropriate LiDAR-inertial
datasets, design and implement the estimation algorithm, and
test it on the generated datasets. The two former topics are
covered in this section; the latter is covered in Section 5.
Specific attention is given to the novel aspects of our work
outlined in Section 2.

LiDAR-Inertial Dataset Generation

This section details the generation of LIiDAR-inertial datasets,
from creation of the ground truth DEMs, through augmenta-
tion of existing EDL simulation software, to data formatting
and storage.

High-Resolution Terrain Generation— The simulation of
LiDAR range and intensity measurements requires co-
registered ground truth topographic and albedo maps at high
resolution. Our target map resolution and size were 0.5 m/px
and 4 x4 km respectively. We also sought a variety of terrains
from destinations throughout the solar system. Topographic
data at our target resolution is not widely available for lo-
cations other than Earth, and to a lesser extent the Moon
and Mars. Thus, we leveraged a technique for artificial
high-frequency terrain generation presented in [24], [25],
extrapolating the low-frequency roughness properties to our
target resolution. High-resolution albedo maps are generally
unavailable, with the exception of our Nevada data, where
LiDAR intensity returns are available at 0.5 m/px. For all
other locations we adhered to the following procedure for
creation of albedo maps: if co-registered visual images were
available, they were used; if they were not, we input a uniform
albedo across the map. No attempt was made to upsample the
visual images.

Publicly available data from the Planetary Data System
(PDS), OpenTopography, University of Arizona, Mas-
sachusetts Institute of Technology, and data from private
communications with Paul Schenk (LPI), Yang Chen (JPL),
and Nickolaos Mastrodemos (JPL) was used to generate 81
topographic and albedo maps. The input resolutions, and
thus the amount of terrain content that required artificial
generation varied widely between datasets. The Nevada and
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Figure 2. Mosaic of all 4x4 km, 0.5 m/px elevation (top)
and albedo (bottom) maps. In order (left-to-right,
top-to-bottom) the maps are from Ceres (15), Earth (16),
Enceladus (3), Eros (3), Europa (19), Mars (10), the Moon
(13), and Vesta (3).

Antarctica datasets, generated using airborne LiDAR, are the
most reliable, since they were sampled at 0.5 m/px, and thus
required no artificial terrain generation. The data from the
Moon and Mars are nearly as reliable, since their ground
sample distances were < 5 m/px and thus required minimal
augmentation. Typical resolutions for the remainder of the
data were between 20-80 m/px, meaning that significant
addition of high-frequency content was required to create the
0.5 m/px maps. Mosaics of all 81 elevation and albedo maps
are shown in Figure 2 (top) and 2 (bottom) respectively.

Lander Vision System Simulator (LVSS) Augmentation—
Building on the existing capabilities of the LVSS described
in Section 3, we added generic flash and scanning LiDAR
models that provide range and scaled intensity measurements.
The LiDAR-specific parameters include number of detector
pixels, detector field of view, number of anti-aliasing sub-
pixels, scan duration, and scan pattern. The true range
from the LiDAR sensor to the terrain surface is obtained
by performing ray interception with a DEM. The LiDAR
intensity measurement is obtained by using the Lambertian
scattering assumption, the line-of-sight range, the surface
reflectance, and the incident angle of the laser beam. These
measurements can be stitched together to form range and
intensity images needed for MRL and LiDAR odometry. A
simple star tracker model is also added to LVSS that provides
attitude measurements. The star tracker-specific parameters



include noise-equivalent-angle (NEA), sensor misalignment
error and sample rate.

The detector pixel-array arrangement is formed by discretiz-
ing the specified detector field of view in terms of azimuth
and elevation angles. The range and the intensity measure-
ments for each pixel is obtained by ray-tracing and ray-
interception techniques. Each ray starts from the origin of
the LiDAR sensor frame and expands radially outward. The
model also supports sub-pixel sampling, which computes the
range measurement of a single detector pixel by averaging
multiple sub-pixel ranges.

The LiDAR model also provides scaled intensity measure-
ments. They are calculated using the formula from [36],
which states the intensity I of a laser return adheres to the
following relationship.

pcos()

I x 2

(6)

Above, p is the surface reflectance from SRM, d is the range
from the LiDAR to the surface, and « is the angle between
the laser beam direction n; and the surface normal ng (i.e.,
a = cos~!(np - ny)). The surface normal vector ng is
obtained by fitting a plane to the nearest 3 x 3 elevation
values centered about the ray-interception point. A collection
of raw intensity measurements is grouped together to form
the scaled azimuth-elevation intensity image. Each intensity
image is normalized and scaled independently to fill the full
8-bit range of values between 0-255.

Algorithm Design and Implementation

The algorithm designed in this work uses a factor graph based
smoothing framework to estimate the entire state history
(i.e., pose, velocity, accelerometer and gyroscope bias) at the
LiDAR scanning frequency; this choice was mainly made to
ensure that the entire trajectory is well-estimated, enabling
map generation through LiDAR point reprojection.

The open source C++ Georgia Tech Smoothing and Mapping
(GTSAM) software library was used as the basic framework
for smoothing. In its existing form, it allows for incorporation
of several measurement types as probabilistic factors in a
factor graph: star tracker orientation, IMU acceleration and
angular velocity, MRL position, and flash LiDAR range and
bearing to a landmark. However, there were certain areas
where GTSAM was lacking. We fixed a bug in the incor-
poration of Coriolis and centripetal acceleration in a planet-
centered planet-fixed frame. We implemented a structureless
flash LiDAR range and bearing factor, which eliminates the
need to explicitly estimate the position of landmark corre-
spondences and thus decreases the computational cost of the
factor. We also designed and implemented a factor that incor-
porates scanning LiDAR range and bearing to a landmark,
and an associated outlier rejection routine. This is made
difficult by the fact that landmark detections occur during the
scan, and thus between estimated states. To incorporate such
landmark detections, local preintegration of the IMU is added
to the factor in a novel manner.

