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Enceladus is the likest place to find alien life in the solar system:
Astronomers found complex organic molecules, the building blocks of life, on the 
small icy moon.

Postberg et al., Nature (2018)
* High Mass Organic Cations

Life Investigation For Enceladus (LIFE)
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Autonomy challenges - reactive, adaptive resilient autonomy is required for future mission

M2020 Enceladus

2.98m/h
(15km/1.25Mars years)

188m/h 
(3km/16 earth hours)

Deliberative
Plan & schedule

Reactive
Select activities in response to events/unknown situations

Robust
Preprogrammed behaviors

Adaptive
Change behaviors based on new situations

Protective
Stop activities, go into safe mode, and wait for 
the ground

Resilient
Keep going with remaining capabilities

EELS: Exobiology Extant 
Life Surveyor Accessing 
Under Ice Habitable Oceans
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Real-time high-precision object recognition and segmentation, and 
transformation for situational awareness using deep learning

High-precision segmentation, Lu et al. 2018

Object recognition for search and rescue 
mission, Yun et al. 2019

Original video       Enhanced video 

Color-visible to IR transformation, 
Yun et al. 2018



Convolutional neural networks (CNNs) as building blocks of deep learning 
are inspired by the human vision

● CNNs are feed forward computational graphs constructed up to 1000s of layers
● Each layer consists of neurons ni which are interconnected with synapses, associated with weights 

wij
● Each neuron computes

Linear transform (dot-product of receptive field)
Followed by a non-linear “activation” function

Convolution in the 
human brain

Convolution in the 
artificial neural networks
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Why CNNs are better than other neural nets?
● Convolution takes advantage of local spatial coherence of data
● Pooling layer downscales the data, making CNNs more efficient
● Compared to expert system, CNNs require little or no domain expertise
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● Reducing precision (most promising)
○ Reducing precision shrinks arithmetic cost

● Linear reduction in memory footprint (pruning)
○ Reduces weight fetching memory bandwidth
○ NN model may even stay on-chip

How can CNNs be better? Algorithmic optimization
Precision Modelsize (MB)

ResNet50

1bit 3.2

8bit 25.5

32bit 102.5

WQ: weight quantization, AQ: activation quantization
IQ: input quantization, RQ: recurrent activation quantization

Rybalkin, Pappalardo 2018
Horowitz ISSCC 2014 7



The benefits of moving from 32-bit to 2-bit precision for deep learning inference can be 
exploited for power consumption or performance

IBM, NeurIPS 2019

Power consumption and processing speed improve 
with quantization

Accuracy is compromised with 
quantization
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Reduced precision neural nets are improving rapidly

Learned Quantization (LQ)-Net, 
Zhang et al. 2018

Learnable quantizer on the 2-bit 
case
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How can CNNs be better? Pruning

Synaptic density (Chugani). 
Children’s brains have twice as many 
synapses as adults’ brains 

Pruning in artificial neural network with L1 
regularization

Pruning in human brain

Han 2016 10



Quantization and pruning without accuracy loss

Han et al. 2016 (Xilinx) 11



Tensor decomposition for data compression in deep learning

Kim et al. 2016 (Samsung) 12



Deep learning algorithms are comprised of a spectrum of operations. Although matrix 
multiplication is dominant, optimizing performance efficiency while maintaining accuracy 
requires the core architecture to efficiently support all of the auxiliary functions. (algorithmic 
improvement direction!) 

Fleischer et al. 2018
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Energy per operation, in PJ, for various operations in 45nm
Memory access is >500X arithmetic energy

Pedram et al. 2017
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Performance comparisons of VGG-CNNs on FPGAs
Hardware improvement for deep learning from CPU to GPU to FPGA

Wang et al. 2018 15



Convolutional neural networks on the edge: 
Goal is to minimize memory access (hardware improvement direction!) 