A single star tracker fix at the beginning of the trajectory and
raw IMU measurements are input into the graph using pose
rotation prior and IMU preintegration factors [29], respec-
tively. LiDAR data is binned into azimuth-elevation range
and intensity images, where conventional feature matching
algorithms are used to perform frame-to-frame tracking of
features from the first detection until the feature leaves the

frame. A RANSAC-based outlier rejection is used to elim-
inate outlying correspondences. We denote the addition of
these ad-hoc, “opportunistic” landmarks into the factor graph
using range and bearing factors as LiDAR odometry. To
perform MRL, the state estimate at the time of the LiDAR
scan, and, in the case of scanning LiDAR, the local IMU
measurements, are used to project the LiDAR data into a
point cloud with the same orientation as the map frame. This
point cloud is further projected into the map frame’s x-y
plane as a variable resolution 2D quadtree [37]. Finally, the
quadtree is sampled at a suitable resolution for correlation-
based matching with a prior map. Finally, the matched
position is added to the factor graph as a pose position factor.
In the case of scanning LiDAR, accurate velocity knowledge
is required to “de-warp” the scan. Thus, for scanning LiDAR,
we delay the MRL step by a fixed time so that LiDAR-inertial
odometry has been able to determine a velocity estimate.

The topography of the terrain is mapped throughout the dura-
tion of EDL. In order to accommodate the inevitable variable
resolution of the map, a 2D quadtree data structure [37] is
used as the primary map representation. If a prior orbital map
is available, the quadtree is initialized with it. LiDAR range
and bearing data is projected into the quadtree based on the
current best trajectory estimate. To reduce the computational
processing associated with mapping, LiDAR points obtained
in previous scans are reprojected only when the state change
exceeds a prescribed threshold.

Software implementation is performed in C++. In addition
to GTSAM, the OpenCV library was leveraged for image
processing. A modular architecture was used for easily sepa-
rable parts of the software library, such as data acquisition and
estimation. Unit testing was employed to ensure functionality
of each component.

The remainder of this section provides additional details on
the algorithm design and implementation, including: co-
ordinate frames and navigation state, smoothing algorithm
design, map relative localization, LiDAR odometry, struc-
tureless factors, mapping, software architecture, and library
implementation.

Coordinate Frames and Navigation State—The frames and
navigation state used in this work are visualized in Figure 3.

The planet-centered-inertial coordinate frame is denoted W,
for the “world” frame, and does not rotate. The planet’s
rotation is captured by the planet-centered-rotating coordi-
nate frame P, which is assumed to rotate at a constant rate
Pwpw =[00wp]”. The origin of W and P are coincident.
The map frame M is attached to the planet frame P. It is
located close to the surface and is the base coordinate frame
both for any existing orbital maps and for maps generated
during EDL.

The body frame B is a selected reference frame from the
lander’s CAD design. The inertial measurement unit (IMU)
frame [ is attached to B and has axes aligned with the frame
in which the IMU senses acceleration and angular velocity.
The star tracker frame S is also attached to B, and senses the
star tracker attitude in the world frame W. With the assumed
availability of ephemeris information, this can be converted
to a measurement in the planet frame (i.e., a measurement

of g R). The LiDAR frame L represents the sensing frame of
the LiDAR, and is attached to the body frame B.

Denoting the space of navigation states as NS, the spacecraft
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Figure 3. Visualization of frames and states for
LiDAR-Inertial navigation and mapping.

navigation state x to be estimated is described as follows:

x={[T,"v;/p.b% b’} € NS, where (7)
P P
pp— | TR Tty ¢ SE(3) 1 IMU pose, )
03X1 1
Pvi/p € Rt IMU velocity, ©)

b® € R : accelerometer bias, (10)
b’ € R : gyroscope bias. (11)

Smoothing Algorithm Design—Smoothing was chosen as the
preferred estimation method over filtering for several reasons.
Whereas filtering finds the best estimate of the latest state,
smoothing finds the best estimate of the entire trajectory. As
stated above, the primary reason smoothing was chosen is
that we are reprojecting LiDAR data from throughout the
trajectory. If we are able to improve upon our estimates of
past states, we are then able to better reproject the LiDAR
data obtained at those past states. However, smoothing also
provides a way to recover absolute position when an initial
MRL fix is acquired, but accurate velocity estimates are not
available until later. Additionally, it provides a natural way
to include measurements delayed either by design or by com-
putational processing time; this in contrast to a filter, which
requires that navigation state be either cloned or rewound so
that the measurement can be applied at the correct time.

To obtain a smoothed solution, we define the trajectory
X = {x0,X1,...,Xny_1} as a sequence of states x;,
and a collection of opportunistic landmark positions L =
{lp,11,...,1pr_1}, where 1,,, € R. We attempt to solve the
optimization problem posed in Section 3, with variables @ =

{X,L}. The set of measurements Z = {Z°, 2% 2% Z'}
contains star tracker measurements Z°, accelerometer mea-
surements Z%, gyroscope measurements Z7, and LiDAR

measurements Z'. With these definitions, we then write
out the maximum a posteriori optimization problem for the
structured optimization problem.

{X*,L*} = argmax {J — P(X,L|2°,2°, 29, zl)} (12)
X,L

It is possible to factor the cost function .J into the convenient
form below.

Jx P(X)P(Z°|X)P(X|Z%, 29 P(Z' | X,L,Z% Z°) (13)

Note that in the above expressions the prior P(Z') is dis-
carded since it does not depend on either X or L. The prior
P(L) has also been discarded, since we have no prior expec-
tation on the position of the ad-hoc, opportunistic landmarks.
Each term in Equation 13 represents a set of factors of the
same type. The first term, P(X) represents our prior expecta-
tion of the trajectory. We only assume that we only have prior
information on the first state, and thus P(X) = P(xo). In our
case, star tracker measurements, which apply measurements
of orientation, are only applied to the first state, and thus
P(Z°|1X) = P(zj|x0). The second term is the the IMU
preintegration factor from [29]. This factor constrains two
adjacent states through the one-time preintegration of IMU
measurements. Since the only gravity model available in
GTSAM was gravity as a constant vector, we augmented the
IMU preintegration with a .J, gravity model.

The final factor in Equation 13 represents the contribution
of LiDAR measurements to the optimization problem, and is
where the majority of the development was focused. LiDAR
measurements were used both for LiDAR odometry and
map relative localization. In the case of flash LiDAR, an
entire scan is obtained instantaneously at timestep ¢ when the

spacecraft has a pose Z T, which is directly estimated. In
this case the factor does not depend on IMU measurements

and can be rewritten as P(Z'|X, L). However, in the case of
scanning LiDAR, the scan is obtained at a high rate between
timesteps ¢ and j. Since state is only directly estimated at
timestep ¢ and timestep j, local IMU measurements must be
incorporated, explaining the form in Equation 13.

Factors for both MRL and LiDAR odometry take the form of
this final factor. For MRL, LiDAR measurements are used
to determine the spacecraft’s position and applied directly to
the state’s pose as a position factor. In the scanning case,
the factor’s dependence on IMU measurements comes in the
form of requiring that the LiDAR scan be “de-warped” using
a state estimate and local IMU measurements. For LiDAR
odometry, multiple observations of opportunistic landmarks
in azimuth-elevation space are applied to the graph as range
and bearing measurements. Naturally, these measurements
are dependent on the locations of landmarks L as well as
the state X. For the flash LiDAR case, these measurements
can be applied using an existing range and bearing factor in
GTSAM. For the scanning LiDAR case, these measurements
again depend on local IMU measurements. For this we
formulate a novel factor, augmenting the GTSAM library,
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Figure 4. Pictorial representation of the traditional (a), and structureless (b) factor graphs solved in this project.

which can, in a probabilistically correct manner, incorporate
the dependence of these measurements on preintegrated IMU
measurements.

Figure 4a is a pictorial representation of the factor graph G
for our problem. Note that all states are tied together by
preintegrated IMU factors, and thus there is no requirement
that a state be attached to any other factor (see, for example,
state x3). Map relative localization is accomplished through
the application of map position factors, while LIDAR odom-
etry is accomplished through the repeated observation of
landmarks and the application of bearing range factors. Note
that in the case of scanning LiDAR the latter factor is called
the bearing range IMU factor, to indicate that it also depends
on IMU measurements. Figure 4b shows the structureless
(aka smart) factor graph, which is discussed further below.

LiDAR Odometry—Herein, LiDAR odometry tracks SURF
features [38] (aka opportunistic landmarks) in 8-bit intensity
and high-passed range images. Each feature’s trail across
the image is tracked long as a feature matching the original
descriptor lies in the image. Features tracked in both the
intensity and range images are converted into a range and
bearing measurement via subpixel interpolation of the range
image. Inlying features are added to the factor graph as
landmarks and contribute to the optimization problem via the
final term in Equation 13. Outlying features are rejected using
a frame-to-frame RANSAC-based outlier rejection. The out-
lier rejection methodology varies between flash and scanning
LiDAR.

Flash LiDAR Outlier Rejection: For flash LiDAR, outlier
rejection is performed in a similar way as in stereo visual
odometry [39], using RANSAC with Horn’s absolute orienta-
tion algorithm [40] to find the largest set of inlying features.

Scanning LiDAR Outlier Rejection: For scanning LiDAR,
outlier rejection requires the development of a novel ap-
proach. Previous methods for scanning LiDAR [30] and
rolling shutter camera [41] outlier rejection assumed constant
linear and angular velocity over the duration of data acqui-
sition. This assumption precludes tolerance of long scans
and large potential accelerations present in our application.

We instead formulate a method based on local IMU prein-
tegration and estimation of the initial velocity. While IMU
mechanization was leveraged in [33] and [42], these works
required that either state be estimated at the IMU rate or
parametrized using b-splines; our method requires neither.

Flash LiDAR Range and Bearing Factor: For flash LiDAR,
the observation of an opportunistic landmark provides a
single range and bearing measurement, which is directly
associated with a LIDAR pose ILDiT. This factor then simply
requires that the range and bearing to the estimated landmark
position 1,,, be compared with the measurement. The range
is compared in IR, and the bearing is compared in the tangent
space of the unit sphere S2. The traditional version of this
factor, which requires that landmark position 1,,, be explicitly
estimated in the factor graph, was already implemented in
GTSAM.

Scanning LiDAR Range, Bearing, and IMU Factor: For
scanning LiDAR, the observation of an opportunistic land-
mark again provides a single range and bearing measurement;
however, since the measurement occurs between estimated
states x; and x;, local preintegration of the IMU is necessary

to predict the pose Z‘T of the LiDAR at the pulse time t,,.

For this purpose, GTSAM’s IMU preintegration factor was
adapted to cache the entire history of IMU measurements,
local navigation state, associated state covariances, and bias
Jacobians. With this variation, the IMU pose at pulse time,
its associated uncertainty, and its dependence on estimated
pose, velocity, and IMU bias can be calculated. With the
above modifications to the measurement model, the same
error function as in the flash LiDAR case can be applied.