NeuFlow [Farabet et al. 2011]

Xilinx Virtex 6 FPGA platform
Multiplication
Addition
Linear mapper

∑π: parallel convolver with 100 MAC units
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Motivation of in-memory computing: Neural information processing

“The software written for the brain” executes on billion BPUs (brain processing 
units=neurons), each connected to several thousand other BPUs

There is no flow control in that the information flows from a BPU to another as 
needed. No circuitry is wasted in fetching, caching, decoding, and executing code
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Near memory computing by incorporating the memory and logic 
chips in an IC to solve the bandwidth bottleneck

Taha et al. 2013 18



Performance improvement using near memory computing - TPU

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-t
ensor-processing-unit-tpu
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Computational memory (in-memory computing):
Computation is performed in place by exploiting the physical attributes of 
memory devices organised as a “computational memory” unit.

A. Sebastian et al.: “Temporal correlation detection using computational phase-change memory”, Nature Communications 8, 1115, 2017. 20



In memory computing for deep learning
Store the weights locally and use memory to do vector-matrix multiplication

Instant/parallel vector matrix multiplications
Tsai et al. 2018 (IBM)
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Phase-change memory for neuro-inspired computing

Neuromorphic computing system based on NVM. a Schematic illustration 
of one-layer neural network with synaptic weights (W) connecting an input 
layer to an output layer. b A synaptic weight is represented by a 
conductance value of an NVM element at each cross-point in a crossbar 
array structure. c Vector-matrix multiplication is performed by sensing the 
current (I) for each column, which is the product of the synaptic weight (G) 
and the input signal (V)

Zhang et al. Nature Reviews Materials 2019Gong et al. Nature Communications 2018 22



IBM’s mixed-precision approach
encode the synaptic weights as the conductance values of 
phase-change memory devices organised in a 
computational memory unit

the weight changes are accumulated in high precision

This mixed-precision approach enables training the 
network to reach high classification accuracy, while 
performing the bulk of the computation as in-memory 
computing. 

The trained weights will be retained in the computational 
memory (non-volatile) without any power

A chip trained in this way can be used for inference tasks 
within sensor devices at a fraction (<1%) of the power
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Resistance Processing Unit (RPU) for next generation in-memory computing

Each small RPU mimics a synapse in the brain

Gokmen, Vlasov 2016
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CPU+GPU+NPU hybrid system for mobile drives deep learning on the edge

2.22 trillion operations per 
second

5 trillion operations per 
second

https://syncedreview.com/2018/09/13/ai-chip-
duel-apple-a12-bionic-vs-huawei-kirin-980/ 25



Performance comparisons among State-of-the-Art 
Compute-in-Memory Architectures

State-of-the-Art Compute-in-Memory Architecture GPU CPU

NVIDIA NVDLA Mythic IPU
Gyrfalcon 

Lightspeeur 
2801

NVIDIA Pascal 
Titan-X

6-core Intel i7

Speed (TOPS=trillion 
operations/second)

2 9.6 5.6 44 0.15

ResNet-50 neural 
network (224x224X3) 

Speed (frames/second)
269 900 142 180 2.8

Power (W) 0.291 2 0.3 250 95
Efficiency (TOPS/W) 5.4 4.8 9.6 0.18 0.001
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Autonomy in space performance requirement
● Mars helicopter 50GOPS, 1TOPS/W AI
● Next generation autonomous rover requires >3,000GOPS (63X of Mars2020)
● In-memory computing will reduce risk of the Enceladus lander mission

NASA Enceladus Mission Concept Study 2010
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Challenges of in-memory architectures for deep learning

● Hardware demand
○ Speed and power in parallel weights update
○ Large memory required

● Persistency
○ Unstable analog memory states (low precision)
○ Write endurance (flash memory limitation) 

● Integration
○ Need ADC/DAC to connect with other functions (activation, pooling)
○ Programming analog memory states
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Summary
● Deep learning is the core of next generation autonomy in space 

computing 
● Currently GPU is the best tool for deep learning
● Specialized ASICs (TPU) are currently being implemented, performing 

10X than GPU
● In next 5 years, in-memory computing (IMC) will be the most efficient 

tool for deep learning, achieving 100X performance than GPU
● IMC-based deep learning will be crucial for accelerating autonomy in 

space
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