Structureless Factors—In traditional SLAM, both the states
X and landmark locations L are estimated. However, herein
we are interested only in the states X and a dense topographic
map from reprojected LIDAR measurements. Sparse feature
positions L are estimated only to improve estimates of state
X via LiDAR odometry. Thus it is possible to denote the
states X as our target variables and the landmarks L as our
support variables, and leverage the concept of “smart” (aka
“structureless’) factors first presented in [29], [28].



In our application, this means that the landmarks L can be
eliminated from the factor graph (i.e., ® = X in the struc-
tureless case), reducing the dimensionality of the problem,
and increasing the computational performance. Instead, all
observations of a single landmark are converted into a single
factor which constrains the associated states. Mathematically,
this is performed by exploiting the nullspace trick pioneered
as part of the MSCKF [12], and re-introduced in the context
of smoothing in [28]. Although not estimated probabilisti-
cally, the location of the landmarks are required in the factors.
For this, a simple average of all projected feature locations
is performed. The structureless factor graph is depicted in
Figure 4b. In this work we only apply the structureless
technique to the flash LiDAR case.

Map Relative Localization— Map Relative Localization
(MRL) is utilized when a prior elevation map of the landing
site is available. MRL allows position priors to be included
in the optimization problem by matching incoming LiDAR
data during landing to the prior map. The prior map is loaded
into memory when the program is started. As new LiDAR
measurements become available, each scan is projected into
the map frame using the associated state estimate. For flash
LiDAR measurements all points arrive simultaneously, and
matching to the prior map is performed immediately. With
scanning LiDAR, points making up a scan arrive individually
throughout the scan duration. To account for this, preinte-
grated IMU measurements are used to de-warp the LiDAR
scan into a point cloud in the map frame. Additionally, MRL
is delayed when using scanning LiDAR data to ensure the
availability of accurate velocity estimates when the scan is
de-warped.

Once the measurements have been projected into the map
frame as a point cloud, they are inserted into a new quadtree.
Optionally, the 2D convex hull in the that contains all points
is computed and only points that lie in the largest inscribed
square of the convex hull are inserted into the quadtree; this
ensures no large regions of the quadtree are have a relatively
low resolution. This quadtree is used to generate a 32-
bit floating point scan map image at a resolution between
0.5 m/px and 32 m/px. These images are then be used to
match against the prior map. Additionally, the difference
between the center position of the projected LiDAR image
and the state estimate is computed.

Normalized Cross Correlation (NCC) is used to find the
region in the prior map that has the highest similarity to the
LiDAR data at pixel level accuracy. After obtaining an initial
match, quadratic interpolation is performed on the correlation
surface values in the 5x5 px region surrounding the match to
find a sub-pixel match at the maxima. Finally, the 3D lander
position is computed by applying the offset computed earlier
from the LiDAR measurements to the position matched in the
prior map. The uncertainty in this measurement is computed
in the horizontal direction by first linearizing the NCC and
quadratic interpolation calculations around the individual el-
evation measurements in the 5x5 px match regions of both
images; this linearization is then used to transform the known
uncertainty of the LiDAR and prior map measurements to
a single horizontal uncertainty in the map frame [43]. The
vertical uncertainty is computed as the standard deviation of
the difference between the matched region of the prior map
elevation values and the LiDAR elevation values. Both the
position and uncertainty are then transformed from the map
frame to the PCPF frame and applied as a position factor in
the optimization problem.

Before they are applied as a position factor in the optimization
problem additional criteria must be met to ensure that no
incorrect matches are accepted. First, the scan’s footprint
on the terrain is checked; scans with footprints less than
5x5 map pixels are deemed to small for accurate matching.
Second, the correlation value of the match is checked to be at
least a specified threshold and that no secondary peaks exist
above another specified threshold. This helps avoid accepting
matches where no good match exists or where self-similar
terrain is present. Next, the root mean square (RMS) of the
30 horizontal covariance ellipse principal axes is computed.
If this RMS value is greater than three map pixels the match
is rejected. If the norm is below this threshold, a final check
is performed to ensure the elevation standard deviation is
less than two times the sum of the prior map and LiDAR
measurement standard deviations.

Mapping—Mapping is performed by projecting LiDAR mea-
surements into a quadtree that spans a specified area in the
map reference frame. If a prior (orbital) map exists, it is
loaded into the quadtree when the program starts such that the
quadtree depth is uniform across the area down to the prior
map’s ground sampling distance. The elevation values of the
prior map serve as the initial elevation value at the quadtree
depth corresponding to the ground sampling distance of the
map, while higher levels are the mean elevation of all leaf
nodes below.

When new LiDAR measurements are received, these points
are projected based on their associated state estimate into
3D points in the map frame and inserted into the quadtree.
Additionally, each point in the quadtree has an identifier
that indicates the original scan and state that it is associated
with. As the points travel to leaf nodes in the quadtree,
their elevation values are used to adjust the mean elevation
estimate at each level.

At a specified interval, the map is updated by cycling through
each of the prior state estimates and checking if they have
changed by a specified threshold since the last time they
were used to project their associated LiDAR measurements.
If any of the parts of the state exceed their threshold, their
associated points are removed, reprojected into the map frame
according to the new state estimate, and then re-inserted into
the quadtree. In this way the map is continually being refined
and improving in accuracy.

5. RESULTS & DISCUSSION

This section presents the methodology used to test our algo-
rithm and the resulting performance. We begin by discussing
the specifics of the generated LiDAR-inertial datasets. We
test LiDAR-inertial odometry, LIDAR-inertial odometry with
MRL, and finally, LiDAR-inertial odometry with MRL and
mapping. We leave the task of mapping completely unknown
terrain to future work; this would be a relatively straightfor-
ward addition to our algorithm.

LiDAR-Inertial Datasets

Our datasets, simulated in LVSS, are designed to show that
our algorithm works with realistic instruments with minimal
or no impact on mission con-ops.

Instrument Specifications—The simulated LiDAR specifica-
tions are given in Table 1. The flash LiDAR is based on
the space-qualified 128 x 128 px ASC Goldeneye LiDAR that
was flown on Osiris-REx and used in the NASA ALHAT
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Figure 5. Summary of Trajectory-1 (a) and Trajectory-4 (b).

project. Our chosen field of view of 6° falls within the range
of previous applications, but we have assumed that it can
operate at this field of view up to 5 km, which would require
a more powerful laser than used previously. The frequency
and range noise are well within the capabilities of the sensor.

Table 1. Flash and scanning LiDAR specifications.

R Field of | Scan Noise Max. Scan
Type €s. View Freq. 1o Range | Pattern
Flash 128 px 6° 2Hz 025m Skm flash
Scanning | 128 px 11.42° 0.5Hz | 0.25m 5 km bi-raster

The scanning LiDAR is based on those in development for the
Europa Lander project, operating in open-loop (i.e., without
motion compensation) in the coarse hazard mapping mode
mode. Our specifications match or are inferior to the planned
LiDARs. Since the scan patterns in development are propri-
etary, we have opted for a standard open-loop bidirectional
raster scan pattern, which scans one row in a left-to-right
direction, the next in a right-to-left direction, and so on.

The simulated IMU is based on the Honeywell MIMU used
for the Mars 2020 rover, except with bias and noise specifica-
tions which have been artificially degraded for export control
reasons. The star tracker sensor is based on the Jena Optronik
ASTRO APS, running at 8§ Hz, with cross-boresight noise of

1 arcsecond 1o and a boresight noise of 10 arcseconds 1o.

Trajectories—To test the algorithm, we employ two different
trajectories, named Trajectory-1 and Trajectory-4. Both are
provided by Gurkirpal Singh at JPL from Monte-Carlo sim-
ulations of the Europa Lander mission. Except for the small
portion of the trajectory in which the spacecraft is in hazard
detection mode, these trajectories are in no way tailored to
terrain relative navigation.

Trajectory-1, plotted in Figure Sa, is low and fast, starting
at approximately 3.3 km altitude, and reaching linear and
angular velocities in excess of 100 m/s and 5°/s respectively.
It is used to test LiDAR-inertial odometry. Trajectory-4,
plotted in Figure 5b, starts at approximately 5 km altitude
and descends steeply. This steep descent allows us to fit the
LiDAR footprint within our 4x4 km DEM. It is used to test
LiDAR-inertial odometry with MRL.

LiDAR-Inertial Odometry

LiDAR-inertial odometry is most important at low altitudes,
where the scan footprints are smaller, and thus MRL is less
viable. LiDAR odometry is most challenging when linear
and angular velocities are high, since high velocities reduce
the overlap between subsequent scans and increase the scan
distortion (in the scanning LiDAR case). Trajectory-1 then
represents a relevant and challenging case. The test datasets
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Figure 6. Example flash LiDAR feature range (left) and
intensity (right) images and associated feature trails. Feature
detections are marked as circles (green for first detection, red

for last detection, and yellow for in between). New feature
trails (nt), with only two feature detections are connected by
blue lines. Old feature trails (ot), with more than two feature
detections are connected by cyan lines.

are simulated as if the spacecraft was landing on a terrain in
the Lunar Crater Volcanic Field regeion in Nevada (denoted
Nevada-1 herein).

Flash LiDAR—Figure 6 shows example feature trails from the
Nevada-1, Trajectory-1 flash LIDAR dataset. Range images
are high-passed by subtracting a Gaussian blurred copy of
themselves, and discretized to 8-bit so that SURF features
can be detected in OpenCV. Intensity images are also 8-bit,
and normalized to span the entire range from 0-255. Feature
trails only contain correspondences that have passed outlier
rejection. While there are many feature trails at state Xg
(Figure 6 top) and state x5 (bottom), there are none in the
relatively benign terrain at state xgg (center). It is clear from
these images that when both range and intensity images are
discretized to 8-bit, intensity images typically provide richer
data for feature correspondence.

Figure 7 shows a comparison between inertial odometry and
flash LiDAR-inertial odometry. Both are given perfect pose
priors but incorrect zero IMU bias priors. Inertial odometry
is given a perfect initial velocity prior, whereas LiDAR-
inertial odometry is given a loose (100 m/s 1) zero velocity
prior. The thick dot-dashed lines show the instantaneous state
estimate, the dashed lines show the 30 marginal uncertainty
of the instantaneous state estimate, and the semi-transparent
solid lines show the smoothed trajectory estimate at each time
step. The instantaneous state estimate is the best estimate
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Figure 7. Comparison of inertial odometry (io) with a
perfect velocity prior with flash LiDAR-inertial odometry
(trad-lio) with a zero velocity prior.

of state at the time. Since the entire trajectory is estimated
at each timestep, obtaining the instantaneous state estimate
simply involves extracting the estimated value of the most
recent state. The mean error magnitude is noted for the
instantaneous state estimate (following 4 s of convergence),
and for the entire smoothed trajectory (in parentheses).

It can be seen that after approximately 70 s, LiDAR-inertial
odometry outperforms inertial odometry, even in the unrealis-
tic case that inertial odometry is given a perfect velocity prior.
This demonstrates that LiDAR-inertial odometry can be used
effectively for velocimetry with flash LiDAR. It is noted that
at some points in the trajectory, particularly past 110 s in
the velocity plot, the 3c marginal uncertainty provided by
GTSAM is overconfident in the estimate. While the reason
for this is not fully understood, it is likely an artifact of the
simulation; at very low altitudes the 0.5 m/px ground truth
terrain resolution is insufficient for rendering the scan, the
range and intensity images are highly pixellated, and mea-
sured feature positions are less accurate. Since measurement
range and bearing covariances are set to a constant value at
all altitudes, this likely leads to the observed overconfidence
in state estimate at low altitudes.

Structureless Smoothing: The primary goal of structureless
smoothing is to remove the estimation of opportunistic land-
mark positions from the LiDAR-inertial odometry problem,
and thus reduce the computational cost of the algorithm.
Figure 8 compares the traditional and structureless (smart)
approaches to LiDAR-inertial odometry. The position and
velocity errors are virtually indistinguishable between ap-
proaches, but the cumulative computation time devoted to
inference in the structureless case is more than a factor of
four less than in the traditional case. This computational
reduction results from the drastic reduction in the number
of factors and number of variables in the structureless case,
shown at the bottom of Figure 8. The traditional approach
estimates three variables per scan (pose, velocity, and IMU
bias) plus one variable per opportunistic feature, of which
there are thousands; by contrast, the structureless approach
estimates only three variables per scan. Also evident in
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Figure 8. Comparison of traditional (trad-lio) and
structureless (smart-lio) LiDAR-inertial odometry with a
zero velocity prior.

Figure 8 is that there is a significant increase in the inclusion
of landmarks after 50 s; this is terrain specific, with the
scanned terrain being relatively benign from 0-50 s for the
Nevada-1, Trajectory-1 dataset.

Scanning LiDAR—Despite the fact that our scanning LiDAR
operates four times slower than our flash LiDAR, there is
still significant overlap between subsequent images. There
are two reasons for this: the field of view of the scanning
LiDAR is almost double that of the flash LiDAR; and the
continuous nature of data collection causes scan distortion
that can actually aid in image overlap.

Figure 9 shows the distortion in the azimuth-elevation binned
range and intensity images resulting from using scanning
LiDAR on a moving spacecraft. When rows of the scan
are perpendicular to the sensor’s velocity (i.e., in the cross-
track direction), motion will tend to compress or stretch the
images (see Figure 9a). When rows of the scan are parallel
with the sensor’s velocity (i.e., in the along-track direction),
motion will tend to skew the images (see Figure 9b). The type
and severity of distortion affects the abundance and accuracy
of frame-to-frame feature correspondences. Interestingly, all
permutations of successful feature tracking exist: cross-track
only (first row of Figure 9), both (second row of Figure 9),
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Figure 9. Example LiDAR feature range (left) and intensity
(right) images and associated feature trails for scanning
LiDAR with a cross-track scan pattern (a), and an
along-track scan pattern (b). Feature trail coloring and
annotation is the same as in Figure 6. Direction of terrain
motion in the LiDAR frame is shown by the light orange
arrows. Scan pattern direction is shown by the light purple
arrows.

along-track only (third row of Figure 9), and neither (final
row of Figure 9). We thus investigate both cross-track and
along-track sensor orientations to ensure that LIDAR-inertial
odometry functions in the face of both compression and skew
distortions.

Figure 10 shows a comparison between scanning LiDAR-
inertial odometry with the sensor oriented in the cross and
along-track directions. The along-track experiment was per-
formed by rotating the LiDAR frame L by 90° along its
boresight in the spacecraft body frame B. The performance
between the two is relatively similar, indicating that neither
compression or skew distortion of the range and intensity
images precludes accurate LiDAR-inertial odometry, even
during aggressive powered approach. Despite having access
to a quarter of the number of scans, the final smoothed trajec-
tory error is similar to that of flash LIDAR odometry shown
in Figure 7. However, the instantaneous state estimate has
difficulty fully converging in the initial 40 s, over which the
terrain is benign and there are few feature correspondences.

LiDAR-Inertial Odometry with MRL

Building on LiDAR-inertial odometry demonstrated in the
previous section, we add MRL for absolute position determi-
nation, completing the navigation portion of our algorithm.
We use the same priors as for LiDAR-inertial odometry,
except for position, for which we apply a prior of 4 km
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Figure 10. Comparison of traditional scanning
LiDAR-inertial odometry with a zero velocity prior for cross
(trad-lio) and along-track (trad-lio-along) scanning
directions.

altitude above the center of the map.

When using flash LiDAR, MRL position estimates are cal-
culated and applied immediately following availability of
the LiDAR data; when using scanning LiDAR we delay
the calculation and application of MRL position estimates
by six scans (i.e., upon receipt of the seventh scan, the
first scan is processed for MRL, and, if it passes outlier
rejection, included in the factor graph). This was found to
be a conservative delay in MRL, which allowed the estimated
velocity to converge, and facilitated accurate de-warping of
the scanning LiDAR scan. Note that to account for this lag,
when calculating the mean magnitude of the current state
estimate errors, we exclude the states with time stamps prior
to 14 s (i.e., after seven scans at 0.5 Hz). For consistency we
do this for both flash and scanning LiDAR data evaluation.

Algorithm performance is highlighted by executing a sim-
ulated descent over the e86-1 terrain on Europa. We then
test the algorithm over all terrains, with different prior map
fidelities, to see how it performs for different destinations
across the solar system with different data quality. All tests
are done using Trajectory-4, which allows the estimation
process to start at the limit of LiIDAR range, and gives MRL
the greatest chance at making successful detections.

Europa Example—Example visualizations of attempted MRL
matches over the example Europan e86-1 terrain with a
4 m/px prior map are shown in Figure 11. Each example
displays the scan map in the top-left corner and the matched
prior map area in the bottom-left corner. The central image
displays the entire prior map, accepted (green crosshairs)
position estimates, and rejected (red crosshairs) position es-
timates. The crosshairs for the current position estimate are
larger than those for previous ones. The right image shows
the thresholded correlation map, which is purple for all values
under the minimum correlation. The bottom informational
bar shows the matching resolution (i.e., 4 m/px), the dimen-
sion of the matched template (i.e., between 16x16 px and
64x64 px in the examples), the maximum correlation value
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4m/px 64px

4m/px 16px

: 1e409m

4m/px 32px Max: 0,998 rho:

Figure 11. Examples of attempted MRL matches.

(when it surpasses the minimum correlation threshold), and
rho, the RMS value of the 30 horizontal uncertainty ellipse
principal axes.

The top example shows an accepted match, with high cor-
relation, low rho, and no secondary peaks. The second
example shows a match which was rejected because its rho
value was in excess of its threshold of three map pixels (i.e.,
p =13 m > 3 px -4 m/px). The third example shows
a case in which no match above the minimum correlation
threshold was found. Finally, the bottom example shows a
case in which an otherwise valid match was rejected because
of the presence of a second peak above the allowed threshold.
The second peak is small, but visible as an orange dot in the
purple thresholded correlation map.

Results for flash LiDAR-inertial odometry with MRL are
shown in Figure 12. Results from two different map res-
olutions are shown: 4 m/px, the highest resolution tested,
and 32 m/px, the lowest resolution tested. Independent white
Gaussian noise was added to each prior map: with a standard
deviation of 0.5 m for the 4 m/px map, and with a standard
deviation of 4 m for the 32 m/px map. For Europa, the low-
resolution map is representative of the products that will be
available for potential lander sites after the Europa Clipper
mission. The high-resolution map is representative of higher
quality products, as available on Earth, the Moon, and Mars.

When using the 4 m/px map, inlying MRL position estimates,
denoted by solid circles in Figure 12, begin immediately, and
are obtained late into the run. When using the 32 m/px map,
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Figure 12. Comparison of inertial odometry and flash
LiDAR-inertial odometry with MRL, for both a 4 m/px,
0.5 m 1o error map, and a 32 m/px, 4 m 1o error map.
Accepted MRL position estimates are shown with solid
circles; rejected ones are shown with xs.

only two inlying MRL position estimates are obtained, and
not until after 20 s into the run. Accurate template matching
for MRL is typically harder with less information [27]. Thus,
the fewer pixels and higher noise of the low-resolution map
make the task of MRL more difficult, and lead to lower posi-
tion accuracies. The result is that the position estimate begins
from the prior position with only LiDAR-inertial odometry,
and snaps to the correct position upon receipt of the first MRL
position estimate (see 3D plot in Figure 12).

Despite being influenced by MRL position factors, velocity
estimation is mainly dependent on the observation of op-
portunistic landmarks in LiDAR-inertial odometry. Thus it
remains relatively similar between the two methods.
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Results for scanning LiDAR-inertial odometry with MRL,
again for two different map resolutions, are shown in Fig-
ure 13. Here, and for all subsequent runs, the scanning
direction was cross-track. Despite having a data frequency
four times less than flash, performance is comparable. An
inlying MRL position estimate is found at an early state for
both map resolutions. That an early estimate is obtained in
the 32 m/px map, where it was not with flash LiDAR, can
likely be attributed to the scanning LiDAR’s wider field of
view. A wider field of view allows more map pixels, and thus
more information, to be included. It is evident from these
results that the scan is being adequately de-warped, even at
velocities up to 100 m/s, to facilitate accurate MRL.
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Figure 14. Summary of results from LiDAR-inertial
odometry with MRL for all planetary terrains and different
prior map fidelities.

Performance Across All Planetary Bodies—Identical tests to
those performed for the Europa example were performed for
all 81 planetary terrains. For each planetary terrain, prior
maps with resolutions {4, 8, 16, 32} m/px and correspond-
ing map noise standard deviations of {0.5, 1, 2, 4} m were
used as the base maps for MRL.

A summary of results is shown in Figure 14. The mean
magnitude of current and smoothed estimates, which corre-
spond to the values displayed on error plots above (smoothed
estimate errors in parentheses), are displayed. Additionally,
the number of MRL position estimates is shown for each run.

Unsurprisingly, position accuracy, map resolution, and num-
ber of accepted MRL position estimates are all positively
correlated. Position errors of around 1.5 km are indicative
of cases where no MRL position estimates were obtained.
Failure to obtain a singe MRL position estimate is unlikely
for resolutions better than 32 m/px. Planetary bodies with
highly textured terrains, such as Enceladus, Eros, and Europa,
perform better at low resolution than those with more bland
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terrain such as Earth, Mars and the Moon. When selecting
terrains for simulation, we chose some sites that had already
been landed at, such as the Apollo 11 landing site on the
Moon, and others on which landings have been proposed,
such as Oxia Planum on Mars (for ExoMars). Interestingly,
these terrains were likely selected specifically because they
are relatively safe and benign, and our algorithm did not
perform well on them. This suggests that our algorithm is
most accurate in the exact scenarios in which it is designed to
operate: over rough, hazardous terrain.

Again, velocity accuracy remains relatively uniform across
different prior map resolutions, since MRL position estimates
play a much smaller role in velocimetry than does LiDAR-
inertial odometry. Velocity accuracy also remains relatively
uniform across different terrains, including terrains such as
Europa, for which the albedo is set to a uniform value in our
simulations. Thus, variation in terrain normal angles provide
enough texture in the intensity image to accurately perform
LiDAR-inertial odometry. Velocity estimation errors above
1 m/s are rare and typically only occur when using scanning
LiDAR. Typical errors are less than 10 cm/s.

A tiny minority of cases result in catastrophic failure of the
smoothing algorithm. Typically, these failures appear to be
driven by the coupling between orientation and the rest of
state, which we plan to eliminate in future work. In very rare
instances, incorrect MRL estimates make it through outlier
rejection and are the cause of errors above 1.5 km in position.

LiDAR-Inertial Odometry with MRL and Mapping

In this section, mapping is demonstrated for the same sce-
nario as the Europa example above. The program loads the
4x4 km resolution, 0.5 m/px resolution, noiseless ground
truth map and resamples it to 32 m/px. It then applies
additive zero mean Gaussian noise with 4 m standard devi-
ation. This 32 m/px topographic map is used to initialize
both an immutable MRL (aka prior) map (for localization)
and a refined (aka estimated) map (which will be updated
with LiDAR measurements). When a new LiDAR scan is
received, its points are projected into the map frame using its
associated state estimate. To evaluate mapping performance,
we compare the resultant estimated map with the ground
truth map at a specified resolution and time interval, in this
case at 4 m/px every 10 s. At the same 10 s interval,
the algorithm corrects previous LiDAR scan projections if,
since the previous update, any part of their associated state
estimates have changed by the corresponding threshold in
Table 2.

Table 2. State estimate change thresholds for mapping

updates.
Attitude | Position | Velocity Gyro. Bias Accel. Bias
0.001 rad 4 m 1 m/s 0.00001 rad/s 0.01 m/s>

Qualitatively, the improvement in the final estimated map
over the prior map in terms of resolution can be seen in Fig-
ure 15. To quantify this, at the 10 s mapping interval the root
mean squared error (RMSE) of the refined map compared
to the ground truth map is computed at a specified ground
sampling distance (4 m/px was selected herein). To calculate
this error, we generate a map from the quadtree of the refined
map at 4 m/px resolution, interpolate our ground truth map to
the same resolution, and compute absolute differences for all
pixels. An example of the absolute error in the refined map
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Figure 15. Example of final estimated map at 0.5 m/px for
flash (top) and scanning (bottom) LiDAR measurements.
The surrounding low resolution information is from the
32 m/px prior orbital map.

throughout the run is shown in Figure 16. These images show
how the map error is reduced in regions the LiDAR observes
and improves over time as state estimates improve.

6. CONCLUSIONS & FUTURE WORK

This report outlines the development and demonstration of
a novel LiDAR-inertial based navigation and mapping algo-
rithm for precision landing. Several LiDAR inertial datasets
have been generated throughout the solar system by up-
sampling existing topographic maps and running simulations
using an augmented version of LVSS. A smoothing frame-
work has been designed and implemented to estimate the
entire trajectory of a landing spacecraft. Topographic map
refinement has been achieved through the reprojection of
LiDAR scans.

LiDAR-inertial odometry results are promising, indicating
that velocimetry performs reliably on a variety of terrains
with both flash and scanning LiDAR. While our work relies
on measurement of the laser return intensity, we suggest that
if only range data is available, normalized cross-correlation
of range images in azimuth-elevation space may provide a
viable alternative. A structureless approach for flash LIDAR
odometry was demonstrated to reduce the algorithm’s com-
putational expense by a factor of four.

Map relative localization provided accurate spacecraft po-
sition estimates in cases where the combination of terrain
roughness and map fidelity was satisfactory. For rough ter-
rain, such as that on Enceladus, Europa, and Eros, maps with
32 m/px resolution and 4 m elevation noise standard deviation
were typically sufficient for localization. Elsewhere, maps
with 16 m/px resolution and 2 m noise standard deviation
or 8 m/px resolution and 1 m noise standard deviation were
adequate. For standalone use of this landing system on a
mission, in-depth study of the terrain roughness and map
information content would be required to ensure reliable
MRL.
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Map refinement through reprojection of LiDAR points into
the map frame was demonstrated to improve map resolution
and accuracy. These results are a preliminary step in acquir-
ing lander-scale resolution hazard detection and avoidance
maps. In general, mapping at lander-scale resolutions will
require lander-scale localization accuracy, which is achieved
in some but not all of our experiments. The interconnected-
ness of localization and mapping means that improvements in
LiDAR-inertial odometry and MRL will facilitate improve-
ments in mapping accuracy.

Several such improvements will be the subject of future
work on this landing system. Most notably, for orientation
estimation, it is difficult to outperform estimates provided
by an initial star tracker measurement and the integration of
an EDL-class gyroscope, even when gyroscope bias is incor-
rectly assumed to be zero. As a result, we will likely decouple
orientation estimation from the rest of the smoothing problem
in the future.

Another potential improvement to the current system is the
checking of frame-to-frame feature correspondences for sep-
aration within the azimuth-elevation range and intensity im-
ages. Large separation of tracked features promotes accurate
LiDAR odometry. In the future, we could include a check
for separation in the outlier rejection step, preferring sets of
feature correspondences whose convex hulls subtend a larger
solid angle.

There is additional work to be done on the subject of terrain
mapping. Firstly, the state estimate change thresholds can be
further tuned to properly balance computational expense and
map accuracy. Secondly, in the absence of an MRL match
to the prior orbital map, matching with respect to the refined
map could be attempted. This would facilitate the inclusion
of MRL position estimates in the case when there is no prior
orbital map or in the case where the spacecraft has descended
to an altitude that makes matching to the low-resolution prior
orbital map difficult or impossible. Matching to the refined
map is likely to improve mapping by ensuring that the scan
projections are properly aligned before being incorporated
into the quadtree.

Following these improvements, the larger tasks for future
work are the adaptation of the software for real-time oper-
ation on real-world data, which will be pursued at JPL in the
coming year.
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